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Abstract

We study a bootstrap method which is based on the method of sieves. A linear
process is approximated by a sequence of autoregressive processes of order p = p(n),
where p(n) ! 1; p(n) = o(n) as the sample size n ! 1. For given data, we then
estimate such an AR(p(n)) model and generate a bootstrap sample by resampling
from the residuals. This sieve bootstrap enjoys a nice nonparametric property.

We show its consistency for a class of nonlinear estimators and compare the pro-
cedure with the blockwise bootstrap, which has been proposed by K�unsch (1989). In
particular, the sieve bootstrap variance of the mean is shown to have a better rate
of convergence if the dependence between separated values of the underlying process
decreases su�ciently fast with growing separation.

Finally a simulation study helps illustrating the advantages and disadvantages of
the sieve compared to the blockwise bootstrap.
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1 Introduction

The bootstrap proposed by Efron (1979) has become a powerful nonparametric method
for estimating the distribution of a statistical procedure. However, by ignoring the order
of the observations, it usually fails for dependent observations.

In the context of stationary time series two di�erent bootstrap methods have been
proposed. A model based approach, which resamples from approximately i.i.d. residuals,
cf. Freedman (1984), Efron and Tibshirani (1986), Bose (1988), Franke and Kreiss (1992).
Also Tsay (1992) uses this approach for diagnostics in the time series context. Obviously,
these procedures are sensible to model misspeci�cation and the attractive nonparametric
feature of Efron's bootstrap is lost. A nonparametric, purely model free bootstrap scheme
for stationary observations has been given by K�unsch (1989), see also Liu and Singh
(1992). K�unsch's idea is to resample overlapping blocks of consecutive observations where
the involved blocklength grows slowly with the sample size. By construction we call
this procedure blockwise bootstrap (sometimes it is also called moving blocks bootstrap).
After the pioneering paper by K�unsch (1989), the blockwise bootstrap and modi�cations
thereof have been studied by Politis and Romano (1992, 1993), Shao and Yu (1993), Naik-
Nimbalkar and Rajarshi (1994), B�uhlmann and K�unsch (1994a, 1994b) and B�uhlmann
(1993, 1994a, 1994b). Generally, this blockwise bootstrap works satisfactory and enjoys
the property of being robust against misspeci�ed models. However, the resampled series
exhibits artifacts which are caused by joining randomly selected blocks. The dependence
between di�erent blocks is neglected in the resampled series and the bootstrap sample is
not (conditionally) stationary. Politis and Romano (1994) have given a modi�cation of the
blockwise bootstrap which yields a (conditionally) stationary bootstrap sample. However,
their method depends on a tuning parameter which seems di�cult to control.

Our approach here takes up the older idea of �tting parametric models �rst and
then resampling from the residuals. But instead of considering a �xed �nite-dimensional
model we approximate an in�nite-dimensional, nonparametric model by a sequence of
�nite-dimensional parametric models. This strategy is known as the method of sieves
(cf. Grenander (1981), Geman and Hwang (1982)) and explains the name of our pro-
cedure. To �x ideas, we approximate the true underlying stationary processes by an
autoregressive model of order p, where p = p(n) is a function of the sample size n with
p(n) ! 1; p(n) = o(n) (n ! 1). Our de�nition of the bootstrap for a �xed model is
the same as already given by Freedman (1984). However, we take here the point of view
of approximating sieves. As the blockwise bootstrap, this resampling procedure is again
nonparametric and moreover its bootstrap sample is (conditionally) stationary and does
not exhibit additional artifacts of the dependence structure as above.

In an unpublished paper Kreiss (1988) also discusses the bootstrap for AR(1) models.
But his approach only covers linear processes

Xt =
1X
j=0

 j"t�j ;  0 = 1; t 2 ZZ; (1.1)

where f jg1j=0 decays exponentially and "t is an i.i.d. sequence with IE["t] = 0. This is not
satisfactory, because it covers only linear processes with a very weak dependence, usually
having exponentially decaying mixing coe�cients. This does not allow to interpret the ap-
proximating autoregressive model as a sieve for a broader subclass of stationary processes.

2



Kreiss (1988) shows under the above conditions consistency of the bootstrap for sample
autocovariances and the linear part of a class of estimates for the unknown autoregressive
parameters of the approximating autoregressive model. Our results in section 3 are more
general.

A related approach in the frequency domain of stationary time series has been given
by Janas (1992). There one basically resamples from periodogram values which yields
a consistent procedure for smooth functions of the periodogram. This approach can
be interpreted as approximating the modulus j�(e�i�)j (0 � � � �), where �(z) =P1

j=0 �jz
j ; �0 = 1 (z 2 IC) is the AR(1)-transfer function corresponding to the AR(1)-

process
P1

j=0 �jXt�j = "t; t 2 ZZ. Under some regularity conditions this model is equiva-
lent to the linear model in (1.1). Our sieve bootstrap captures more in that we approximate
the whole transfer function �(z) (jzj � 1) instead of only its modulus as above.

We justify the sieve bootstrap by showing its consistency for statistics based on linear
processes as in (1.1), where f jg

1
j=0 are allowed to decay of a certain polynomial speed.

For practice we argue here, that by �tting an autoregressive model �rst, using e.g. the
Akaike information criterion (AIC), and importantly, by taking the point of view of sieve
approximation, this (model based) bootstrap can still be regarded as a nonparametric
method. Our results contribute in this direction.

In section 2 we give the exact de�nition of the sieve bootstrap. In section 3 we present
the consistency of the sieve bootstrap for the arithmetic mean and a class of nonlinear
statistics. In particular we include there a comparison with the blockwise bootstrap which
indicates that the sieve bootstrap works better for very weak dependent processes, i.e., for
processes with fast decaying coe�cients f jg

1
j=0 in (1.1). In section 4 we present results of

a simulation study. We compare the performance of the blockwise and the sieve bootstrap.
To explore some limits of the sieve bootstrap we consider there also nonlinear models which
cannot be represented as in (1.1) with f"tgt2ZZ i.i.d. Surprisingly, the sieve bootstrap works
also well for a non-Gaussian autoregressive threshold model which is beyond the linear
theory. In section 5 we include the proofs and some probabilistic properties of the sieve
bootstrap.

2 De�nition of the sieve bootstrap

Let fXtgt2ZZ be a real-valued, stationary process with expectation IE[Xt] = �X . If fXtgt2ZZ
is purely stochastic, we know by Wold's Theorem (cf. Anderson (1971)) that fXt��Xgt2ZZ
can be written as a one-sided in�nite order moving-average process

Xt � �X =
1X
j=0

 j"t�j ;  0 = 1; (2.1)

where f"tgt2ZZ is a sequence of uncorrelated variables with IE["t] = 0 and
P1

j=0  
2
j <1.

We require invertibility of the process in (2.1) which narrows the class of stationary pro-
cesses a little bit. Under these additional assumptions of invertibility(cf. Anderson (1971),
Theorem 7.6.9) we can represent fXtgt2ZZ as a one-sided in�nite order autoregressive pro-
cess

1X
j=0

�j(Xt�j � �X) = "t; �0 = 1; (2.2)
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with
P1

j=0 �
2
j <1.

The representation (2.2) motivates an autoregressive approximation as a sieve for the
stochastic process fXtgt2ZZ. By (2.1) we could also use a moving-average approximation,
but we rely on autoregressive approximation which, as a linear method, is much more
popular, faster and well known as a successful technique in di�erent situations (cf. Berk
(1974), An et al. (1982), Hannan (1987)).

We give now the de�nition of our sieve bootstrap. Denote byX1; : : : ; Xn a sample from
the process fXtgt2ZZ. In a �rst step we �t an autoregressive process, with increasing order
p(n) as the sample size n increases. Let p = p(n) ! 1 (n ! 1) with p(n) = o(n). We
then estimate the coe�cients �̂1;n; : : : ; �̂p;n corresponding to model (2.2), usually (but not
necessarily) by the Yule-Walker estimates (cf. Brockwell and Davis (1987), chapter 8.1).
Note that for this purpose we �rst have to subtract the sample mean �X . This procedure
yields residuals

"̂t;n =

p(n)X
j=0

�̂j;n(Xt�j � �X); �̂0;n = 1 (t = p+ 1; : : : ; n):

In a second step we construct the resampling based on this autoregressive approximation.
We center the residuals

~"t;n = "̂t;n � (n� p)�1
nX

t=p+1

"̂t;n (t = p+ 1; : : : ; n)

and denote the empirical c.d.f. of f~"t;ngnt=p+1 by

F̂";n(:) = (n� p)�1
nX

t=p+1

1[~"t;n�:]:

Then we can resample for any t 2 ZZ

"�t i:i:d:� F̂";n

and de�ne fX�
t gt2ZZ by the recursion

p(n)X
j=0

�̂j;n(X
�
t�j � �X) = "�t : (2.3)

In practice we construct a sieve bootstrap sample X�
1 ; : : :X

�
n in the following way: choose

starting values, e.g., equal to zero, generate an AR(p(n)) process according to (2.3) until
`stationarity' is reached and then throw the �rst generated values away. Such an approach
is implemented for example in S-Plus, function arima.sim. This bootstrap construction
induces a conditional probability IP�, given the sample X1; : : : ; Xn. As usual, we supply
quantities with respect to IP� with an asterisk �.

Consider now any statistics Tn = Tn(X1; : : : ; Xn), where Tn is a measurable function
of n observations. We de�ne the bootstrapped statistics T �n by the plug-in principle, i.e.,

T �n = Tn(X
�
1 ; : : : ; X

�
n):
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This bootstrap construction exhibits some features which are di�erent from K�unsch's
(1989) blockwise bootstrap. It yields again a (conditionally) stationary bootstrap sample
and does not exhibit artifacts in the dependence structure like in the blockwise bootstrap,
where the dependence between di�erent blocks is neglected. The sieve bootstrap sample
is not a subset of the original sample. Moreover, there is no need of `pre-vectorizing'
the original observations. Let us explain the vectorizing of observations for the blockwise
bootstrap. Suppose the statistic of interest Tn can be written as a functional T at an

m-dimensional empirical c.d.f. F
(m)
n ,

Tn = T (F (m)
n ) (m � 1):

Denote by Yt = (Xt; : : : ; Xt+m�1)
T (t = 1; : : : ; n�m + 1) the m-dimensional vectorized

observations. Then F
(m)
n is the empirical c.d.f. of fYtg

n�m+1
t=1 . The blockwise bootstrap

is now applied to the Yt's, thus being a `block of blocks' bootstrap scheme. For di�erent
dimensions m one has to use di�erent vectorized observations. Our sieve bootstrap has the
advantage of avoiding the construction of vectorized observations and enjoys the properties
of a plug-in rule. Finally, our sieve bootstrap seems to be more promising for unequally
spaced data or series with many missing values.

3 Main results

3.1 Assumptions

We consider now more carefully the models (2.1) and (2.2) and give the precise assumptions
about the stationary process fXtgt2ZZ from which a sample X1; : : : ; Xn is drawn. We
prefer the formulation in the MA(1) representation (2.1) rather than in the AR(1)
representation (2.2). Denote by

�(z) =
1X
j=0

�jz
j ; �0 = 1; z 2 IC;

	(z) =
1X
j=0

 jz
j ;  0 = 1; z 2 IC:

Then the models (2.1) and (2.2) can be written as

�(B)(X � �X) = "; X � �X = 	(B)";

where B denotes the back-shift operator (Bx)t = xt�1; x 2 IRZZ. At least formally we can
see that 	(z) = 1=�(z). Denote by Ft = �(f"s; s � tg) the �-�eld generated by f"sg

t
s=�1 .

Our main assumptions for the model are the following.

(A1) Xt � �X =
P1

j=0  j"t�j ;  0 = 1 (t 2 ZZ) with f"tgt2ZZ stationary, ergodic and
IE["tjFt�1] � 0; IE["2t jFt�1] � �2 <1; IEj"tjs <1 for some s � 4.

(A2) 	(z) is bounded away from zero for jzj � 1,
P1

j=0 j
rj jj <1 for some r 2 IN.

Since our sieve bootstrap scheme draws independently from the residuals, it is usually
unable to catch the probability structure of a statistics based on model (A1) with non-
independent variables f"tgt2ZZ. The arithmetic mean as a linear statistics is an exception
in this respect. We therefore sometimes strengthen (A1) to
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(A1') Xt � �X =
P1

j=0  j"t�j ;  0 = 1 (t 2 ZZ) with f"tgt2ZZ i.i.d. and
IE["t] = 0; IEj"tjs <1 for some s � 4.

Assumption (A1) is basically the same as in An et al. (1982). Assumption (A2) includes
models with polynomial decay of the coe�cients f jg

1
j=0 or equivalently f�jg

1
j=0. ARMA

(p; q)-models (p <1; q <1) satisfy (A2) with an exponential decay of f jg
1
j=0. Note that

assumption (A2) implies that �(z) is bounded away from zero for jzj � 1 and
P1

j=0 j
rj�j j <

1. Assumption (A1') is more restrictive than the conditions in K�unsch (1989) for the
blockwise bootstrap, which is shown to be generally valid for strong-mixing sequences (cf.
K�unsch (1989)).

We now specify our autoregressive approximation and make the following widely used
assumptions:

(B) p = p(n)!1; p(n) = o(n) (n!1) and
�̂p = (�̂1;n; : : : ; �̂p;n)

T satisfy the empirical Yule-Walker equations

�̂p�̂p = �
̂p;

where �̂p = [R̂(i� j)]
p
i;j=1; 
̂p = (R̂(1); : : : ; R̂(p))T ,

R̂(j) = n�1
Pn�jjj

t=1 (Xt � �X)(Xt+jjj � �X).

In the sequel we always denote by R(j) = Cov(X0; Xj).

3.2 Bootstrapping the mean

Our �rst result shows the consistency in the simple case of the arithmetic mean. As
mentioned in section 3.1 the sieve bootstrap in this case will be shown to be consistent
even for processes as in (A1) with non-independent innovations.

Theorem 3.1 Assume that (A1) with s = 4, (A2) with r = 1 and (B) with p(n) =
o((log(n)=n)1=4) hold. Then

(i) V ar�(n�1=2
nX
t=1

X�
t )� V ar(n

�1=2
nX
t=1

Xt) = oP (1) (n!1);

(ii) If in addition n�1=2
nX
t=1

(Xt � �X)
d
�! N (0;

1X
k=�1

R(k));

sup
x2IR

jIP�[n�1=2
nX
t=1

(X�
t � �X) � x]� IP[n�1=2

nX
t=1

(Xt � �X) � x]j = oP (1) (n!1):

Remark: Assumption (A1) only guarantees consistency of second moments, the addi-
tional assumption in (ii) is needed for consistency of the distribution function.

The proof is given in section 5.3.

We present now a comparison of the sieve bootstrap with the blockwise bootstrap in
the case of the mean �Xn. It is shown in K�unsch (1989, Theorem 3.1) that

nV ar�( �X�
n) �

X̀
k=�`

(1� jkj=`)R̂(k); (3.1)
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where ` = `(n)!1; `(n) = o(n) (n!1) is the blocklength.
More generally it is shown in B�uhlmann and K�unsch (1994b) that a generalization of the
blockwise bootstrap, the so-called correlated weights bootstrap, satis�es

nV ar�( �X�
n) �

X̀
k=�`

w(jkj=`)R̂(k); (3.2)

where w(:) is a window that is twice di�erentiable at zero with w0(0) = 0; w00(0) 6= 0.
Formula (3.1) and (3.2) tell that the blockwise or correlated weights bootstrap variance
nV ar�( �X�

n) is asymptotically equivalent to a lag-window spectral estimate at zero (mul-
tiplied by 2�) with the triangular- or a more smooth window, respectively. Parzen (1957)
has given asymptotic expressions for the mean square error of lag-window spectral esti-
mators (see also Priestley (1981)). Thus under suitable conditions we get

for the blockwise bootstrap:

IE[nV ar�( �X�
n)]� nV ar( �Xn) � �`

�1
1X

k=�1

jkjR(k);

V ar(nV ar�( �X�
n)) � `n�14(

1X
k=�1

R(k))2=3; (3.3)

for the correlated weights bootstrap:

IE[nV ar�( �X�
n)]� nV ar( �Xn) � �`

�2w00(0)
1X

k=�1

k2R(k)=2;

V ar(nV ar�( �X�
n)) � `n�12

Z 1

1
w2(x)dx (

1X
k=�1

R(k))2: (3.4)

By choosing `(n) = const:n1=3 in (3.3) or `(n) = const:n2=5 in (3.4), we obtain the best
order for the mean square error of the bootstrap variance, namely

MSE(nV ar�( �X�
n)) � const:n�2=3 for the blockwise bootstrap;

MSE(nV ar�( �X�
n)) � const:n�4=5 for the correlated weights bootstrap:

In principle, one could obtain better rates for the correlated weights bootstrap under more
restrictive conditions on the dependence structure, i.e., the smoothness of the spectral
density at zero, and by taking a smoother window w(:). However, we have to deal here
with an unsolved `oracle' problem: since we do not know a priori the smoothness of the
spectral density we cannot choose the optimal weights for the correlated weights bootstrap.
On the other hand we can show the following result for the sieve bootstrap.

Theorem 3.2

(i) Assume that (A1) with s = 4, (A2) with r � 1 and (B) with p(n) = o((n=log(n))1=(2r+2))
hold. Moreover assume that

P
t1;t2;t3 jcum4(X0; Xt1; Xt2; Xt3)j <1. Then

nV ar�( �X�
n)� nV ar( �Xn) = OP ((p=n)

1=2) + oP (p
�r):
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(ii) Assume that(A1) with s = 4, (A2) with r = 1 and (B) with p(n) = o((n=log(n))1=4).
Denote by

f̂AR(�) =
(n� p)�1

Pn
t=p+1 ~"

2
t;n

2�j
Pp

j=0 �̂j;ne
�ij�j2

(�� � � � �)

the autoregressive spectral estimator. Then

nV ar�( �X�
n)� 2�f̂AR(0) = O(n�1) almost surely:

The proof is given in section 5.3

The sieve bootstrap yields a better variance estimate than the blockwise or correlated
weights bootstrap if the coe�cients f jg1j=0 decay su�ciently fast, i.e., for some kind of
weak form of weak dependence. As an example we consider an ARMA(p; q)-model (p <
1; q <1), where the coe�cients f jg1j=0 decay exponentially. Then for any 0 < � < 1=2

we can choose r > 1=(2�) � 1 and p(n) = const:(n=log(n))1=(2r+2) which yields for the
sieve bootstrap

nV ar�( �X�
n)� nV ar( �Xn) = OP (n

�1=2+�);

compare this with the results for the other bootstrap schemes above. We mention here
that the `oracle' problem can now be solved (at least in some non-optimal sense). For
further discussion, see section 3.4.

By Theorem 3.2 (ii), the sieve bootstrap variance nV ar�( �X�
n) is asymptotically equiv-

alent to the autoregressive spectral estimate at zero, multiplied by 2�. Under additional
conditions the autoregressive spectral estimate has the same asymptotic distribution as
the lag-window estimate with a rectangular window (cf. Berk (1974)). Our comparison is
now completed by interpreting the di�erent bootstrap variances as lag-window estimates
at zero with di�erent windows, namely rectangular (sieve bootstrap), triangular (block-
wise bootstrap), smooth at zero with some non-vanishing derivative of order h, h � 2
(correlated weights bootstrap). This comparison should only be considered as an addi-
tional interpretation since the sieve bootstrap should be seen as a sieve rather than a
kernel (window) method.

3.3 Bootstrap for a class of nonlinear estimators

We focus now on estimators that are functions of linear statistics, i.e.,

Tn = f((n�m+ 1)�1
n�m+1X
t=1

g(Xt; : : : ; Xt+m�1)); (3.5)

where g = (g1; : : : ; gq)
T and f : IRq ! IR~q, (q; ~q � 1). Denote by � = IE[g(Xt; : : : ; Xt+m�1)].

This model class is also considered in K�unsch (1989, Example 2.2). As examples it in-
cludes versions of the sample autocovariances, autocorrelations, partial autocorrelations
and Yule-Walker estimators in autoregressive processes. We usually require that f and g
satisfy some smoothness properties and make the following assumptions:
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(C) f = (f1; : : : ; f~q)
T has continuous partial derivatives y 7! @fu

@xi
jx=y (u = 1; : : : ; ~q),

(i = 1; : : : ; m) for y in a neighborhood of U(�) of � and the di�erentials at �,
y 7! Dfu(�;y) =

Pm
i=1

@fu
@xi
jx=�yi (u = 1; : : : ; ~q) do not vanish. The function g has

continuous partial derivatives of order h (h � 1), y 7! @hgu
@xi1 :::@xih

jx=y which satisfy

the Lipschitz condition: for every y; z
�����
@hgu(x)

@xi1 : : :@xih
jx=y �

@hgu(x)

@xi1 : : :@xih
jx=z

����� � Cuky� zk u = 1; : : : ; q; 1 � i1; : : :ih � m;

where k:k denotes the Euclidean norm, x; y; z 2 IRm.

Theorem 3.3 Assume that (C), (A1') with s = 2(h+ 2), (A2) with r = 1 and (B) with
p(n) = o((n=log(n))1=4) hold. Then, denoting by �� = IE�[g(X�

t ; : : : ; X
�
t+m�1)],

sup
x2IR~q

jIP�[n1=2(T �n � f(��)) � x]� IP[n1=2(Tn � f(�)) � x]j = oP (1) (n!1):

The proof is given in section 5.3.

One possible extension of the model class as given in (3.5) would be

Tn = T (Pn); (3.6)

where Pn is an empirical distribution of the data and T is a smooth functional.
To analyze the validity of the sieve bootstrap for estimators as in (3.6) we need re-
sults about the sieve bootstrapped empirical process. This route has been given in
the i.i.d. set-up by Bickel and Freedman (1981) and for the blockwise bootstrap by
Naik-Nimbalkar and Rajarshi (1994) and B�uhlmann (1993, 1994a, 1994b). At present,
no results in this direction exist for the sieve bootstrap. However, for the linear part
(n�m+ 1)�1

Pn�m+1
t=1 IF (Xt; : : : ; Xt+m�1;P ) of an estimator in (3.6), Theorem 3.3 usu-

ally yields consistency; here IF (x; P ) denotes the in
uence function of the functional T
at the m-dimensional distribution P of (Xt; : : : ; Xt+m�1) (cf. Hampel et al. (1986)).

3.4 Choice of the order p

Our main results in section 3.2 and 3.3 require some regularity conditions for the order
p = p(n) of the approximating autoregressive process which cover quite general situations.
This order acts as some kind of smoothing parameter. We brie
y address now the question
of a `good' or even some kind of optimal choice of p. Our Theorem 3.2 and its discussion
indicate that the choice of p determines the accuracy of the procedure. We suggest two
concepts which can be combined for choosing the parameter p.

If the process fXtgt2ZZ is an AR(1) as in (2.2) (not being of �nite order), then the
AIC criterion leads to an asymptotically e�cient choice p̂AIC for the optimal order popt(n)
of some projected AR(1), cf. Shibata (1980). As an example, suppose that the autore-
gressive coe�cients in (2.2) decay like

�j � const:j�v ; (j !1):

Then
P1

j=0 j
rj�j j < 1 for r = [v � 1 � �] (� > 0), where [x] denotes the integer part

of x 2 IR, and equivalently
P1

j=0 j
rj j j < 1. On the other hand, Shibata (1980) has
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shown that p̂AIC � const:n1=(2v). Therefore p̂AIC = o((n=log(n))1=(2r+2) (r = [v � 1� �])
which is the assumption of Theorem 3.2(i). This then explains that p̂AIC is at least a
`good' order for nV ar�( �X�

n) in Theorem 3.2(i): it is such that the error nV ar�( �X�
n) �

nV ar( �Xn) gets (automatically) smaller with faster decay of the coe�cients f jg1j=0 in
(A1). In other words, the sieve bootstrap solves the oracle problem. Shibata (1981)
shows also the optimality of AIC for the global relative squared error of the autoregressive
spectral estimator

R �
��((f̂AR(�)� f(�))=f(�))2d�. But by Theorem 3.2(ii) we know that

the corresponding AR spectral estimator should be considered locally at zero. At present
we have no optimality result of AIC for nV ar�( �X�

n).
The other concept relies on the idea of prewhitening, as a graphical device. For some

candidates p, we �t the autoregressive model, obtain the residuals and compute some spec-
tral density estimate based on the residuals. We would choose p such that this estimated
spectrum is close to a constant. This method can detect autocorrelation but is not able
to distinguish between uncorrelated and independent innovations (compare assumptions
(A1) and (A1')).

These two concepts seem to be nicer than the adaptive choice of a blocklength in the
blockwise bootstrap (cf. B�uhlmann and K�unsch (1994)). There, the optimal blocklength
depends not only on the dependence structure of the observation process but also on the
structure of the estimator to be bootstrapped.

4 Simulations

We study and compare the performance of the sieve and blockwise bootstrap. We consider
the following models.

(M1) AR(48), Xt =
P48

j=1 �jXt�j + "t; �j = (�1)j+17:5=(j + 1)3 (j = 1; : : : ; 48), where
"t i:i:d: � N (0; 1).

(M2) ARMA(1,1),Xt = 0:8Xt�1�0:5"t�1+"t, where "t i:i:d: � 0:95N (0; 1)+0:05N (0; 100).
Models with these ARMA-parameters have been considered in Glasbey (1982).

(M3) ARMA(1,1),Xt = �0:8Xt�1�0:5"t�1+"t, where "t i:i:d:� 0:95N (0; 1)+0:05N (0; 100).

(M4) SETAR(2;1,1), Xt = (1:5� 0:9Xt�1+ "t)1[Xt�1�0] + (�0:4� 0:6Xt�1+ "t)1[Xt�1>0],
where "t i:i:d: � N (0; 4). This model is considered in Moeanaddin and Tong (1990).

Models (M1)-(M3) satisfy our assumption (A1') for any s 2 IN. This is not true for model
(M4), which represents a nonlinear process with non-Gaussian marginal distribution (cf.
Moeanaddin and Tong (1990)). In models (M1) and (M2) the autocorrelation function is
positive (in (M1), there are at lag 31 and some bigger lags slightly negative autocorrelations
of the order 10�4), whereas in (M3) and (M4) the autocorrelation function is `damped-
periodic', i.e., alternatively changing signs and decreasing.

Since the sieve bootstrap relies on a linear approximation we do not want to give
advantage to the sieve bootstrap and consider here always the sample median as the
estimator to be bootstrapped.

For the sieve bootstrap we choose the order p(n) of the approximating autoregres-
sive process by minimizing the Akaike information criterion (AIC) in a range 0 � p �
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10log10(n) (this is the default value in S-Plus), cf. Shibata (1980). For the blockwise
bootstrap we estimate the blocklength adaptively as in B�uhlmann and K�unsch (1994b)
where we make the additional truncation of very large blocklengths at size n=2 (this was
used in (M3) and (M4)).

Our results are based on 100 simulations, the number of bootstrap replicates is al-
ways 300. We only report the bootstrap estimates for the variance, the estimates for
higher cumulants are not very accurate (cf. B�uhlmann and K�unsch (1994b)). Denote by
Tn = medfX1; : : : ; Xng, �

2
n = nV ar(Tn), (�

2
n)
� = nV ar�(T �n), RMSE =MSE((�2n)

�)=�4n
(relative mean square error). We computed IE; S:D: and RMSE as sample moments over
the 100 simulations, an estimated standard deviation of RMSE is given in parentheses.
The true variance �2n is based on 1000 simulations. The sample sizes are n = 64 and
n = 512.

sieve bootstrap, n = 64 �2n IE[(�2n)
�] S:D:((�2n)

�) RMSE

(M1) 16.40 13.16 8.57 0.312 (0.061)
(M2) 14.11 8.14 8.18 0.515 (0.063)
(M3) 3.13 5.03 5.17 3.089 (0.891)
(M4) 8.85 7.81 1.99 0.065 (0.008)

blockw. bootstrap, n = 64

(M1) 16.40 9.86 6.80 0.331 (0.025)
(M2) 14.11 8.26 9.34 0.610 (0.072)
(M3) 3.13 7.11 11.69 15.520 (6.872)
(M4) 8.85 11.44 15.75 3.255 (1.600)

sieve bootstrap, n = 512

(M1) 16.68 16.10 4.25 0.066 (0.009)
(M2) 14.22 12.45 6.49 0.223 (0.046)
(M3) 2.62 2.87 0.68 0.076 (0.020)
(M4) 9.79 8.03 1.09 0.045 (0.004)

blockw. bootstrap, n = 512

(M1) 16.68 14.24 5.10 0.115 (0.015)
(M2) 14.22 11.03 4.28 0.141 (0.013)
(M3) 2.62 3.47 2.37 0.928 (0.265)
(M4) 9.79 9.93 5.75 0.345 (0.058)

The results can be classi�ed as follows. For processes with positive autocorrelation
function, both procedures have roughly about the same performance. There might be a
small advantage for the sieve bootstrap for small sample sizes.

If the autocorrelation function of the model is `damped-periodic', the sieve bootstrap
outperforms the blockwise bootstrap. This can be explained by the equivalence of the
bootstrap variance to the corresponding spectral estimators at zero. It is known from
spectral estimation that lag-window estimation is harder for `damped-periodic' autocor-
relation functions, whereas the autoregressive estimate is usually more reliable. In (M3)
with n = 64 both procedures perform badly. This is mainly due to the in
uential innova-
tion outliers in the series: one such outlier is followed by approximately 10 contaminated
values until the series stabilizes. Therefore we considered also the model

(M3') ARMA(1,1), Xt = �0:8Xt�1 � 0:5"t�1 + "t, where "t i:i:d: � t6.
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sieve bootstrap, n = 64 �2n IE[(�2n)
�] S:D:((�2n)

�) RMSE

(M3') 2.39 2.28 0.72 0.093 (0.013)

blockw. bootstrap, n = 64

(M3') 2.39 2.93 2.26 0.945 (0.198)

sieve bootstrap, n = 512

(M3') 2.24 2.19 0.28 0.016 (0.002)

blockw. bootstrap, n = 512

(M3') 2.24 2.94 2.10 0.977 (0.430)

Now the sieve bootstrap performs very well. The fact that the blockwise bootstrap does
not gain performance with the larger sample size is due to one `extraordinary' realization
out of the 100 simulations. Without this realization the RMSE for the blockwise bootstrap
with n = 512 decreases to 0:559.

The surprise is the extremely high performance of the sieve bootstrap in (M4), though
this model is beyond the theory of linear processes as in (A1'). The approximating series
does not even asymptotically capture the model (M4). However, it seems that the AR
approximation is in some sense close enough, the marginal distribution of Xt is not too
far away from Gaussianity (cf. Moeanaddin and Tong (1990)). The blockwise bootstrap,
which does not seem to be restricted to linear processes as in (2.1) yields a poor result.

To see where the sieve bootstrap brakes down we �nally considered a similar threshold
model as (M4) but now with smaller innovations "t

(M4') SETAR(2;1,1), Xt = (1:5� 0:9Xt�1+ "t)1[Xt�1�0] + (�0:4� 0:6Xt�1+ "t)1[Xt�1>0],
where "t i:i:d:� N (0; 1). See Moeanaddin and Tong (1990).

The marginal distribution of Xt in (M4') is now strongly bimodal and much further away
from Gaussianity than in (M4).

Since the blockwise bootstrap behaves wildly we use the median and MAD as estima-
tors based on the 100 simulations for the expectation and standard deviation.

sieve bootstrap, n = 64 �2n IE[(�2n)
�] S:D:((�2n)

�) RMSE

(M4') 7.47 3.45 0.76 0.300 (0.011)

blockw. bootstrap, n = 64

(M4') 7.47 3.49 3.88 0.553 (0.049)

sieve bootstrap, n = 512

(M4') 12.47 3.60 0.54 0.508 (0.006)

blockw. bootstrap, n = 512

(M4') 12.47 9.96 8.45 0.499 (0.040)

The sieve bootstrap has a bias which does not decrease with increasing sample size.
This exhibits the fact that the model (M4') cannot be represented as a linear process. As
expected the standard deviation decreases with larger sample size.

For the blockwise bootstrap, the relative bias is getting smaller with larger sample size.
This re
ects the theory that the blockwise is asymptotically working for general mixing
processes which can be strongly nonlinear. However, the blockwise bootstrap is better
than the sieve bootstrap. We wondered if we could use a �xed blocklength and improve
the blockwise procedure: by trying the blocklengths ` = 4; 8; 16; 32; 64 for the sample size
n = 512, we could not �nd any signi�cantly better result.
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We draw the �nal conclusion that in the framework of linear processes, the sieve
bootstrap is generally superior over the blockwise bootstrap.

5 Structural properties of the sieve bootstrap and proofs

5.1 Autoregressive approximation

We �rst cite here two results which serve as important tools in our analysis. Using the

estimation procedure as in (B), we set �̂n(z) =
Pp(n)

j=0 �̂j;nz
j ; �̂0;n = 1 (z 2 IC; jzj � 1): It

is known that �̂n(z) is invertible for jzj � 1, i.e., 1=�̂n(z) = 	̂n(z) =
P1

j=0  ̂j;nz
j (jzj � 1)

(cf. Brockwell and Davis (1987), p. 233). Hence using the de�nition (2.3) of the sieve
bootstrap we represent

X�
t � �X =

1X
j=0

 ̂j;n"
�
t�j ; t 2 ZZ:

The next result can be seen as a generalization of Wiener's Theorem (cf. Wiener (1933),
Zygmund (1959)) for the estimation case.

Lemma 5.1 Assume that (A1) with s = 4, (A2) with r 2 IN and (B) hold. Suppose that
p(n) = o((n=log(n))1=(2r+2)).
Then there exists a random variable n1 such that

sup
n�n1

1X
j=0

jrj ̂j;nj <1 almost surely.

Proof: This is essentially Theorem 3.1 in B�uhlmann (1995), which covers slightly more
general situations. 2

Lemma 5.2 Assume that (A1) with s = 4, (A2) with r = 1 and (B) with p(n) =
o((n=log(n))1=4) hold.
Then

1X
j=0

j ̂j;n �  j j = o(1) (n!1) almost surely:

Prof: See B�uhlmann (1995), formula (3.2) and (3.3). 2

5.2 Properties of the sieve bootstrap sample

We �rst present some results about the resampled innovations "�t i:i:d: F̂";n. By the
de�nition of F̂";n (see section 2) we have

IE�["�t ] = 0: (5.1)

The next Lemma gives results about higher moments.
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Lemma 5.3 Assume that (A1) with s = maxf2w; 4g w 2 IN, (A2) with r = 0 and (B)
with p(n) = o((n=log(n))1=2) hold. Then

IE�[("�t )
2w] = IE[("t)

2w] + oP (1):

Proof: It is

IE�[("�t )
2w] = (n� p)�1

nX
t=p+1

("̂t;n � "̂(:)n )2w; (5.2)

where "̂
(:)
n = (n� p)�1

Pn
t=p+1 "̂t;n.

We �rst show

"̂(:)n = oP (1): (5.3)

Denote by �p = (�1;n; : : : ; �p;n)T the solutions of the theoretical Yule-Walker equations
�p�p = �
p (compare with assumption (B) and replace the sample moments by true

moments). For ease of notation we set in the sequel �̂j;n = �j;n = 0 for j > p, �̂0;n =
�0;n = 1. We write

"̂(:)n = (n� p)�1(
nX

t=p+1

("t � ( �X � �X)
1X
j=0

�j) +
nX

t=p+1

Qt;n +
nX

t=p+1

Rt;n)

= I + II + III; (5.4)

where Qt;n =
Pp

j=0(�̂j;n � �j;n)(Xt�j � �X), Rt;n =
P1

j=0(�j;n � �j)(Xt�j � �X). By (A1)
and (A2) we have

I = OP (n
�1=2): (5.5)

By the Cauchy-Schwarz inequality

jII j � (
pX

j=0

(�̂j;n � �j;n)
2)1=2((n� p)�1

nX
t=p+1

pX
j=0

(Xt�j � �X)2)1=2: (5.6)

In An et al. (1982), proof of Theorem 5, it is shown under the assumption about p(n)
that

pX
j=0

(�̂j;n � �j;n)
2 = o((log(n)=n)1=2) almost surely.

Thus by (5.6)

II = o(log(n)=n)1=4)OP (p
1=2) = oP (1): (5.7)

Furthermore by the extended Baxter inequality,

1X
j=0

j�j;n � �j j � const:
1X

j=p+1

j�j j
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(see B�uhlmann (1995), proof of Theorem 3.1). Thus

IEjIII j � IEjXt � �Xj
pX

j=0

j�j;n � �j j � IEjXt � �X j
1X

j=p+1

j�j j = oP (1): (5.8)

By (5.4), (5.5), (5.7) and (5.8) we have shown (5.3).
Next we show that

(n� p)�1
nX

t=p+1

("̂t;n)
2w = IE[("t)

2w] + oP (1): (5.9)

Write

"̂t;n = "t � ( �X � �X)
1X
j=0

�j + Qt;n +Rt;n (5.10)

(for the notation see (5.4)). Analogously as for proving (5.7), (5.8) and using that IEj"tj2w <
1, we arrive at

(n� p)�1
nX

t=p+1

jQt;nj
2w = oP ((p

1=2(log(n)=n)1=4)2w) = oP (1); (5.11)

(n� p)�1
1X

t=p+1

jRt;nj
2w = OP ((

1X
j=p+1

j�j j)
2w) = oP (1): (5.12)

Now expand the right hand side of (5.10). Then by (5.11), (5.12), the ergodicity of f"tgt2ZZ
and by using H�older's inequality we can show (5.9). Finally by a binomial expansion in
(5.2) and using (5.3), (5.9) and again H�older's inequality we complete the proof.

Lemma 5.4 Assume that (A1) with s = 4, (A2) with r = 1 and (B) with p(n) =
o((log(n)=n)1=4) hold. Then

"�t
d�
�! "t in probability:

Proof: Denote by F";n(x) = (n� p)�1
Pn

t=p+1 1["t�x], F"(x) = IP["t � x] and by d2(:; :)
the Mallows metric (cf. Bickel and Freedman (1981)). Then it is known that

d2(F";n; F") = o(1) almost surely;

see Bickel and Freedman (1981), Lemma 8.4.
Thus it remains to prove that

d2(F̂";n; F";n) = oP (1); F̂";n de�ned as in section 2: (5.13)

Let S be uniformly distributed on fp+1; : : : ; ng and let Z1 = "S ; Z2 = ~"S;n, where ~"t;n is
de�ned as in section 2. Then

d2(F̂";n; F";n)
2 � IEjZ2 � Z1j

2

= (n� p)�1
nX

t=p+1

(~"t;n � "t)
2 = (n� p)�1

nX
t=p+1

(Qt;n + Rt;n � ( �X � �X)
1X
j=0

�j � "̂
(:)
n )2;

where we used the notation as in the proof of Lemma 5.3. But the last expression converges
to zero in probability by (5.3), (5.11), (5.12) and ( �X��X) = oP (1). Hence (5.13) holds.2

In the next step we extend Lemma 5.4 for the innovations to the observations.

15



Lemma 5.5 Assume that (A1') with s = 4, (A2) with r = 0 and (B) with p(n) =
o((log(n)=n)1=2) hold. Then

X�
t

d�
�! Xt in probability:

Proof: Let M > 0, we specify its value later. We decompose

X�
t =

1X
j=0

 ̂j;n"
�
t�j =

MX
j=0

 j"
�
t�j + U�t;n + V �t;n;

where U�t;n =
PM

j=0( ̂j;n �  j)"
�
t�j , V

�
t;n =

P1
j=M+1  ̂j;n"

�
t�j .

Let x 2 IR be a continuity point of the c.d.f. of Xt and let 
 > 0 be arbitrary. Then as
for proving Slutsky's Theorem

IP�[X�
t � x] � IP�[

MX
j=0

 j"
�
t�j � x+ 
] + IP�[jU�t;nj > 
=2] + IP�[jV �t;nj > 
=2]:

By Markov's inequality

IP�[jU�t;nj > 
=2] � 2
MX
j=0

j ̂j;n �  j jIE
�j"�t j=


IP�[jV �t;nj > 
=2]� 2
1X

j=M+1

j ̂j;njIE
�j"�t j=
;

By Lemma 5.1,
P1

j=M+1 j ̂j;nj �M�1P1
j=M+1 jj ̂j;nj � const:M�1 almost surely. More-

over by Lemma 5.2, for any �nite M and any � > 0 there exists an n0 = n0(M; �) such
that for n � n0

MX
j=0

j ̂j;n �  j j � �:

Let � > 0 be arbitrary. We bound IE�j"�t j � (IE�j"�t j
2)1=2 and use Lemma 5.3. Thus we can

choose M =M(
; �) such that for n su�ciently large

IP�[jU�t;nj > 
=2] � �=2 in probability;

IP�[jV �t;nj > 
=2]� �=2 in probability: (5.14)

Therefore

IP�[X�
t � x] � IP�[

MX
j=0

 j"
�
t�j � x+ 
] + � in probability (5.15)

and analogously

IP�[X�
t � x] � IP�[

MX
j=0

 j"
�
t�j � x� 
]� � in probability: (5.16)
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By the Cram�er-Wold device and Lemma 5.4 combined with the i.i.d. property of f"tgt2ZZ
and the conditional i.i.d. property of f"�t gt2ZZ we have for n su�ciently large

jIP�[
MX
j=0

 j"
�
t�j � x+ 
]� IP[

MX
j=0

 j"t�j � x+ 
]j � � in probability: (5.17)

Analogously as before we can show for an arbitrary � > 0

IP[
MX
j=0

 j"t�j � x+ 
] � IP[Xt � x+ 
 + �] + �; (5.18)

IP[
MX
j=0

 j"t�j � x� 
] � IP[Xt � x� 
 � �]� �: (5.19)

(We use here that
P1

j=M+1 j j j = o(1) (M ! 1); if the M chosen in (5.14) is too small
we increase M which would not a�ect the results above).
By (5.15)-(5.20) we have for n su�ciently large

IP�[X�
t � x] � IP[Xt � x+ 
 + �] + 3� in probability;

IP�[X�
t � x] � IP[Xt � x� 
 � �]� 3� in probability:

Since 
; � and � are arbitrary and x is a continuity point of the c.d.f. of Xt we complete
the proof. 2

Corollary 5.6 Suppose that the assumptions of Lemma 5.5 hold. Then for every d 2 IN,
t1; : : : ; td 2 ZZ

(X�
t1
; : : : ; X�

td
)

d�
�! (Xt1 ; : : : ; Xtd) in probability:

Proof: We use the Cram�er-Wold device and show that

dX
i=1

ciX
�
ti

d�
�!

dX
i=1

ciXti (ci 2 IR) in probability:

For this we decompose X�
ti as in the proof of Lemma 5.5 and follow its lines. 2

5.3 Proofs of main results

Proof of Theorem 3.1
(i) By using successively Lemma 5.3, Lemma 5.1 with r = 1 and Lemma 5.2 we have

nV ar�( �X�
n) =

n�1X
k=�n+1

1X
j=0

 ̂j;n ̂j+jkj;n(1� jkj=n)IE
�j"�t j

2

=
n�1X

k=�n+1

1X
j=0

 ̂j;n ̂j+jkj;n(1� jkj=n)IEj"tj
2(1 + oP (1))

= (
1X
j=0

 ̂j;n)
2IEj"tj

2(1 + oP (1))

= (
1X
j=0

 j;n)
2IEj"tj

2 + oP (1):
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Since nV ar( �Xn)) = (
P1

j=0  j;n)
2IEj"tj

2 we have shown (i).

(ii) We truncate the MA(1) representation of X�
t � �X and set

X�
t;M � �X =

MX
j=0

 ̂j;n"
�
t�j ;

�X�
n;M = n�1

nX
t=1

X�
t;M :

Then as for proving (i)

nV ar�( �X�
n;M) = (

MX
j=0

 j)
2IEj"tj

2 + oP (1):

We now use a blocking technique with `small, negligible' and `large, dominating' blocks.
Let

An;i =

ia+(i�1)bX
t=(i�1)(a+b)+1

(X�
t;M � �X); i = 1; : : : ; [n=(a+ b)];

Bn;i =
i(a+b)X

t=ia+(i�1)b

(X�
t;M � �X); i = 1; : : : ; [n=(a+ b)];

where a = a(n) ! 1; b = b(n) ! 1; a(n) = o(n); b(n) = o(a(n)). Let N(a + b) = n
and assume without loss of generality that N 2 IN. Then

n1=2( �X�
n;M � �X) = n�1=2

NX
i=1

An;i + n�1=2
NX
i=1

Bn;i:

We �rst show that

n�1=2
NX
i=1

Bn;i = oP �(1) in probability: (5.20)

It is IE�[n�1=2
PN

i=1Bn;i] = 0. Since the X�
t;M 's are M -dependent with respect to IP�,

fBn;ig
N
i=1 are (conditionally) independent for n su�ciently large and hence, as for proving

(i)

V ar�(n�1=2
NX
i=1

Bn;i) = n�1NV ar�(Bn;1)

= n�1Nb(
MX
j=0

 j)
2IEj"tj

2 + oP (1) = oP (1):

Therefore (5.20) holds.
We next show that

n�1=2
NX
i=1

An;i
d�
�! N (0; (

MX
j=0

 j)
2IEj"tj

2) in probability: (5.21)
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Again IE�[n�1=2
PN

i=1An;i] = 0. As above, and by using Na � n,

V ar�(n�1=2
NX
i=1

An;i) = n�1NaV ar�(An;1)

= (
MX
j=0

 j)
2IEj"tj

2 + oP (1): (5.22)

Then we check Lindeberg's condition

N IE�[
A2
n;1

�2n
1[jAn;1=�nj>�]] = oP (1) for � > 0; (5.23)

where �2n = V ar�(
PN

i=1An;i) � const:n in probability.
But by reasoning as for Chebychev's inequality

N IE�[
A2
n;1

�2n
1[jAn;1=�nj>�]] � N��2��4n IE�jAn;1j

4:

A direct calculation using Lemma 5.1 and Lemma 5.3 leads then to IE�jAn;1j
4 = OP (a

2)
and hence

N IE�[
A2
n;1

�2n
1[jAn;1=�nj>�]] = OP (Nn

�2a2) = OP (n
�1a) = oP (1);

which proves (5.23).
Thus by (5.22), (5.23) and the M -dependence of the X�

t;M 's we have shown (5.21) and
hence by (5.20)

n1=2( �X�
n;M � �X)

d�
�! N (0; (

MX
j=0

 j)
2IEj"tj

2) in probability: (5.24)

Finally we show that the e�ect of truncation is negligible. Let

n1=2 �Y �n;M = n1=2( �X�
n � �X�

n;M) = n�1=2
nX
t=1

1X
j=M+1

 ̂j;n"
�
t�j :

Then

V ar�(n1=2 �Y �n;M ) =
n�1X

k=�n+1

1X
j=M+1

 ̂j;n ̂j+jkj;n(1� jkj=n)IE
�j"�t j

2

� const:
1X

j=M+1

j ̂j;nj � const:M�1
1X

j=M+1

jj ̂j;nj in probability: (5.25)

By (5.24) and (5.25) we complete the proof for (ii) (for this kind of reasoning cf. Anderson
(1971), Corollary 7.7.1). 2

Proof of Theorem 3.2
Note that Cov�(X�

0 ; X
�
k) = R̂(k)

IE�j"�t j
2

�̂ for jkj � p, where �̂2 = R̂(0) + �̂Tp 
̂p is the Yule-
Walker estimate of �2 = IEj"tj2. The di�erence between IE�j"�t j

2 and �̂2 is due to initial
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conditions like Xp�1 = : : : = X0 = �X. These edge e�ects are negligible, i.e.,
IE�j"�t j

2

�̂2
=

1 + OP (pn
�1). We have by using Lemma 5.1 and Lemma 5.3

nV ar�( �X�
n)

=
pX

k=�p

R̂(k)(1� jkj=n)(1 +OP (pn
�1) + 2

n�1X
k=p+1

1X
j=0

 ̂j;n ̂j+k;n(1� k=n)IE�j"�t j
2

=
pX

k=�p

R̂(k)(1� jkj=n)(1 +OP (pn
�1) +OP (

1X
j=p+1

j ̂j;nj)

=
pX

k=�p

R̂(k)(1� jkj=n)(1 +OP (pn
�1) + oP (p

�r):

Now (i) follows by Theorem 9.3.4 in Anderson (1971).

For (ii) we observe that

jnV ar�( �X�
n)� 2�f̂AR(0)j

� jn�12
n�1X
k=1

kCov�(X�
0 ; X

�
k)j+ 2j

1X
k=n

Cov�(X�
0 ; X

�
k)(1� k=n)j

� n�12
1X
j=0

j ̂j;nj
1X
j=0

jj ̂j;nj+ n�12
1X
j=0

1X
j=n

jj ̂j;nj = O(n�1) almost surely;

where the last bound follows from Lemma 5.1. 2

Proof of Theorem 3.3

In the sequel we denote by Xt = (Xt; : : : ; Xt+m�1)
T , X�

t = (X�
t ; : : : ; X

�
t+m�1)

T . The
strategy is to show that

(n�m+ 1)�1=2
n�m+1X
t=1

(g(X�
t)� IE�[g(X�

t)])
d�
�! N (0;�m�m) in probability; (5.26)

where (�)u;v =
P1

k=�1 Cov(gu(X0); gv(Xk)) is the asymptotic covariance matrix of (n�
m+1)�1=2

Pn�m+1
t=1 (g(Xt)�IE[g(Xt)]). We leave the proof away that, under the conditions

of Theorem 3.3,

(n�m+ 1)�1=2
n�mX
t=1

(g(Xt)� IE[g(Xt)])
d
�! N (0;�m�m):

This can be shown in a similar (easier) way as the following proof for the bootstrap
quantities.
Then we will use the Delta technique.

We proceed similarly as for proving Theorem 3.1(ii). We denote by X�
t;M = �X +PM

j=0  ̂j;n"
�
t�j , Xt;M = �X +

PM
j=0  j"t�j and de�ne X�

t;M and Xt;M in the analogous way
as for X�

t and Xt.
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In a �rst step we show that

Cov�((n�m+ 1)�1=2
n�m+1X
t=1

gu(X
�
t;M); (n�m+ 1)�1=2

n�m+1X
t=1

gv(X
�
t;M))

= (�M)u;v + oP (1) (1 � u; v � q); (5.27)

where (�M)u;v =
PM+m�1

k=�M�m+1 Cov(gu(X0); gv(Xk)).
We immediately have by the M -dependence of the X�

t;M 's

Cov�((n�m+ 1)�1=2
n�m+1X
t=1

gu(X
�
t;M); (n�m+ 1)�1=2

n�m+1X
t=1

gv(X
�
t;M))

=
M+m�1X

k=�M�m+1

Cov�(gu(X
�
0;M); gv(X

�
k;M))(1� jkj=(n�m+ 1)): (5.28)

We truncate the gu's,

~gu(x) = gu(x)1[jgu(x)j�K] +Ksign(gu(x)); K > 0:

Since ~gu is continuous and bounded we get by Corollary 5.6, which also holds for the
truncated versions X�

t;M and Xt;M ,

M+m�1X
k=�M�m+1

Cov�(~gu(X
�
0;M); ~gv(X

�
k;M))

=
M+m�1X

k=�M�m+1

Cov(~gu(X0;M); ~gv(Xk;M)) + oP (1): (5.29)

Now we discuss that the the e�ect of truncating the gu's is negligible. We have by H�older's
inequality

IE�jgu(X
�
0;M)1[jgu(X�

0;M
)j>K]j

2

� (IE�jgu(X
�
0;M)j2(h+2)=(h+1))(h+1)=(h+2)(IP�[jgu(X

�
0;M)j > K])1=(h+2) = OP (1)K

�2=(h+1)

(we show IE�jgu(X
�
0;M)j2(h+2)=(h+1) = OP (1) in the same way as later (5.34)).

Let � > 0 be arbitrary. Hence we can choose K = K(�;M(�)) = K(�) such that for n
su�ciently large

jCov�(gu(X
�
0;M); gv(X

�
k;M))� Cov�(~gu(X

�
0;M); ~gv(X

�
k;M))j

� �=(M +m� 1) in probability: (5.30)

Analogously we can do the same for the original observations

jCov(gu(X0;M); gv(Xk;M))� Cov(~gu(X0;M); ~gv(Xk;M))j � �=(M +m� 1): (5.31)

Putting together (5.28)-(5.31) and using that � > 0 is arbitrary we have shown (5.27).
Now we invoke the Cram�er-Wold device for showing the convergence of the random vec-

tor (n�m+1)�1=2
Pn�m+1

t=1 (g(X�
t;M)�IE�[g(X�

t;M)]). Denote by `(x) =
Pq

u=1 cugu(x); cu 2
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IR. Then we use the same blocking technique as in the proof of Theorem 3.1(ii) (for no-
tation see also there). We will show now the Lindeberg condition as in (5.23), where now
An;1 =

Pa
t=1(`(X

�
t;M)� IE�[`(X�

t;M)]). We bound

N IE�[
A2
n;1

�2n
1[jAn;1=�nj>�]] � N�����2��n IE�jAn;1j

2+� (� > 0): (5.32)

By using the M -dependence of the X�
t;M 's with respect to IP� we get

IE�jAn;1j
2+� � const:a(n)1+�=2 (� > 0); if IE�j`(X�

t;M)j2+2� = OP (1); (5.33)

cf. Yokoyama (1980). Choose � = 1=(h+ 1). We will show now that

IE�j`(X�
t;M)j2+2=(h+1) = OP (1): (5.34)

We use the following notation for the linear operator for the i-th derivative:

Di`(y)(z) =
mX

d1;:::;di=1

@i`

@xd1 : : : @xdi
(y)zd1 : : : zdi ;

@i`

@xd1 : : : @xdi
(y) =

@i`(x)

@xd1 : : :@xdi
jx=y ;

where x = (x1; : : : ; xm)
T ; y = (y1; : : : ; ym)

T ; z = (z1; : : : ; zm)
T .

Denote by k:k�p the usual Lp-norm with respect to IP�. By a Taylor expansion

`(X�
t;M) =

h�1X
i=0

Di`( �X)(X�
t;M � �X) +Dh`(�)(X�

t;M � �X);

where k� � �Xk � kX�
t;M � �Xk; k:k denoting the Euclidean norm in IRm.

Hence by Minkowski's inequality

k`(X�
t;M)k�2+2=(h+1)

�
h�1X
i=0

kDi`( �X)(X�
t;M � �X)k�2+2=(h+1) + kD

h`(�)(X�
t;M � �X)k�2+1=(h+1): (5.35)

Now by the de�nitions of Di`(:) and X�
t;M and by using Lemma 5.3

kDi`( �X)(X�
t;M � �X)k�2+2=(h+1)

� const:
MX
j=0

j ̂j;njIE
�j"�t j

(2+2=(h+1))i = OP (1) (0 � i � h� 1): (5.36)

On the other hand, by using the Lipschitz property of @h`(:)
@xi1 :::xih

jDh`(�)�Dh`(0)j � const:k� � �Xk � const:kX�
t;M � �Xk;

and therefore, similarly as above,

kDh`(�)(X�
t;M � �X)k�2+2=(h+1) � const:

MX
j=0

j ̂j;njIE
�j"�t j

(2+2=(h+1))(h+1) = OP (1): (5.37)
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By (5.35)-(5.37)we have shown (5.34) and hence (5.33). Therefore by (5.32), the Lindeberg
condition holds. Hence by invoking (5.27)

(n �m+ 1)�1=2
n�m+1X
t=1

(g(X�
t;M)� IE�[g(X�

t;M)])
d�
�! N (0;�M) in probability: (5.38)

Next we show that

lim
M!1

(�M)u;v = (�)u;v; u; v = 1; : : : ; m: (5.39)

First we prove in a straightforwardway by using Taylor expansions (in a similar spirit as for
proving (5.34)) and by using the smoothness of g(:), IEj"tj

2(h+2) < 1 and the assumptionP1
j=0 jj jj <1

j
M+m�1X

k=�M�m+1

Cov(gu(X0;M); gv(Xk;M))�
M+m�1X

k=�M�m+1

Cov(gu(X0); gv(Xk))j

� const:
1X

j=M

jj jj:

Furthermore we can show, again using the smoothness of g(:),

1X
k=M+m

jCov(gu(X0); gv(Xk))j ! 0 (M !1):

(This would follow directly if additionally fXtgt2ZZ would be strong-mixing, but we can
prove it by using similar techniques as for showing (5.40) below).
The last two estimates then prove that (5.39) holds.

Then we show that the e�ect of truncating the MA(1) representation of X�
t is negli-

gible, we will show

V ar�((n�m+ 1)�1=2
n�m+1X
t=1

(`(X�
t )� `(X

�
t;M)) � const:M�1 in probability: (5.40)

Denote by Z�t = `(X�
t )� `(X

�
t;M). Then

V ar�((n�m+ 1)�1=2
n�m+1X
t=1

(`(X�
t )� `(X

�
t;M)) �

1X
k=�1

jCov�(Z�0 ; Z
�
k)j:

Let k > m be �xed. Denote by

~X�
k � �X = (

k�mX
j=0

 ̂j;n"
�
k�j ; : : : ;

k�mX
j=0

 ̂j;n"
�
k+m�1�j )

T ;

~X�
k;M � �X = (

M^(k�m)X
j=0

 ̂j;n"
�
k�j ; : : : ;

M^(k�m)X
j=0

 ̂j;n"
�
k+m�1�j )

T :
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Then

Z�k = `( ~X�
k)� `( ~X

�
k;M) + I � II;

where I = `(X�
k)� `( ~X�

k), II = `(X�
k;M)� `( ~X�

k;M).

By independence of (`( ~X�
k)� `( ~X�

k;M)) and Z�0 with respect to IP� we have

jCov�(Z�0 ; Z
�
k)j � jIE�[(Z�0 � IE�[Z�0 ])I ]j+ jIE

�[(Z�0 � IE�[Z�0 ])II ]j

� kZ�0 � IE�[Z�0 ]k�2(kIk�2+ kIIk�2):

By using Taylor expansions (�0; �k denote the appropriate mid-points), H�older's and
Minkowski's inequality we obtain the following bounds (similarly as in (5.36) and (5.37))

kZ0k�2 �
h�1X
i=1

kDi`(X�
t;M)k�2(h+1)=(h�i+1)k(X

�
t �X�

t;M)1k
i
�2(h+1)

+ kDh(�0)k�2(h+1)k(X
�
t �X�

t;M)1k
h
�2(h+1)

� const:
1X

j=M+1

j ̂j;nj in probability;

kIk�2 �
h�1X
i=1

kDi`( ~X�
t;M)k�2(h+1)=(h�i+1)k(X

�
t � ~X�

t )1k
i
�2(h+1)

+ kDh(�k)k�2(h+1)k(X
�
t � ~X�

t )1k
h
�2(h+1)

� const:
1X

j=k�m+1

j ̂j;nj in probability;

and similarly

kIIk�2 � const:
MX

j=(M^(k�m))+1

j ̂j;nj in probability;

where the right hand side disappears for k �M +m.
For 0 � k � m the bound for kZ�0k�2 applies. Hence

1X
k=�1

jCov�(Z�0 ; Z
�
k)j � const:

1X
j=M+1

j ̂j;nj
1X
j=0

jj ̂j;nj

� const:M�1 in probability;

where the last bound follows by Lemma 5.1 with r = 1. This proves (5.40) and therefore
by (5.38), (5.39) and by applying Corollary 7.7.1 in Anderson (1971) we have shown (5.26).

Finally we use the Delta technique. Similarly as for (5.27) we can show k�� � �k =
oP (1). Using this and the continuous di�erentiability of f we can show along the same
lines as in Ser
ing (1980) (proof of Theorem A, p.122) that n1=2(T �n � f(�

�)) has the same
asymptotic distribution as n1=2(Tn � f(�)). This completes the proof. 2
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