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Abstract

Weak solutions of McKean-Vlasov equations with creation of mass

are given in terms of superprocesses. The solutions can be approxi-

mated by a sequence of non-interacting superprocesses or by the mean-

�eld of multitype superprocesses with mean-�eld interaction. The lat-

ter approximation is associated with a propagation of chaos statement

for weakly interacting multitype superprocesses.

Running title: Superprocesses and McKean-Vlasov equations .

1 Introduction

Superprocesses are useful in solving nonlinear partial di�erential equation of
the type �f = f1+�, � 2 (0; 1], cf. [Dy]. We now change the point of view and
show how they provide stochastic solutions of nonlinear partial di�erential
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equation of McKean-Vlasov type, i.e. we want to �nd (weak) solutions of

@

@t
�t =

dX
i;j=1

aij(x; �t)
@2

@xi@xj
�t +

dX
i=1

di(x; �t)
@

@xi
�t + b(x; �t)�t: (1.1)

A weak solution � = (�s) 2 C([0; T ];M(IRd) satis�es

�t(f) = �0(f) +
Z t

0
�s(

X
aij(�s)

@2

@xi@xj
f +

X
di(�s)

@

@xi
f + b(�s)f)ds:

Equation (1.1) generalizes McKean-Vlasov equations of two di�erent types.
Firstly, if b = 0 it is the classical McKean-Vlasov equations associated with
nonlinear IRd-valued di�usions and studied in many papers, e.g. [L,Oel,S1,S2].
If only b depends on � then this equation is studied in [CR], [COR]. It is
used in applications for some biological problems, like conduction of nerve
impulse, cf. [GS,SP] and the references therein. Equations like (1.1) with
non-linear drift in the di�usion and nonlinear reaction term are sometimes
called reaction-convection-di�usion equation ([Lo, p. 287]) and can be found
in many biological applications, cf. [M, Section 11.4].

Our main result concerning equation (1.1) is Theorem 3.1 in Section 3 and
claims that (under Lipschitz conditions on the coe�cients of (1.1) ) a (unique)
solution of (1.1) can be found as the limit of ( the interacting one-type su-
perprocess) 1

N

PN
i=1X

i;N as N ! 1 where (X1;N ; : : : ;XN;N ) is a N-type
superprocess with mean-�eld interaction. Obviously, this result should be
embedded in a Propagation of Chaos statement for weakly interacting N-
type superprocesses ( including in particular tightness of 1

N

P
�Xi;N ). This is

the topic of Section 2. However, this result does not necessarily implies that
the limit process gives a solution of (1.1), because the application I from
M1(M(IRd)) to M(IRd) de�ned by

I(m)(f) :=
Z
�(f)m(d�) (1.2)

fails to be continuous. Finally, in Proposition 3.3 we construct a unique
solution of (1.1) by a Picard-Lindel�of approximation under stronger condition
as in Theorem 3.1. This approximation gives a solution of (1.1) as a limit of
intensity measures of superprocesses with non-interactive immigration.
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2 Weakly interacting and non-linear superprocesses

In this section we construct a non-linear superprocess as an accumulation
point of a sequence of weakly interacting multitype superprocesses.

2.1 Weakly interacting superprocesses

First we want to describe an N-type superprocess with an interaction de-
pending only on the empirical process. We start with real-valued (resp.
positive) functions aij; dk; 1 � i; j; k � d; and b (resp. c ) de�ned on
[0;1)�IRd�M1(M(IRd)), whereM(1)(E) denotes the space of ( probability)
measures on the Polish space E equipped with the topology of weak conver-
gence. De�ne for every s � 0, m 2 M1(M(IRd)) the (time-inhomogeneous)
operator L(s;m) on C2

0(IR
d) by

L(s;m)f(x) :=
dX

i;j=1

aij(s; x;m)
@2f

@xi@xj
(x) +

dX
i=1

di(s; x;m)
@f

@xi
(x): (2.1)

The operator serves as a description of the one-particle motion. Let us de-
note the family (L(s;m))s2[0;1);m2M1(M(IRd)) by L. For the weakly interacting
superprocess the function b(s; x;m) describes the mean branching rate and
c(s; x;m) the variance in the branching rate while the empirical distribution
of the process equals m.

In order to state now the basic de�nition we need some notation. Let N 2 IN

be �xed. If ~� = (�1; : : : ; �N ) 2 (M(IRd))N ; ~f = (f1; : : : ; fN) 2 (B(+)
b (IRd))N ;

where B(+)
b are bounded measurable (non-negative) functions, then

R(~�) :=
1

N

NX
i=1

��i 2M1(M(IRd))

and ~�(~f) :=
PN

i=1 �i(fi); where �(f) =
R
fd�: The exponential function e~f

is de�ned by e~f(~�) = exp(�~�(~f)): Finally, we denote for a Polish space E
the space of E-valued continuous paths by CE.

De�nition 2.1 We call a measure PN 2 M1(CM(IRd)N ) an N-type weakly
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interacting measure-valued di�usion starting at ~�0 if

e~f(
~Xt)� e~f(~�0) +

Z t

0
e~f(

~Xs)
NX
j=1

Xj
s (L(s;R( ~Xs))fj + (2.2)

b(s;R( ~Xs))fj � c(s;R( ~Xs))f
2
j )ds

is a PN martingale for all ~f = (f1; : : : ; fN) with non-negative fi 2 C2
0 . ~X

denotes the coordinate process on CM(IRd)N .

2.2 Propagation of Chaos

One main issue in this section is the question under which conditions the
sequence fPNgN2IN is P1-chaotic with a measure P1 2 M1(CM(IRd)).

De�nition 2.2 Let P1 2 M1(CM(IRd)). We say that the sequence fPNgN2IN
is P1-chaotic if for every k 2 IN

PN � (X1; : : : ;Xk)
�1 =)
k

i=1P
1 as N � k tends to in�nity; (2.3)

cf. [S1,S2].

Intuitively, this means that the interaction disappears if the number of types
N tends to in�nity. Typically the measure P1 is a solution of a non-linear
martingale problem. Roughly speaking, because the law of large numbers
implies R( ~XN

s (!)) ) P1 � X�1
s , the measure P1 solves the martingale

problem characterized by the martingale property of the process

ef(Xt) � ef (X0) +
Z t

0
ef (Xs)Xs(L(s; P

1 �X�1
s )f + b(s; P1 �X�1

s )f

� c(s; P1 �X�1
s )f2)ds (2.4)

for every f 2 C2
0 (IR

d). Such a measure is called non-linear superprocess with
parameter (L; b; c).

According to [S2] an exchangeable sequence fPNgN2IN is P1-chaotic i� the

distribution �N 2 M1(M1(CM(IRd))) of R( ~XN
: ) = 1

N

PN
j=1 �Xj;N converges

weakly to �P1 . ( Here f ~XNgN2IN is a sequence of random variables on a

probability space (
;F ; P ) such that P � ( ~XN )�1 = PN .)
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The next theorem gives general conditions under which there is an exchange-
able solution PN to (2.2) and the sequence f�NgN2IN is tight. Additionally
we show that all limits points of f�NgN2IN are supported by the set of so-
lutions to the martingale problem formulated in (2.4). If (E; d) is a Polish
space with metric d we consider on M(1)(E) the Wasserstein metric

d(E;d)(�; �) := supfj�(f) � �(f)j; jjf jjBL � 1g (2.5)

where jjf jjBL = jjf jj1 ^ inffK; jf(x) � f(y)j � Kd(x; y) 8x; y 2 Eg: Set
�1 = d(M(IRd);d(IRd;j:j))

and �2 = d(IRd;j:j).

Theorem 2.3 1. Let the functions aij; dk; 1 � i; j; k � d; c and b satisfy
the following assumptions for functions r on [0;1)�IRd�M1(M(IRd))

jr(s; x1;m1)� r(s; x2;m2)j � Kr(�1(m1;m2) + jx1 � x2j) (2.6)

sup
x2IRd

r(s; x;m) <1 for each m 2M1(M(IRd)): (2.7)

Additionally we assume that one of the following growth conditions is
satis�ed:

sup
s2[0;1)

sup
m2M1(M(IRd))

Z Z
jr(s; x;m)j�(dx)m(d�) � K0 <1 (2.8)

for all functions b; c; aij; dk; 1 � i; j; k � d or

sup
m2M1(M(IRd))

Z
IRd
jr(s; x;m)j�(dx) � K0�(1) +K1 (2.9)

for all functions b; c; aij; dk; 1 � i; j; k � d:

Then there exists an exchangeable solution of (2.2).

2. Assume additionally that for each f 2 C2
b (IR

d)

sup
N

PN [X1
0 (f)

2] <1: (2.10)

Then the sequence f�NgN2IN is tight and every accumulation point is
supported by the set of solutions Q 2 M1(CM(IRd)) of the martingale
problem (2.4) of a non-linear superprocess.
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3. If we assume additionally that the sequence of initial distributions fmN
0 gN

with mN
0 2 M1(M(IRd)N) is m1

0 -chaotic and if there exists only one
solution P1 to the martingale problem (2.4) with initial distribution
m1

0 then fPNgN2IN is P1-chaotic.

Proof. 1. An exchangeable solution of (2.2) can be constructed by weak
approximation with interacting multitype branching di�usions, cf. [MR, GL,
O1]. The condition (2.8) (resp. (2.9)) ensures the tightness of the interact-
ing branching di�usions as well as its existence as an accumulation point of
a sequence of branching random walks. The latter can be constructed as
marked point processes , cf. [O1], (or as in [RR],) which are exchangeable
by construction. This construction is sketched in the appendix. The neces-
sary tightness under condition (2.8) (resp. (2.9)) follows as in the proof of
tightness of f�NgN , see part 2 of the present proof.

2. It is well known that the sequence f�NgN is tight if sequence of the inten-
sity measures fI(�N)gN is tight in M1(CM(IRd)), cf. [S1,S2]. The sequence of
measures fI(�N)gN2IN is tight if their one-dimensional projections are tight,
i.e. if, by exchangeability, the laws of X1;N (f) build a tight sequence of mea-
sures on CIR for every f 2 C2

0(IR
d) [ f1g, cf. [D, Sect. 3.6]. The tightness

of fX1;N(f)gN2IN may be deduced by the Aldous-Rebolledo criterion. The
�rst condition of that criterion follows by the uniform L2-boundedness of the
initial distribution and (2.9). The second part follows if we can bound

E

�����
Z S+�

S
X1;n
s (

dX
i;l=1

ai;l(s;R( ~X
N
s ))

@2f

@xi@xl
(2.11)

+
dX
i=1

di(s;R( ~X
N
s )

@f

@xi
+ b(s;R( ~XN

s )f)ds
����
�

and

E[j
Z S+�

S
X1;N
s (c(s;R( ~XN

s )f
2)dsj] (2.12)

for a bounded stopping time S and 0 < � < 1. Under (2.9) the term (2.11)
is bounded by

KfE[
Z S+�

S
(K0Xs(1) +K1)ds] � �K 0

f (E[ sup
s�L+1

X1;N
s (1)] + 1):
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Applying now the semimartingale decomposition of X1;N (1) and once again
assumption (2.9) we obtain

E[sup
s�t

X1;N
s (1)] � E[X1;N

0 (1)] +
Z t

0
K 0

0E[sup
s�r

X1;N
s (1)] +K 0

1dr

which yields by Gronwall's lemma and the uniform L2-boundedness of the
initial distribution an upper bound for (2.11), which is independent of N .
The same procedure applies to (2.12). Under assumption (2.8) we rewrite
the term (2.11) by exchangeability as

1

N

NX
j=1

E

�����
Z S+�

S
Xj;n
s (

dX
i;l

ai;l(s;R( ~X
N
s ))

@2f

@xi@xl

+
dX
i=1

di(s; x;R( ~X
N
s )

@f

@xi
+ b(s;R( ~XN

s )f)ds
����
�
:

It is immediate that the term (2.11) is then bounded by �KfK0: Together
with the same calculations for the quadratic variation, this yields that also
in this case the second part of the Aldous-Rebolledo criterion is satis�ed and
the �rst part can be proved analogously as under (2.9).

3. Identi�cation of the sets of accumulations points of f�NgN2IN .

Let �1 be an accumulation point of f�NgN2IN. For 0 � r1 < � � � < rk <

r < t, g bounded and continuous on M(IRd)k and f 2 C2
0 [f1g we de�ne the

function F on M1(CM(IRd)) by

F (Q) =
Z
C
M(IRd)

�
ef (!(t))� ef (!(r)) +

Z t

r

�
!(s)

�
L(s;Qs)f + b(s;Qs)f �

c(s;Qs)f
2
�
ef (!(s))

�
dsg(!(r1); : : : ; !(rk))

�
Q(d!);

where Qs denotes the distribution of !(s) under Q. We will show that

Z
M1(CM(IRd))

F 2(Q)�1(dQ) = 0: (2.13)

The martingale problem (2.2) implies a formula for the quadratic varia-

tion of the exponential martingales M i;N [ef] de�ned as in (2.2) with ~f =
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(f1; : : : ; fN ); fj = �ijf . This formula yields

Z
F 2(Q)�N(dQ) �

Kg

N2
E[

dX
i;j=1

hM i;N [ef];M
j;N [ef ]it]

�
Kg

N2

dX
j=1

E[
Z t

r
Xj;N (c(s;RN( ~Xs))f

2)e2f(X
j;N )ds]

�
K 000

f

N
(t� r)Kf �! 0 as N !1:

The last inequality follows as in part 2 of the proof by assumption (2.8)
(resp. (2.9)) and by the submartingal property of the total mass process
X1;N(1). The assertion follows now, if we have that

R
F 2(Q)�N(dQ) con-

verges as N ! 1 to
R
F 2(Q)�1(dQ). Because F is under the conditions

(2.8) (resp. (2.9)) bounded by K0 (resp. the uniformly integrable random
variables K 0( 1

N

PN
i=1K0X

i;N
T (1) + K1)), this can be achieved, if F is con-

tinuous on M1(CM(IRd)). To see the continuity of let us consider the func-
tion Fb(Q) :=

R
C
M(IRd)

Q(d!)
R
IRd !s(dx)b(s;Qs; x)f(x)ef(!s): If Qn ! Q in

M1(CM(IRd)) then Qn �!(s)�1 2M1(M(IRd)) converges to Q �!(s)�1. Hence
we have to show that mn ! m in M1(M(IRd)) implies

j
Z
M(IRd)

mn(d�)
Z
IRd

�(dx)b(s;mn; x)f(x)ef(�) � (2.14)
Z
M(IRd)

m(d�)
Z
IRd

�(dx)b(s;m; x)f(x)ef(�)j ! 0:

The left hand side of (2.14) is bounded by
Z
mn(d�)

Z
�(dx)jb(s;mn; x)� b(s;m; x)jjf(x)jef(�) (2.15)

+ j
Z
(mn(d�)�m(d�))

Z
IRd

�(dx)b(s;m; x)f(x)ef(�)j: (2.16)

Using the Lipschitz property we can bound (2.15) by

Kb�1(mn;m)
Z
M(IRd)

m(d�)
Z
IRd

�(dx)f(x)ef (�):

If we consider for the moment the one-point compacti�cation ÎR
d
of IRd the

integrand is a bounded continuous function on M(IRd) if f � � > 0. Hence
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the second factor is bounded. The �rst factor converges to 0. The term
(2.16) converges because �(dx)b(s;m; x)f(x)ef(�) is also a bounded contin-
uous function if f � � > 0. The continuity of F follows in the same way.
Hence every limit point is supported by the set of solutions of the non-
linear martingale problem (2.4), so far viewed as probability measures on

C([0;1);M(ÎR
d
)). Because every such a probability measure is the distribu-

tion of a regular superprocess it does not charge the compacti�cation point
and therefore it is indeed a measure on C([0;1);M(IRd)).

4. The last assertion of the theorem follows now by standard arguments, cf.
[S1,S2]. �

Remarks. 1. The assumption (2.9) is the usual boundedness condition
which is supposed if one considers weak convergence of measure-valued pro-
cesses whereas condition (2.8) is formulated just for the case of weakly inter-
acting measure-valued processes.

2. A martingale generator (A;D(A)) for a non-linear superprocess P1 is
given by D(A) =\�nitely based functions" and

A(m)F (�) = �

�
L(m)r:F (�) + b(m)r:F (�) + c(m)r2

:F (�)
�
(2.17)

rxF (�) := lim�#0
F (�+��x)�F (�)

�
; is the Gâteaux derivative in direction �x, the

Dirac measure on x 2 E. Hence, the 
ow of the one-dimensional marginal
distributions us = P �X�1

s of a non-linear superprocess solves the non-linear
`partial di�erential equation'

_us = A(us)us: (2.18)

In the special case of mean-�eld interaction considered in the following section
the intensity measure of the non-linear superprocess provides a solution to
(1.1).

3. The question of uniqueness of the martingale problem described in (2.4) is
discussed in detail in [O2] by means of the Stochastic Calculus on historical
trees, cf. [P]. We now give a simple example, where we can show uniqueness
directly from the martingale problem (2.4).

Example. Let us consider the sequence of \multitype" superprocesses con-
ditioned on non-extinction, i.e., aij; di; c do not depend on m; c = 1 and
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b(s; x;m) = 1
I(m)(1)

. Let ~�0 2 M(IRd)N satisfy
PN

i=1(�0)i(1) = N . Then
there exists only one measure such that

e~f(
~Xt)� e~f(

~X0) +
Z t

0

dX
j=1

Xj;N
s (Lfj +

NPN
i=1X

i;N
s (1)

fj � f2j )e~f(
~Xs)ds

is a martingale for all ~f 2 (C2
0(IR

d))N , namely the additive H-transform of N-
independent superprocesses with the space-time harmonic functionH(s; ~�) =
N�1PN

j=1 �j(1); cf. [O1]. Let the initial condition be ��0-chaotic with �0(1) =
1, e.g. ~�N0 = (�0; : : : ; �0). The function b satis�es assumption (2.9) and
therefore, by Theorem 2.3, we have that every limit point of f�NgN2IN is
supported by measures P such that

ef (Xt)� ef(�0) +
Z t

0

dX
j=1

Xs(Lf +
1

I(P �X�1
s )(1)

f � f2)ef(Xs)ds:

Such a measureP gives rise to the linear martingaleXt(f)��0(f)�
R t
0 Xs(Lf+

1
I(P�X�1

s )(1)
f)ds: If we apply this with f = 1 we obtain EP [Xt(1)] = EP [X0(1)]+

t = 1 + t for every solution P . Therefore P is unique. It coincides with
the supercritical (time-inhomogeneous) superprocess with branching mean
1 + 1

1+s
. It is interesting to notice that P is also an H-transform of the

superprocess, namely with the multiplicative space-time harmonic function

H(s; �) = e�
�(1)
1+s . From the biological point of view one can interpret this re-

sult in the following way. If one conditions a particle population on survival,
which exhibits a critical branching behaviour and consists of N subpopu-
lations of the same kind, then for large N every subpopulation executes a
slightly supercritical branching with time-decreasing rate 1 + 1

1+s .

3 Mean-�eld interaction

Now we attack the problem to �nd a solution of (1.1). We have to introduce
a special kind of weakly interaction, namely the mean-�eld interaction. We
modify the de�nition in (2.2) in the following way. We replace the functions
a; d; b and c by functions depending on the mean-�eld of the empirical distri-
bution, e.g. aij(s; x;

1
N

PN
i=1 �Xi;N ) in (2.2) is replaced by aij(x;

1
N

PN
i=1X

i;N).
A solution of (2.2) is then called a N-type superprocess with mean-�eld in-
teraction.
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3.1 Existence

The next theorem gives existence of a sequence of multitype superprocesses
with mean-�eld interaction f(X1;N : : : ;XN;N)gN2IN , tightness of f

1
N

PN
i=1 �Xi;NgN

and a law of large numbers for the sequence f 1
N

PN
i=1X

i;NgN . The proof is
sketched because the techniques are the same as in the proof of Theorem 2.3.

Theorem 3.1 Let the functions aij; dk; 1 � i; j; k � d; b and c satisfy the
following assumptions for functions r on IRd �M(IRd)

jr(x1; �1)� r(x2; �2)j � Kr(�2(�1; �2) + jx1 � x2j) (3.1)

sup
x2IRd

r(x; �) < 1 for each � 2M(IRd); (3.2)

where �2 is de�ned in (2.5). Additionally we assume that the following growth
condition is satis�ed for all functions aij; dk; 1 � i; j; k � d; b and c:

Z
IRd
jr(x; �)j�(dx) � K0�(1) +K1: (3.3)

Suppose also that 1
N

PN
i=0X

i;N
0 (1) is uniformly in L2. Then there exists

an exchangeable solution (X1;N ; : : : ;XN;N ) of (2.2) and the distributions of
f 1
N

PN
i=1 �Xi;NgN build a tight sequence in M1(M1(CM(IRd))).

If additionally the distribution of 1
N

PN
i=0X

i;N
0 converges to ��0, then every

accumulation point of

�
P � (

1

N

NX
i=0

X i;N )�1
�
N

(3.4)

in M1(CM(IRd)) is a Dirac distribution on a (deterministic) solution � of

�t(f) = �0(f) +
Z t

0
�s(L(�s)f)ds: (3.5)

Hence a weak solution of (1.1) is constructed. Finally, if (1.1) has a unique
solution � 2 M([0;1);M(IRd)), then

P � (
1

N

NX
i=0

X i;N )�1 ) ��: (3.6)
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Proof. The construction of an exchangeable solution of (2.2) is the same
as in Theorem 2.3, because the mapping ~� ! 1

N

PN
i=0 �

i is continuous. The
tightness of sequence of the distributions of 1

N

PN
i=0X

i;N follows as in Theo-
rem 2.3 from the growth conditions (3.3). To prove that every limit point is
supported by solutions to (3.5) we follow the same approach as in the proof
of Theorem 2.3 with the function

F (�) = (�t(f) � �r(f) +
Z t

r
�s(L(�s)f)ds)g(�r1 ; : : : ; �rl);

� 2 CM(IRd). From the continuity and the uniform integrability of F we obtain

that Xt(f)�X0(f)+
R t
r Xs(L(Xs)f)ds is a martingale under an accumulation

point P1 2M1(CM(IRd)) of the distributions of
1
N

PN
i=0X

i;N . The quadratic

variation of this martingale is zero, because
R
F 2( 1

N

PN
i=0X

i;N)dP ! 0.
Hence P1 = ��, where � solves (3.5). �

Remark. By the martingale property (2.2) the process 1
N

PN
i=0X

i;N is a
solution of a martingale problem associated with a (one-type) superprocess
with interaction in the sense of [MR,P]. Therefore Theorem 3.1 says that
a solution of (1.1) can be found by weak approximation with interactive
superprocesses Y N = 1

N

PN
i=0X

i;N whose variances vanish as N !1.

3.2 Uniqueness

In this subsection we consider uniqueness of (2.4) with coe�cients only de-
pending on � = I(m). We �rst consider the case where the branching is
critical, i.e. b = 0.

Proposition 3.2 Let (A(s; �))s�0;�2M(IRd) be a family of linear operators
such that for every �0 2 M(IRd) there is a unique P�0 2 M(CIRd) under
which for all f 2 C2

0 the process N(f) de�ned by

Nt(f) = f(�t)� f(�0)�
Z t

0
A(s;P�0 � �

�1
s )f(�s)ds (3.7)

is a martingale and P�0 � �
�1 = �0, where � is the coordinate process CIRd.

Let m 2M1(M(IRd)).
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Then there is a unique probability measure Pm on CM(IRd) such that for all
f 2 C2

0(IR
d)

�
ef(Xt)� ef(X0) +

Z t

0
Xs(A(s; I

m
s )f � c(s; Ims )f

2)ef(Xs)ds
�
t�0
(3.8)

is a martingale under Pm, where Ims = I(Pm �X�1
s ) = Em[Xs(�)].

Proof. Let P 1 and P 2 be two solutions of (3.8). It is clear that if the

ow of the corresponding intensity measures (I1s )s�0 and (I2s )s�0 coincide
then P 1 = P 2 = \superprocess with time-inhomegenous one-particle motion
generated by (A(s; I1s ))s�0 and branching variance c(s; I1s )". For i = 1; 2, the
intensity measure I is equals

R
m(d�)P i

� � �
�1
s , where P i

� 2 M1(CIRd) is the
one-particle motion of P i with initial distribution � which is also the process
associated with (A(s; I is))s�0). Hence for i = 1; 2, the measures P i solve (3.7)
which implies I1s = I2s = distribution of �i under the unique solution of (3.7).

This proves uniqueness. For existence we see that the superprocess started
at m and with one-particle motion generated by the non-linear operator
A(s;P� � ��1) with initial condition �(dx) =

R
m(d�)�(dx) solves (3.8). �

The next proposition generalizes the uniqueness result in [CR] and shows
existence.

Proposition 3.3 Let us suppose that all functions r=aij; dk; 1 � i; j; k � d;

and b are bounded and satisfy

sup
x
jr(�1; x)� r(�2; x)j � jj�1 � �2jj (3.9)

where jj�jj denotes the norm of total variation. Then there is a unique solution

�F of (1.1) and the superprocess with coe�cients a�
F

ij (s; x) = aij(�Fs ; x); d
�F

k (s; x) =

dk(�Fs ; x); 1 � i; j; k � d; b�
F

(s; x) = b(�Fs ; x) and c�
F

(s; x) = c(�Fs ; x) is the
unique solution of (2.4).

Proof. The second assertion follows from the �rst assertion as in Propo-
sition 3.2. Concerning the �rst assertion we obtain a solution of (1.1) by
a Picard-Lindel�of iteration. �ns := P �n�1

� X�1
s where P � is the superpro-

cess with coe�cients a�ij(s; x) = aij(�s; x); d
�
k(s; x) = dk(�s; x); 1 � i; j; k �

d; b�(s; x) = b(�s; x) and c�(s; x) = c(�s; x). The initial point of the itera-
tion is the 
ow of a superprocess with coe�cient de�ned by a constant 
ow

13



�s = �0 8s with some �xed �0 2M(IRd). We have

�nt � �n�1t (f) = K 0
Z t

0
�ns (L(�

n�1
s )f)� �n�1s (L(�n�2)f)ds

which yields by (3.9) that

jj�nt � �n�1t jj � K 00
Z t

0
�ns (1)jj�

n�1
s � �n�2s jjds: (3.10)

Because b is bounded sups�T �
n
s (1) is bounded. From inequality (3.10) we

obtain a solution of (1.1) as n tends to in�nity. Uniqueness follows by Grown-
wall`s lemma from the same inequality. �

Remark. Despite the fact that we constructed already a solution to (2.4)
in two di�erent ways we would like to give a construction as a limit of a
sequence of multitype superprocesses with mean-�eld interaction as in Theo-
rem 2.3 in order to give another simulation procedure for the solution of (1.1).
The di�culties stem from the fact that the mapping I from M1(M(IRd)) to
M(IRd) fails to be continuous, because the function � ! �(f) is continuous
but not bounded. Instead of that I can only construct for every K 2 IN a
solution PK of the stopped martingale problem:

ef (Xt)� ef(X0) +
Z t^TK

0
ef(Xs)Xs(L(s; I(P

K �X�1
s ))f + (3.11)

b(s; I(PK �X�1
s ))f � c(s; I(PK �X�1

s ))f2)ds

is a martingale under PK for every f 2 C2
0 (IR

d) and Xs = Xs^TK PK

a.s. with TK(!) := infft � 0jXt(!)(1) � Kg by the chaos-technique as in
Theorem 2.3. Because I cannot prove that the stopped martingale problem
(3.11) has a unique solution, the techniques in [EK, Theorem 6.3] are not
applicable in order to prove existence of a (global) solution to (2.4).

A Construction of an exchangeable weakly interact-

ing superprocess

The starting point is a construction of an exchangeable weakly interacting
N-type branching random walk.
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Let � be a kernel from [0;1)� IRd �M(IRd)N to IRd, let 
 > 0 and let for
every ~� 2M(IRd)N

A(~�)f(x) := 

Z
IRd
(f(y)� f(x))�(s; x; ~�; dy) (A.1)

be the generator of a jump process in IRd. The intensity for a particle at
x 2 IRd and time s to die without children (resp. with two children) is
described by �p0(s; x;m) (resp. �p2(s; x;m)).

Let ~
 = f~! = ftm; ~�mgm2IN with 0 � t1 < t2 < � � �, and ~�m 2 M(IRd)Ng.
We de�ne for every ~! 2 ~
 a predictable random measure vp 2 M([0;1) �
M(IRd)N ) by

vp(ftm; ~�mgm2IN ; ds; d~�) :=
NX
i=1

X i
s�

�


Z
IRd

��y��:(d�
i)
j 6=i �O(d�

j)

�(s; ~Xs�; dy) + �p0(s; ~Xs�)����(d�
i) + �p2(s; ~Xs�)�+��(d�

i)
�
ds;

where X i
s(~!) := X i

s(ftm; ~�mgm2IN) :=
P

tn�s(~�n)i , O denotes the zero-

measure and ~Xs = (X1
s ; : : : ;X

N
s ). Let v(�; �) =

P
n �tn;~�n(�; �) be the canonical

random measure on ~
. There exists a probability measure ~P on ~
 such that

the stopped processes
�
W � (v� vp)

�tn
is a uniformly integrable martingale

for every n and every predictable W (~!; s; �) ( - \�" indicates integration -).

For a �nitely based function F = �(~� � ~f1; : : : ; ~� � ~fk), � 2 C2 and ~� �
~f = (�1(f1); : : : ; �l(fl)) we consider the predictable function W (~!; s; �) =

F ( ~Xs� + ~�)� F ( ~Xs�). Then the process M IBRW [F ] de�ned by

M IBRW [F ]t := F ( ~Xt)� F ( ~X0)�Z t

0
ds 


NX
i=1

X i
s

� Z
IRd
(F ( ~Xs + ei(�y � �:))� F ( ~Xs)�(s; ~Xs�; dy) +

�p0(s; ~Xs�)F ( ~Xs � ei�:) + �p2(s; ~Xs�)F ( ~Xs + ei�:)� F ( ~Xs)
�

is a local martingale until T := supn tn. ( Here ~� + ei� means that we add
in the i-th component of the vector ~� the measure �.)
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Because of our assumptions (2.8) or (2.9) we have ~P -almost surely that T =
1, we get an interacting branching random walk, if we de�ne P as the
distribution of ~X under ~P on DM(IRd)N .

Starting from a sequence of branching random walks f ~Xngn2IN , whose ran-
dom walks �n(~�) approximates the generator A(~�) we can de�ne an N�type
interacting branching di�usion as an accumulation point of the sequence
f ~Xngn2IN as in [RR,O1]. Then we can rescale the branching behaviour of
the N�type interacting branching di�usion in order to get an N�type in-
teracting superprocess as in [MR,O1]. For a general approach to multitype
(non-interacting) superprocesses see [GL].

Acknowledgement: I wish to thank Sylvie M�el�eard for helpful discussions on
the chaos-technique.
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