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Abstract

Weak solutions of McKean-Vlasov equations with creation of mass
are given in terms of superprocesses. The solutions can be approxi-
mated by a sequence of non-interacting superprocesses or by the mean-
field of multitype superprocesses with mean-field interaction. The lat-
ter approximation is associated with a propagation of chaos statement

for weakly interacting multitype superprocesses.
Running title: Superprocesses and McKean-Vlasov equations .

1 Introduction

Superprocesses are useful in solving nonlinear partial differential equation of
the type Af = f1%7. 3 € (0,1], cf. [Dy]. We now change the point of view and
show how they provide stochastic solutions of nonlinear partial differential
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equation of McKean-Vlasov type, i.e. we want to find (weak) solutions of
0 d 0* d 0
okt = ”ZZ:I a7, Nt)mﬂt + ;di(% “f)a_xi“f + b, pue) s (1.1)

A weak solution u = (us) € C([0,T], M(IR?) satisfies

) = i)+ S i)+ Y )+ M) s,

Equation (1.1) generalizes McKean-Vlasov equations of two different types.
Firstly, if b = 0 it is the classical McKean-Vlasov equations associated with
nonlinear IR?-valued diffusions and studied in many papers, e.g. [L,,0el,S1,52].
If only b depends on g then this equation is studied in [CR], [COR]. It is
used in applications for some biological problems, like conduction of nerve
impulse, cf. [GS,SP] and the references therein. Equations like (1.1) with
non-linear drift in the diffusion and nonlinear reaction term are sometimes
called reaction-convection-diffusion equation ([Lo, p. 287]) and can be found
in many biological applications, cf. [M, Section 11.4].

Our main result concerning equation (1.1) is Theorem 3.1 in Section 3 and
claims that (under Lipschitz conditions on the coefficients of (1.1) ) a (unique)
solution of (1.1) can be found as the limit of ( the interacting one-type su-
perprocess) NoXWN as N — oo where (XUV, ..., XVV) is a N-type
superprocess with mean-field interaction. Obviously, this result should be
embedded in a Propagation of Chaos statement for weakly interacting N-
type superprocesses ( including in particular tightness of % > 6xin ). Thisis
the topic of Section 2. However, this result does not necessarily implies that
the limit process gives a solution of (1.1), because the application I from

M (M(IRY)) to M(IR?) defined by

1m)(f) = [ v(fm(dv) (1:2)

fails to be continuous. Finally, in Proposition 3.3 we construct a unique
solution of (1.1) by a Picard-Lindeléf approximation under stronger condition
as in Theorem 3.1. This approximation gives a solution of (1.1) as a limit of
intensity measures of superprocesses with non-interactive immigration.



2 Weakly interacting and non-linear superprocesses

In this section we construct a non-linear superprocess as an accumulation
point of a sequence of weakly interacting multitype superprocesses.

2.1 Weakly interacting superprocesses

First we want to describe an N-type superprocess with an interaction de-
pending only on the empirical process. We start with real-valued (resp.
positive) functions a;;,dg, 1 < 4,5,k < d, and b (resp. ¢ ) defined on
[0, 00) x IR* x My (M (IR")), where M)(E) denotes the space of ( probability)
measures on the Polish space £ equipped with the topology of weak conver-
gence. Define for every s > 0, m € M;(M(IR?)) the (time-inhomogeneous)
operator L(s,m) on C2(IR?) by

s )= 3 aslossam) g2 E o) 4 i) G, 21

7,7=1 =1

The operator serves as a description of the one-particle motion. Let us de-
note the family (L(s,m)),ef0,00),menn (m(rd)) by £. For the weakly interacting
superprocess the function b(s,x,m) describes the mean branching rate and
¢(s,x,m) the variance in the branching rate while the empirical distribution
of the process equals m.

In order to state now the basic definition we r_l)eed some notation. LLet N € IV
be fixed. If ji = (1, ) € (MUR)N, f = (fi,.... fv) € (BY (R,

where B£+) are bounded measurable (non-negative) functions, then

1

¥ 20 € Mi(M(R)

=1

R(ji) :=

and ﬁ(f) = SN wi(fi), where u(f) = [ fdu. The exponential function er
is defined by e i) = exp(—ﬁ(f)). Finally, we denote for a Polish space ¥

the space of E-valued continuous paths by Cg.
Definition 2.1 We call a measure PN € My(Crppayn) an N-type weakly



interacting measure-valued diffusion starting at fiy if

AR o)+ [[ASIE XL RSN @2)
bs, RV — cls, R(Z,)) f2)ds

is a PN martingale for all f: (fi,--., fn) with non-negative f; € C3. X
denotes the coordinate process on Cyp(payy .

2.2 Propagation of Chaos

One main issue in this section is the question under which conditions the
sequence { P} yen is P*-chaotic with a measure P® € My (Crr(ray)-

Definition 2.2 Let P> € Mi(Cyrey). We say that the sequence {PNYnen
is P> -chaotic if for every k € IN
PNo(Xy,..., Xp) ' = @5, P> as N > k tends to infinity, (2.3)

cf. [S1,52].

Intuitively, this means that the interaction disappears if the number of types
N tends to infinity. Typically the measure P* is a solution of a non-linear
martingale problem. Roughly speaking, because the law of large numbers
implies R()?;N(w)) = P> o X! the measure P> solves the martingale
problem characterized by the martingale property of the process

t
es(Xi) —ef(Xo) +/0 e (X)) Xo(L(s, P o X7 f 4 b(s, P< 0o X]1) f
— (s, P™ o X1 f)ds (2.4)
for every f € C2(IR?). Such a measure is called non-linear superprocess with
parameter (L, b, ¢).

According to [S2] an exchangeable sequence { PV} yen is P*-chaotic iff the
distribution IV ¢ Ml(Ml(CM(Bd))) of R(XN) = %Z;Vﬂ dxj v converges
weakly to épw. ( Here {)?N}Nell\f is a sequence of random variables on a

probability space (Q, F, P) such that P o ()?N)_l = PN)



The next theorem gives general conditions under which there is an exchange-
able solution PV to (2.2) and the sequence {II"V}y¢pv is tight. Additionally
we show that all limits points of {II"V}yen are supported by the set of so-
lutions to the martingale problem formulated in (2.4). If (£,d) is a Polish
space with metric d we consider on My)(£) the Wasserstein metric

dpa(pv) = sup{lp(f) —v(N I/l < 1} (2.5)

where [|f|[sL = [[flloc AInf{K;[f(z) = f(y)| < Kd(z,y) Va,y € E}. Set

1= ARy d g, ) 204 P2 = d(pa ).

Theorem 2.3 1. Let the functions a;;,dp,1 < 1,3,k < d,c and b salisfy
the following assumptions for functions r on [0, 00) x IR x My(M(IRY))

(s, 21, m1) = 7(s, 29, m2)| < Ko (p1(ma, ma) + |21 — 22]) (2.6)

sup (s, x,m) < oo for each m € My(M(IR")). (2.7)
z€RY

Additionally we assume that one of the following growth conditions is

satisfied:

sup sup // |r(s,z,m)|p(de)m(dp) < Ko < oo (2.8)

5€[0,00) meM; (M (RR4))

for all functions b,c,a;;,dy,1 <1,5,k <d or

sup / |r(s,x,m)|p(de) < Kop(l) + Ky (2.9)
meMy (M(IRY)) /R

for all functions b,c,a;;,dp,1 <, 5,k <d.
Then there exists an exchangeable solution of (2.2).

2. Assume additionally that for each f € CEIR?)

sup PNIXA(f)] < oo. (2.10)

Then the sequence {IIN}nepv is tight and every accumulation point is
supported by the set of solutions QQ € Mi(Cyr(rey) of the martingale
problem (2.4) of a non-linear superprocess.
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3. If we assume additionally that the sequence of initial distributions {m} }
with mY € My(M(IRH)N) is m-chaotic and if there exists only one
solution P™ to the martingale problem (2.4) with initial distribution
me then {PN}yew is P-chaotic.

Proof. 1. An exchangeable solution of (2.2) can be constructed by weak
approximation with interacting multitype branching diffusions, cf. [MR, GL,
O1]. The condition (2.8) (resp. (2.9)) ensures the tightness of the interact-
ing branching diffusions as well as its existence as an accumulation point of
a sequence of branching random walks. The latter can be constructed as
marked point processes , cf. [O1], (or as in [RR],) which are exchangeable
by construction. This construction is sketched in the appendix. The neces-
sary tightness under condition (2.8) (resp. (2.9)) follows as in the proof of
tightness of {IIV}y, see part 2 of the present proof.

2. It is well known that the sequence {II"V}y is tight if sequence of the inten-
sity measures {I(ITV)}x is tight in My (Crppay), of. [S1,52]. The sequence of
measures {I(IT"V)} yepv is tight if their one-dimensional projections are tight,
i.e. if, by exchangeability, the laws of X'V (f) build a tight sequence of mea-
sures on Cr for every f € CZ(IRY) U {1}, cf. [D, Sect. 3.6]. The tightness
of {X'N(f)}new may be deduced by the Aldous-Rebolledo criterion. The
first condition of that criterion follows by the uniform L2-boundedness of the
initial distribution and (2.9). The second part follows if we can bound

S+o 1,n %3 62
Bl| L7 o, BN ©.11)
7,0=1 g
L e O on
+ 2 di(s, R(X] ) o +b(s RIX) f)ds
and
S+6 o
Bl [0 el R )] (212)

for a bounded stopping time S and 0 < 6 < 1. Under (2.9) the term (2.11)
is bounded by

S+46
KfE[/S (KoX.(1) + K)ds] < 0GB sup X2N(1)] +1)



Applying now the semimartingale decomposition of X" (1) and once again
assumption (2.9) we obtain

t
Blsup X2V(1)] < BIXGV() + [ KgBlsup X1V ()] + Kidr
0

s<t s<r

which yields by Gronwall’s lemma and the uniform L2-boundedness of the
initial distribution an upper bound for (2.11), which is independent of N.
The same procedure applies to (2.12). Under assumption (2.8) we rewrite
the term (2.11) by exchangeability as

1 N S46 im 82](‘
ﬁ;E[ X Za” )8:1;8:1;;
d . a .
Y difs . B aj +b(s, RO )]

=1

It is immediate that the term (2.11) is then bounded by 6K ;K,. Together
with the same calculations for the quadratic variation, this yields that also
in this case the second part of the Aldous-Rebolledo criterion is satisfied and
the first part can be proved analogously as under (2.9).

3. Identification of the sets of accumulations points of {IIN }nemw.

Let 11 be an accumulation point of {IIN}yew. For 0 <7 < -+ <1 <
r < t, g bounded and continuous on M(IRY)* and f € CZU{1} we define the
function F on My(Cyy(pay) by

@ = [ [erteto) = et + [ {eo) (26.@05 +6,Qu)s -

(5. QeI ) es((5)) } dsglio(r).-...o(ri)) | QU

where () denotes the distribution of w(s) under Q). We will show that

FA(Q)II*(dQ) = 0. 2.13
/WM(M)) (QU(dQ) (2.13)
The martingale problem (2.2) implies a formula for the quadratic varia-

tion of the exponential martingales M“"[c;] defined as in (2.2) with =
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(fis..os fn), f; = 6i;f. This formula yields

/F2 HN(dQ) [’ [Z_: <Mi’N[€f],Mj’N[€f]>t]
- f\XfZ ZE/ X (e ()?s))fz)ezf(Xj’N)ds]
< ]X’}"

N(t—r)Kf—>0asN—>oo.

The last inequality follows as in part 2 of the proof by assumption (2.8)
(resp. (2.9)) and by the submartingal property of the total mass process
XLN(1). The assertion follows now, if we have that [ F*(Q)IIV(dQ) con-
verges as N — oo to [ F?(Q)II°(dQ). Because F is under the conditions
(2.8) (resp. (2.9)) bounded by Ky (resp. the uniformly integrable random
variables K'( < >N KOX%N(l) + K1)), this can be achieved, if F' is con-
tinuous on My (Cy(gay). To see the continuity of let us consider the func-

tion Fi(Q) := fCM(JRd) Q(dw) [paws(dz)b(s, Qs, x) f(x)es(ws). If Q, — @ in
My (Crr(rey) then @, ow(s)™t € My(M(IR?)) converges to Q ow(s)~!. Hence
we have to show that m, — m in M;(M(IR?)) implies

g 0 [ 0o ) f)es() = (2.14)
S ) [ ()b, ) f (e )] = 0.
The left hand side of (2.14) is bounded by
[matdi) [ atde)los,ma,0) = b, m,a) | f(@)lese)  (215)
| [ maldp) = midp) [ p(da)pls.ma) f()es ()l (2.16)
Using the Lipschitz property we can bound (2.15) by

Kopr(ma,m) [ mldu) [ (o) f(o)es ()

M(IR4)

~ d
If we consider for the moment the one-point compactification IR of IR? the
integrand is a bounded continuous function on M(IR?) if f > ¢ > 0. Hence
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the second factor is bounded. The first factor converges to 0. The term
(2.16) converges because p(dx)b(s,m,x)f(x)es(p) is also a bounded contin-
uous function if f > € > 0. The continuity of F' follows in the same way.
Hence every limit point is supported by the set of solutions of the non-
linear martingale problem (2.4), so far viewed as probability measures on

~ d
C(]0,00), M(IR )). Because every such a probability measure is the distribu-
tion of a regular superprocess it does not charge the compactification point
and therefore it is indeed a measure on C/([0, 00), M (IR%)).

4. The last assertion of the theorem follows now by standard arguments, cf.

[S1,52]. o

Remarks. 1. The assumption (2.9) is the usual boundedness condition
which is supposed if one considers weak convergence of measure-valued pro-
cesses whereas condition (2.8) is formulated just for the case of weakly inter-
acting measure-valued processes.

2. A martingale generator (A, D(A)) for a non-linear superprocess P> is
given by D(A) =“finitely based functions” and

A F(r) = (L) F () + ) TP () + e(m) V2P () ) (2.17)

Vo F(p) :=lim o w, is the Gateaux derivative in direction é,, the
Dirac measure on € F. Hence, the flow of the one-dimensional marginal
distributions us = P o X! of a non-linear superprocess solves the non-linear
‘partial differential equation’

n, = Alus)us. (2.18)

In the special case of mean-field interaction considered in the following section
the intensity measure of the non-linear superprocess provides a solution to

(1.1).

3. The question of uniqueness of the martingale problem described in (2.4) is
discussed in detail in [O2] by means of the Stochastic Calculus on historical
trees, cf. [P]. We now give a simple example, where we can show uniqueness
directly from the martingale problem (2.4).

Example. Let us consider the sequence of “multitype” superprocesses con-
ditioned on non-extinction, i.e., a;;,d;, ¢ do not depend on m,c = 1 and



b(s,x,m) = W Let jio € M(IRY)N satisfy SN, (uo)i(1) = N. Then

there exists only one measure such that

S S t 4 N S
ef_'(Xt) - ef_'(XO) ‘|‘/0 ZX?N(LJC] + ZN Xi’N fj - f]’z)ef*(Xs)dS
7=1 =1 s

(1)

is a martingale for all fE (C2(IRY))N, namely the additive H-transform of N-
independent superprocesses with the space-time harmonic function H(s, fi) =
N=US N (1), of. [O1]. Let the initial condition be §,,-chaotic with (1) =
1, eg. iy = (po,..., o). The function b satisfies assumption (2.9) and
therefore, by Theorem 2.3, we have that every limit point of {II™}yep is
supported by measures P such that

ef(Xt) - ef(:uo) + /OtZ_:XS(Lf + ](P o )1(_1)(1)f - fz)ef(XS)dS‘

Such a measure P gives rise to the linear martingale X;(f)—po(f)—Jfs Xs(Lf+
Mf)ds. If we apply this with f = 1 we obtain Ep[X.(1)] = Ep[Xo(1)]+
t = 1+t for every solution P. Therefore P is unique. It coincides with
the supercritical (time-inhomogeneous) superprocess with branching mean
1+ 11: It is interesting to notice that P is also an H-transform of the
superprocess, namely with the multiplicative space-time harmonic function

H(s,pu) = ¢~ %%, From the biological point of view one can interpret this re-
sult in the following way. If one conditions a particle population on survival,
which exhibits a critical branching behaviour and consists of N subpopu-
lations of the same kind, then for large N every subpopulation executes a

slightly supercritical branching with time-decreasing rate 1 4+ 1_}_5.

3 Mean-field interaction

Now we attack the problem to find a solution of (1.1). We have to introduce
a special kind of weakly interaction, namely the mean-field interaction. We
modify the definition in (2.2) in the following way. We replace the functions
a,d, b and ¢ by functions depending on the mean-field of the empirical distri-
bution, e.g. a;;(s,z, + SN éxin) in (2.2) is replaced by a;;(x, ~ SN XN,
A solution of (2.2) is then called a N-type superprocess with mean-field in-
teraction.
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3.1 Fuxistence

The next theorem gives existence of a sequence of multitype superprocesses
with mean-field interaction {(X"N ..., XVV)} yep, tightness of {2+ SN, dxiv}y
and a law of large numbers for the sequence {+ SN, XNy, The proof is
sketched because the techniques are the same as in the proof of Theorem 2.3.

Theorem 3.1 Let the functions a;;,di,1 < ¢,5,k < d,b and ¢ satisfy the
following assumptions for functions r on IR* x M(IR?)

(1, pa) = r(xa, p2)| < Ko(pa(pns p2) + |w1 — 22]) (3.1)
sup r(z, 1) < oo for each p € M(IRY), (3.2)
rzelRd

where py is defined in (2.5). Additionally we assume that the following growth
condition is satisfied for all functions a;;,dg,1 < 1,9,k <d,b and c:

[ e lutde) < Kop(1) + Ky 5.3)

Suppose also that %Zﬁo Xé’N(l) is uniformly in L*. Then there exists
an exchangeable solution (XN ...  XNN) of (2.2) and the distributions of
{& 28, éxivtn build a tight sequence in My(M1(Car(pay))-

If additionally the distribution of %Zﬁo Xé’N converges to 6,,, then every
accumulation point of

Po(~ ng@N)—l (3.4)
N =0

N

in My(Chperey) is a Dirac distribution on a (deterministic) solution p of

plf) = wolf)+ [ ol L) s (3.5)

Hence a weak solution of (1.1) is constructed. Finally, if (1.1) has a unique
solution p € M([0,00), M(IR)), then
| N

Po (ﬁ SXN)TE =6, (3.6)
=0

11



Proof. The construction of an exchangeable solution of (2.2) is the same
as in Theorem 2.3, because the mapping i — % SN, pt is continuous. The
tightness of sequence of the distributions of SN, XON follows as in Theo-
rem 2.3 from the growth conditions (3.3). To prove that every limit point is
supported by solutions to (3.5) we follow the same approach as in the proof
of Theorem 2.3 with the function

Flp) = () = el 5+ [ L) a9

1t € Cyp(ray- From the continuity and the uniform integrability of F" we obtain
that X;(f)— Xo(f)+ ' Xs(L(X,)f)ds is a martingale under an accumulation
point P*° € My (Cy(rey) of the distributions of * SN, XN | The quadratic
variation of this martingale is zero, because [ (% SN XEMNYAP — 0.
Hence P> = §,, where p solves (3.5). o

Remark. By the martingale property (2.2) the process + NoXuN
solution of a martingale problem associated with a (one-type) superprocess
with interaction in the sense of [MR,P]. Therefore Theorem 3.1 says that
a solution of (1.1) can be found by weak approximation with interactive

superprocesses YV = % Zf\;o XN whose variances vanish as N — oo.

s a

3.2 Uniqueness

In this subsection we consider uniqueness of (2.4) with coefficients only de-
pending on g = I(m). We first consider the case where the branching is
critical, i.e. b= 0.

Proposition 3.2 Let (A(s, it))s>0uem(me) be a family of linear operators
such that for every o € M(IR?) there is a unique P,, € M(Cpa) under
which for all f € CF the process N(f) defined by

t

NP = F&) = f(60) = [ Als.Po 0 1S (E0)ds (3.7)

-1

is @ martingale and P, o ™ = po, where £ is the coordinate process Cpa.

Let m € My(M(IR?)).

12



Then there is a unique probability measure P, on Cyppay such that for all
J € C3(IR)

(X0 = e5(X0) + [ XAl )] = els, IV P)es(X)ds ) (39)

>0
is @ martingale under P,,, where I™ = [(P,, 0 X;') = FE,,[X,(-)].

Proof. Let P' and P? be two solutions of (3.8). It is clear that if the
flow of the corresponding intensity measures (I}),>0 and (I2),>0 coincide
then P! = P? = “superprocess with time-inhomegenous one-particle motion
generated by (A(s, I}))s>0 and branching variance ¢(s, I})”. For i = 1,2, the
intensity measure I! equals fm(d,u)PZL o ¢!, where Pi € Mq(CRa) is the
one-particle motion of P* with initial distribution g which is also the process
associated with (A(s, I¢))s>0). Hence for i = 1,2, the measures P* solve (3.7)

which implies I! = I? = distribution of ¢; under the unique solution of (3.7).

This proves uniqueness. For existence we see that the superprocess started
at m and with one-particle motion generated by the non-linear operator

A(s, P, 0 &) with initial condition v(dx) = [ m(du)p(dz) solves (3.8). o

The next proposition generalizes the uniqueness result in [CR] and shows
existence.

Proposition 3.3 Let us suppose that all functions r=a;;,dy,1 < 1,5,k < d,
and b are bounded and satisfy

sup [r(pe,x) = r(p, )| < ||pn — pal| (3.9)

where ||-]| denotes the norm of total variation. Then there is a unique solution

u! of (1.1) and the superprocess with coefficients a%F(S, z) = a;;(pl', 2), dZF(S, )

B(i )1 i,k < b (s,2) = b ) and ¢ (s,2) = el ) i the
unique solution of (2.4).

Proof. The second assertion follows from the first assertion as in Propo-
sition 3.2. Concerning the first assertion we obtain a solution of (1.1) by
a Picard-Lindelof iteration. pf := P o X' where P* is the superpro-
cess with coefficients al;(s, ) = a;j(ps, ), dp(s, ) = dp(ps.x),1 < 4,5,k <
d,b"(s,x) = b(ps,x) and ¢(s,2) = ¢(ps,2). The initial point of the itera-
tion is the flow of a superprocess with coefficient defined by a constant flow

13



s = pio Vs with some fixed po € M(IR?). We have

i = ) = K[ ) T (L) s

which yields by (3.9) that

t
= < K7 [l = 2ds. (3.10)

Because b is bounded sup .7 p7(1) is bounded. From inequality (3.10) we
obtain a solution of (1.1) as n tends to infinity. Uniqueness follows by Grown-
wall‘s lemma from the same inequality. o

Remark. Despite the fact that we constructed already a solution to (2.4)
in two different ways we would like to give a construction as a limit of a
sequence of multitype superprocesses with mean-field interaction as in Theo-
rem 2.3 in order to give another simulation procedure for the solution of (1.1).
The difficulties stem from the fact that the mapping I from M;(M(IR?)) to
M(IR?) fails to be continuous, because the function v — v(f) is continuous
but not bounded. Instead of that I can only construct for every K € IN a
solution P¥ of the stopped martingale problem:

INT) .
)=o) + [ XX (L IPR o X+ (311)
b(s, [(P" o X7 1)) [ — es, [(P™ 0 X[1)) f?)ds
is a martingale under P¥ for every f € CZ(IR?) and X, = X1, P
a.s. with Tk(w) := inf{t > 0|X;(w)(1) > K} by the chaos-technique as in
Theorem 2.3. Because I cannot prove that the stopped martingale problem

(3.11) has a unique solution, the techniques in [EK, Theorem 6.3] are not
applicable in order to prove existence of a (global) solution to (2.4).

A Construction of an exchangeable weakly interact-
ing superprocess

The starting point is a construction of an exchangeable weakly interacting
N-type branching random walk.
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Let 7 be a kernel from [0, 00) x IR x M(IR*)™ to IR?, let v > 0 and let for
every ji € M(IRH)N

Al () =y | (Fly) = (@) (s, @, jis dy) (A1)

be the generator of a jump process in IR?. The intensity for a particle at
z € IR? and time s to die without children (resp. with two children) is
described by Bpo(s,x, m) (resp. Bp2(s,x,m)).

Let Q = {& = {tmy flm men With 0 < ¢ <ty < ---, and ji,, € M(IRH)V}.
We define for every & € Q a predictable random measure v? € M(]0,00) x
M(Ir*)™) by

N

VP ({tms fln Ymens ds,dv) :=> X! _ (7/Bd 65,5 (dv") @;2: do(dv?)
=1

(s, Xooy dy) + Bpo(s, Xs_)6_s (dv') + Bpa(s, )?s—)5+5.(dl/)) ds,

where X{(@) = X! ({tm, fim fmen) = Ztngs(ﬁn)i , O denotes the zero-
measure and X, = (X1, XM Let v(s, ) =32, 61,0 (- *) be the canonical
random measure on 2. There exists a probability measure P on {2 such that
tn

the stopped processes (W * (v —vP) ) is a uniformly integrable martingale
for every n and every predictable W (@, s, 1) ( - “*” indicates integration -).
For a finitely based function F' = ¢(ji - fl,...,ﬁ . f;;), 6 € C* and [i -
= (lfr),...,u(fi)) we consider the predictable function W(w,s,u) =
F(X,_ + i) — F(X,_). Then the process MIBEW[[] defined by

MIBEVIR), = F(X) — F(Xo)—

/Ot dSV§X§< /Bd(F(Xs Fei(by,—6)) — F(X,)w(s, Xo_; dy) +

is a local martingale until T' := sup,, t,. ( Here [i + e;u means that we add
in the i-th component of the vector i the measure p.)
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Because of our assumptions (2.8) or (2.9) we have P-almost surely that 7' =
oo, we get an interacting branching random walk, if we define P as the
distribution of X under P on Dyy(gayn.

Starting from a sequence of branching random walks {X”}new, whose ran-
dom walks 7"(fi) approximates the generator A(i/) we can define an N—type
interacting branching diffusion as an accumulation point of the sequence
{X"},en as in [RR,01]. Then we can rescale the branching behaviour of
the N—type interacting branching diffusion in order to get an N—type in-
teracting superprocess as in [MR,01]. For a general approach to multitype
(non-interacting) superprocesses see [GL].

Acknowledgement: 1 wish to thank Sylvie Méléard for helpful discussions on
the chaos-technique.
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