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Abstract

For the random walk on the nonnegative integers with re
ecting barrier it is shown

that the right tails of the probability of the �rst return from state 0 to state 0 are simple

transition probabilities of a \dual"random walk which is obtained from the original

process by interchanging the one step probabilities. A combinatorical and analytical

proof are presented and extensions and relations to other concepts of duality in the

literature are discussed. 1

1 Introduction

Let P0 govern a re
ecting random walk (Xn) on the nonnegative integers f0; 1; 2; � � �g started
at X0 = 0 with one-step upward transition probabilities pi and one-step downward transition
probabilities qi where q0 = 0, and pi + qi = 1 for all i � 0. De�ne T0 = inffn > 0 : Xn = 0g
as the time of �rst return. Similary, let ~P0 govern (Xn) as a corresponding dual random
walk with transition probabilities de�ned by switching pi and qi for i � 1. In this paper

1Keywords and phrases: Random walk, duality, continued fraction, canonical moments.

AMS Subject Classi�cation: 60J15, 33C45
� Research partially supported by the Deutsche Forschungsgemeinschaft
�� Research partially supported by NSF grant DMS-94-04345

1



we will show by di�erent methods that the P0 distribution of T0 is related to the ordinary
transition probabilities of ~P0.

Theorem 1.1. With the notation of the previous paragraph the probabilities P0 and ~P0

satisfy
P0(T0 = 2n) = ~P0(X2n�2 = 0)� ~P0(X2n = 0) (n = 1; 2; 3; � � �); (1)

or equivalently
P0(T0 > 2n) = ~P0(X2n = 0) (n = 0; 1; 2; � � �): (2)

Elementary arguments allow this formula to be re-expressed in a number of di�erent
ways. Let Lm = maxfk : 0 � k � m;Xk = 0g. By the Markov property of P0

P0(L2n = k) = P0(Xk = 0) P0(T0 > 2n � k) (0 � k � 2n) (3)

which allows (2) to be generalized to

~P0(L2n = k) = P0(L2n = 2n � k) (0 � k � 2n) (4)

In other words: for each n

the ~P0 distribution of L2n equals the P0 distribution of 2n � L2n (5)

If pi = 1=2 for all i, P0 = ~P0 governs (Xn) as if Xn = jSnj for a simple symmetric random
walk (Sn) on the integers started at S0 = 0. Then (2) reduces to a well known relation for
this random walk which Feller [5] derives from the re
ection principle, and (5) reduces to
the symmetry about n of the discrete arcsine distribution of L2n.

Section 2 shows how these identities amount to an identity of Wall [23] for continued
fraction expansions of corresponding generating functions, whose probabilistic interpretation
was indicated by Gerl [7]. A di�erent proof is based on a path bijection argument and
presented in Section 3. Section 4 compares this duality relation with a general form of duality
between re
ecting and absorbing barrier processes introduced by Siegmund [20]. In Section
5 we consider the duality (1) for random walks on the nonnegative integers with holding
probabilities which may be strictly positive. According to the spectral theory for random
walks on the nonnegative integers of Karlin-McGregor [11], for Q0 governing such a walk,
Q0(X2n = 0) is the nth moment of a probability distribution on the interval [�1; 1]. These
moments are related to the canonical moments of the spectral measure and to continued
fractions via its Stieltjes transform. We derive an integral representation for the �rst return
probabilities which is used to prove (2) and to show that the existence of ~Q0 governing a
dual walk such that an analog of (1) holds is equivalent to the assumption that all holding
probabilities of Q0 vanish. If this property is satis�ed we characterize for a given Q0 all
probabilities ~Q0 such that (1) is satis�ed. A �nal section contains miscellaneous further
remarks.
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2 A proof based on Wall's identity

It is well known that the generating functions

P0(z) =
X
n

P0(X2n = 0)zn; F0(z) =
X
n

P0(T0 = 2n)zn (6)

are related by
F0(z) = 1 � 1=P0(z) : (7)

I.J. Good [8] used (7) and a simple recursive argument to obtain expressions for P0(z) and
F0(z) as continued fractions. In particular, Good obtained

P0(z) =
1 j

j 1
�

q1z j

j 1
�

p1q2zj

j 1
�

p2q3zj

j 1
� � � � (8)

Continued fractions of this form were considered already by Wall [22, 23], who showed that
for ~P0(z) de�ned by (8) with ~pi = qi instead of pi and ~qi = pi instead of qi, there is the
identity ( [23] (75.3) )

P0(z) ~P0(z) =
1

1 � z
(9)

Or, in terms of F0(z) and ~F0(z) = 1� 1= ~P0(z), (see [23] (75.6))

~F0(z) =
F0(z)� z

F0(z)� 1
(10)

As observed by Gerl [7], the above formulae express the generating functions for the dual
walk

~P0(z) =
X
n

~P0(X2n = 0)zn; ~F0(z) =
X
n

~P0(T0 = 2n)zn: (11)

in terms of those of the original walk. From these relations the duality (1) in Theorem 1.1
follows easily by using (7) and comparing coe�cients in the corresponding power series of
F0(z) and ~P0(z).

The above argument shows that the probabilistic identity (1) is easily derived fromWall's
identity (9), and vice-versa. For completeness, we now recall Wall's proof of (9). Let

An(z)

Bn(z)
=

1 j

j 1
+

q1z j

j 1
+
p1q2zj

j 1
+ � � � +

pn�2qn�1zj

j 1

and
Cn(z)

Dn(z)
=

1 j

j 1
+

p1z j

j 1
+

q1p2zj

j 1
+ � � � +

qn�2pn�1zj

j 1

denote the nth approximant for the generating function P0(�z) and ~P0(�z). Using the
recurrence relations (see [23], (1.4))

An+1(z) = An(z) + pn�1qnzAn�1(z) ; A1(z) = 1 ; A0(z) = 0

Dn+1(z) = Dn(z) + qn�1pnzDn�1(z) ; D1(z) = 1 ; D0(z) = 1
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we readily derive (by induction)

(1 + z)An(z) = qn�1zDn�1(z) +Dn(z)

and similary
Bn(z) = qn�1zCn�1(z) + Cn(z) :

Combining these two equations yields

(1 + z)An(z)Cn�1(z)�Bn(z)Dn�1(z) = Dn(z)Cn�1(z)�Dn�1(z)Cn(z)

= knz
n�1

where kn = (�1)n
Qn�1

j=1 qj�1pj and the last line follows from [23], p.16. By the Euler Minding
formuals (see Perron [17], p. 5) Bn(z) and Dn�1(z) are polynomials of degree n�1 and n�2
with positive coe�cients and Bn(0) = Dn�1(0) = 1. Thus we obtain for all z > 0

�����An(z)

Bn(z)

Cn�1(z)

Dn�1(z)
�

1

1 + z

����� =

����� knz
n�1

(1 + z)Bn(z)Dn�1(z)

����� � jzjn�1

which implies for all 0 < z < 1 that

P0(�z) ~P0(�z) = lim
n!1

An(z)

Bn(z)
lim
n!1

Cn�1(z)

Dn�1(z)
=

1

1 � z
(12)

Now both sides of (12) are analytic functions in the cut plane IC n[1;1) (see Jones and Thron
[10]) and the relation (9) follows.

3 Combinatorial proof of the duality relation

The assertion of Theorem 1.1 will be proved in the form (2). For �xed n each side of (2) is
a polynomial in q1; � � � ; qn:

P0(X2n = 0) = F (q1; � � � ; qn)

say, is the sum over all paths from (0; 0) to (0; 2n) of products of conditional probabilities
along paths in a diagram, call itD(F; n), as in the middle left of Figure 1 for n = 3. Similarly

~P0(T0 > 2n) = G(q1; � � � ; qn)

say, is a sum of products over paths starting at (0; 0) and ending at any of the n points
(n+ 1; n+ 1); (n+ 2; n); � � � (2n; 2), in a diagram, call it D(G;n), as shown in the top right
of Figure 1. The problem is to show D(F; n) �= D(G;n), where for two diagrams D and
D0, each de�ned by a collection of directed segments with associated factors e.g. 1, qi or
pi = 1�qi for some i, and each inducing a polynomial in (q1; q2; � � �) by a sum of products over
paths, D �= D0 means the two polynomials are identical. Let D0(G;n) denote the diagram
with the same shape as D(F; n), as in the middle right panel of Figure 1 for n = 3, obtained
from D(G;n) as follows: move the initial path segment with a factor of 1 from the left end
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of D(G;n) to the right end, insert n� 1 additional segments with factors of 1 to join up the
loose ends on the downsloping right side of the D(G;n), and reverse the direction of paths.
There is an obvious one-to-one product preserving correspondence between paths in D(G;n)
and D0(G;n), so D(G;n) �= D0(G;n). For a general n the diagram D0(G;n) has the same
set of paths as in D(F; n), but with the factors in D(F; n) modi�ed as follows:

� on segment (i; i)! (i+ 1; i+ 1), 1 � i � n � 1, replace pi by 1;

� elsewhere replace pi by pi+2;

� on segment (2k; 0) ! (2k + 1; 1), 1 � k � n � 1, replace 1 by p2;

Note that the factors qi on down-segments appear in the same places in both D(F; n) and
D0(G;n). Only the factors on up-segments are di�erent. In either diagram D(F; n) or
D0(G;n), call a path through the diagram from (0; 0) to (0; 2n), combined with a choice of
1 or �qi for each up-segment with a factor pi, an expanded path. The set of all expanded
paths in D(F; n) de�nes an expanded diagram, call it D�(F; n), in which each up-segment
in D(F; n) labelled by a pi is replaced by two distinct up-segments labelled 1 and �qi.
Let D�(G;n) be derived similarly from D0(G;n). By construction D(F; n) �= D�(F; n) and
D(G;n) �= D0(G;n) �= D�(G;n). The argument is completed by the following proposition,
which shows D�(F; n) �= D�(G;n).

In either diagram D�(F; n) or D�(G;n), call a sequence of 2n factors derived from an
expanded path a selection from the expanded diagram. Note that the selection determines
the expanded path, since each factor 1 or �qi indicates an up-segment, and each qi a down-
segment.

Proposition. For each selection from either D�(F; n) or D�(G;n), there is a unique corre-
sponding selection from the other diagram with the same sequence of factors modulo signs,
and such corresponding selections have identical products.

Granted the correspondence between selections modulo signs, the equality of correspond-
ing products follows easily: corresponding selections have same number of factors 1, hence
the same number of - factors, because for every selection in either diagram, the number 1's
plus the number of - factors equals n.

For m � n the expanded diagram D�(F;m) is obtained in an obvious way by restriction
of the paths in D�(F; n) to the region f(i; k) : i + k � 2mg. The diagrams D�(G;m) and
D�(G;n) are similarly related. This can be seen for m = 1 or 2 and n = 3 in Figure 1.

The correspondence between D�(F; 1) and D�(G; 1) is trivial, since these two diagrams
are identical: F (q1) = G(q1) = q1. The correspondence between selections in D�(F; 2) and
D�(G; 2) can be seen from Figure 1 to be as follows: there are 3 selections in each expanded
diagram with corresponding products:

Product from D�(F; 2) Product from D�(G; 2)

(1)(q1)(1)(q1) = (1)(q1)(1)(q1)

(1)(1)(q2)(q1) = (1)(1)(q2)(q1)

(1)(�q1)(q2)(q1) = (1)(q1)(�q2)(q1)
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Thus F (q1; q2) = G(q1; q2) = q21 + q2q1 � q21q2.
For n = 3 it can be seen from Figure 1 that there are 13 selections in each expanded

diagram with corresponding products:

Product from D�(F; 3) Product from D�(G; 3)

(1)(1)(1)(q3)(q2)(q1) = (1)(1)(1)(q3)(q2)(q1)

(1)(1)(�q2)(q3)(q2)(q1) = (1)(1)(q2)(�q3)(q2)(q1)

(1)(1)(q2)(1)(q2)(q1) = (1)(1)(q2)(1)(q2)(q1)

(1)(1)(q2)(�q1)(q2)(q1) = (1)(1)(q2)(q1)(�q2)(q1)

(1)(1)(q2)(q1)(1)(q1) = (1)(1)(q2)(q1)(1)(q1)

(1)(�q1)(q2)(1)(q2)(q1) = (1)(q1)(�q2)(1)(q2)(q1)

(1)(�q1)(q2)(�q1)(q2)(q1) = (1)(q1)(�q2)(q1)(�q2)(q1)

(1)(�q1)(�q2)(q3)(q2)(q1) = (1)(q1)(�q2)(�q3)(q2)(q1)

(1)(�q1)(1)(q3)(q2)(q1) = (1)(q1)(1)(�q3)(q2)(q1)

(1)(�q1)(�q2)(q3)(q2)(q1) = (1)(q1)(�q2)(�q3)(q2)(q1)

(1)(q1)(1)(q1)(1)(q1) = (1)(q1)(1)(q1)(1)(q1)

(1)(q1)(1)(1)(q2)(q1) = (1)(q1)(1)(1)(q2)(q1)

(1)(q1)(1)(�q1)(q2)(q1) = (1)(q1)(1)(q1)(�q2)(q1)

The sum of these 13 products is F (q1; q2; q3) = G(q1; q2; q3).

Proof of the correspondence for general n. Assume, for simplicity of notation but
without loss of generality, that 0 < qi < 1 for every i, and that the qi are all distinct. This
allows a selection to be treated as a sequence of real numbers rather than a sequence of
symbolic factors. Let (r1; � � � ; r2n) denote a selection from D�(F; n) and let (x0; x1; � � � ; x2n)
be the corresponding lattice path. Note that (x0; x1; � � � ; x2n) is a path in D(F; n) rather
than D�(F; n). So (r1; � � � ; r2n) determines (x0; x1; � � � ; x2n) but not vice-versa. To be precise,
(x0; x1; � � � ; x2n) is a sequence of non-negative integers with x0 = x2n = 0 and (r1; � � � ; r2n) is
a sequence of real numbers such that each rk equals 1; qx, or �qx for some 1 � x � n, and
for each 1 � k � 2n� 1

rk+1 =

8><
>:

1 if xk = 0
1;�qxk ; or qxk if xk > 0 and k + xk � 2n
qxk if k + xk = 2n

9>=
>; (13)

The path (xk) can be recovered inductively from (rk) by

xk+1 =

(
xk + 1 if rk+1 = 1 or � qxk
xk � 1 if rk+1 = qxk

)
(14)

Similarly, a sequence (s1; � � � ; s2n) is a selection from D�(G;n) associated with the lattice
path (y0; y1; � � � ; y2n) in D(G;n) if and only if y0 = y2n = 0; ym � 0 for 1 � m � 2n, each sk
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equals 1; qy, or �qy for some 1 � y � n, and for each 1 � k � 2n � 1

sk+1 =

8>>><
>>>:

1 if 0 � k � n� 1 and yk = k
1;�qyk+2; or qyk if yk > 0 and k + xk � 2n
1 or � q2 if 2 � k � 2n� 2 and yk = 0
qyk if k + yk = 2n

9>>>=
>>>; (15)

and the path (yk) can be recovered inductively from (sk) by

yk+1 =

(
yk + 1 if sk+1 = 1 or � qyk+2
yk � 1 if sk+1 = qyk

)
(16)

It is claimed that
(i) for each selection (r1; � � � ; r2n) in D

�(F; n), there exists a unique selection (s1; � � � ; s2n) in
D�(G;n) such that jskj = jrkj for every 1 � k � 2n;
(ii) each selection (s1; � � � ; s2n) inD�(G;n) can be so obtained from some selection (r1; � � � ; r2n)
in D�(F; n);
(iii) if (xk) and (yk) are the lattice paths associated with such (rk) and (sk) then xk � yk
equals either 0 or 2 for every 0 � k � 2n.
Claims (i) and (iii) will be established by induction over k for 1 � k � 2n. Note that in (i)
the only issue is existence: uniqueness is obvious from (15) because in every case the options
for sk+1 have distinct absolute values.

Claim (ii) is shown by a similar induction in the reverse direction, decrementing k from
2n to 1.

Fix an arbitrary selection (rk) with path (xk) in D�(F; n), and make the following:
Inductive Hypothesis for (i) and (iii): There is a unique possible sequence (s1; � � � ; sk)
for the �rst k factors of a selection in D�(G;n) with jsjj = jrjj for every 1 � j � k, and
if (y1; � � � ; yk) is initial portion of the lattice path associated with (s1; � � � ; sk) via (16), then
xk � yk 2 f0; 2g.

This is trivial for k = 1. Assuming the inductive hypothesis for k, consider how sk+1 is
determined by xk, yk and rk+1 via (13) and (15). There are six possible cases, according to
whether xk � yk = 0 or 2, and whether rk+1 equals 1, qxk or �qxk. Each case is described by
a row in the following table. In each row the assumed values of xk�yk and rk+1 are given in
the �rst and second columns. These values, combined with the basic rules (13), (14), (15),
(16) and jsk+1j = jrk+1j, then force the values of xk+1 � xk; sk+1; yk+1 � yk and xk+1 � yk+1
as indicated. In each case, there is a unique possible choice of sk+1 according to the rules of
D�(G;n) such that jsk+1j = jrk+1j, and this choice of sk+1 implies yk+1�xk+1 2 f0; 2g. This
is the inductive hypothesis with k + 1 instead of k.

xk � yk rk+1 xk+1 � xk sk+1 yk+1 � yk xk+1 � yk+1
0 1 1 1 1 0
2 1 1 1 1 2
0 qxk �1 qyk �1 0
2 qxk �1 �qyk+2 1 0
0 �qxk 1 qyk �1 2
2 �qxk 1 �qyk+2 1 2
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To check a row of the table, it must be veri�ed that the value of sk+1 indicated in the
4th column with jsk+1j = jrk+1j is actually available according to the rules of D�(G;n). (As
mentioned before, uniqueness of such an sk+1 is obvious). The increments xk+1 � xk and
yk+1 � yk are then forced by (14) and (16), and xk+1 � yk+1 is found from

xk+1 � yk+1 = (xk � yk) + (xk+1 � xk) + (yk+1 � yk)

The cases work out as follows, according to the values of (xk � yk; rk+1):

� (0; 1) or (2; 1). That is, rk+1 = 1, which implies k + xk < 2n, hence k + yk < 2n. So
from (15), 1 is available as a choice for sk+1.

� (0; qxk). The availability of the choice rk+1 = qxk implies yk = xk > 0. The set of
possible choices for sk+1 is then

either f1; qykg, f1;�qyk+2; qykg, or fqykg,

depending on (k; yk). Whatever this set of choices, there is a choice with jsk+1j = jrk+1j,
namely sk+1 = qyk .

� (2; qxk). Since xk � k and k + xk � 2n for all paths (xk) in D(F; n), yk < k and
k + yk < 2n. The set of possible choices for sk+1 is therefore

either f1;�qyk+2; qykg if yk > 0, or f1;�qyk+2g if yk = 0.

Either way, there is a choice with jsk+1j = jrk+1j, namely sk+1 = �qyk+2 = �qxk.

� (0;�qxk). The choice of rk+1 = �qxk implies xk > 0 and k + xk < 2n. The set of
possible choices for sk+1 is therefore f1;�qxk+2; qxkg. The choice with jsk+1j = jrk+1j
is sk+1 = qxk .

� (2;�qxk). Then yk + k < 2n. The set of possible choices for sk+1 is either f1;�qxkg if
yk = 0 or f1;�qxk; qxk�2g if yk > 0. The choice with jsk+1j = jrk+1j is sk+1 = �qxk.

Remark. As a check on the above correspondence, it can be seen by direct calculation that
in either D�(F; n) or D�(G;n) the number of expanded paths is

n�1X
u=0

n� u

n + u

 
n+ u

n

!
2u (17)

The coe�cient of 2u represents the number of di�erent paths in D(F; n), or in D(G;n), that
have u up-segments with factors of the form pi for some i. Each such path contributes 2u

selections in the expanded diagram. In D(G;n) the coe�cient can be evaluated using the
ballot theorem. In D(F; n) the same coe�cent is found using Theorem 4 in Chapter III of
Feller [5].

8



4 Comparison with Siegmund Duality

It is natural to compare the duality relation in Theorem 1.1 between two random walks, call
it Wall's duality, with the general form of duality between re
ecting and absorbing barrier
processes introduced by Siegmund [20], and studied also by Cox and R�osler [3], Cli�ord-
Sudbury [1], Diaconis-Fill [4]. Let (Qx) be the family of distributions governing (Xn) as
a Markov chain with statespace [0;1) or f0; 1; 2 � � �g indexed by the starting state x � 0.
Another such family of distributions (Q̂x) is said to be dual to (Qx) in Siegmund's sense if
for all states y and z,

Qy(Xn � z) = Q̂z(Xn � y)

Taking y = 0 shows this identity can only hold if Q0 makes 0 an absorbing state. As shown
by Siegmund, if this relation holds for n = 1 then it holds also for every n, by repeated
application of the Chapman-Kolmogorov equations. For (Qx) governing the absorbing near-
est neighbour random walk, with one-step probabilities px, qx and rx for jumps up, down,
and holds, and r0 = 1, it is known and easily checked that there is a Siegmund dual (Q̂x)
governing a partially re
ecting walk with one-step probabilities

q̂x = px; r̂x = 1 � (px + qx+1); p̂x = qx+1

provided px + qx+1 � 1. The latter constraint is usually regarded as an artifact of discrete
time, as both continuous time birth-death processes and di�usions with absorption at 0 have
Siegmund duals without such constraints. Also, as noted in Section 5 of Cox and R�osler
[3], when rx = 0 for all x this constraint can be worked around by watching the chain only
every two steps. Let (Qx) be derived from the re
ecting walk (Px) as in the introduction by
making state 0 absorbing. Assume for simplicity that qx is a non-increasing function of x.
Then (Qx) has a dual walk (Q̂x) that is partially re
ecting at 0 with transition probabilities
q̂x; r̂x; p̂x as above. Duality gives

Q1(Xn � 0) = Q̂0(Xn � 1)

which, by taking complements, gives

P0(T0 > n+ 1) = P1(T0 > n) = Q1(Xn > 0) = Q̂0(Xn = 0)

Compare with the dual of (2), which gives

P0(T0 > 2n) = ~P0(X2n = 0)

So both methods yield a dual chain such that the right tails of the P0 distribution of T0 are
simple transition probabilities of the dual. But the two dual chains are slightly di�erent,
even in the simplest case qi = q for all i. Then the Siegmund dual of the absorbing walk
is the partially re
ecting q-up, p-down walk with the representation, familiar from queuing
theory, as Sn �min0�k�n Sk where Sn is a simple q-up, p-down walk on the integers. Wall's
dual in this case is the same as Siegmund's away from 0, but with sure re
ection from 0.

There seem to be two di�erences between Wall's duality and Siegmund's, the second
apparently more important than the �rst:

9



1. The Wall dual of a re
ecting walk is another re
ecting walk, whereas the Siegmund
dual of a re
ecting walk is a walk absorbed at 0;

2. Wall's duality only involves the walks started in the particular state 0, whereas Sieg-
mund's involves two processes starting from general positions.

A natural question about Wall's duality is whether it can be extended to more processes,
for example walks with non-zero holding probabilities rx, or continuous time birth-death
processes. The generating functions P0(z) and F0(z) for such walks admit continued fraction
representations (see e.g. Good [8], Flajolet [6]), as do corresponding Laplace transforms for
birth-death processes ([16], Jones and Magnus [9], [10]). We will give a partial answer to the
�rst problem in the following section.

Perhaps Wall's duality can cast in terms of the general notion of duality of two Markov
processes formulated in Section II.3 of Liggett [15], of which Siegmund's duality is a special
case. However, to do so it is �rst necessary to discover some generalization of Wall's duality
involving the two walks with arbitrary starting states.

5 More on Wall's duality

In this Section we discuss an approach via spectral theory (see [11]) to the duality in order
to investigate if and how Wall's duality can be transferred to more general random walks
on the nonnegative integers. Our results are limited to random walks started at X0 = 0
but indicate some of the di�culties in generalizing Wall's duality. Throughout this section
let the probability Q0 govern a random walk (Xn) on the nonnegative integers started at
X0 = 0 with one step transition probabilities pj , qj and rj for jumps up, down, and holds,

where pj > 0, qj+1 > 0, pj + qj + rj � 1 (j = 0; 1; 2; : : :). The probability ~Q0 with transition
probabilities ~pj, ~qj , ~rj is called dual to Q0 if and only if

Q0(T0 = n) = ~Q0(Xn�2 = 0)� ~Q0(Xn = 0) (18)

holds for all n = 2; 3; : : :. As pointed out in the previous discussion a dual of a probability
Q0 with rj = 0, q0 = 0 is obtained by switching the transition probabilities pj and qj for

j � 1. We now address the question of characterizing all dual probabilities ~Q0 [in the sense
of (18)] corresponding to a given probability Q0.

It is shown in [11] that the n-step transition probabilities of the random walk (Xn) with
governing probability Q0 can be represented as

Q0(Xn = j) =

R
1

�1 x
nQj(x)d (x)R

1

�1Q
2
j(x)d (x)

(19)

where  is the spectral measure of the probabilityQ0 (with support contained in the interval
[�1; 1]) and Qi(x) is a polynomial of degree i, recursively de�ned by

(x� ri)Qi(x) = qiQi�1(x) + piQi+1(x) (20)
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whenever pi > 0, andQ�1(x) = 0, Q0(x) = 1. If n < j it follows from (19) thatQ0(Xn = j) =
0 which shows that the polynomials Qi(x) are orthogonal with respect to the distribution
d (x) on the interval [�1; 1]. From (19) and [8] we obtain a continued fraction expansion
for the Stieltjes transform of the spectral measure  

P0(z) =
1X
n=0

Q0(Xn = 0)zn =
Z

1

�1

d (x)

1� zx

(21)

=
1 j

j1� r0z
�

p0q1z
2 j

j1� r1z
�

p1q2z
2 j

j 1� r2z
� � � � :

The spectral measure  is determined by its moments c1; c2; : : :. In what follows it turns out
to be useful to switch from the ordinary moments to the so called canonical moments of  
which are obtained as follows. It is shown in [23], p. 263, that the Stieltjes transform of  
can also be written as

P0(z) =
1 j

j1 + (1� 2�1)z
�

4�1�2z2 j

j1 + (1� 2�2 � 2�3)z
�

4�3�4z2 j

j1 + (1 � 2�4 � 2�5)z
� � � �

where �j = (1�mj�1)mj (j � 1), m0 = 1, �0 = 0. The quantitiesmj vary in the interval [0; 1]
and are in one to one correspondence with the ordinary moments c1; c2; : : : (see Skibinsky
[21]). We call mj the jth canonical moment of the distribution  . If i0 is the �rst index such
that mi0 2 f0; 1g then  is supported at a �nite number of points and the continued fraction
expansion of P0(z) terminates. If mi 2 (0; 1) for all i � 1, then  has in�nite support and
we put formally i0 =1.

Observing (21) we see that the canonical moments of the spectral measure  can be
determined from the probabilities of Q0 by solving recursively the equations

�1 + 2�2j + 2�2j+1 = rj (0 � j < i0)

(22)

4�2j�1�2j = pj�1qj : (0 � j < i0)

For example, the �rst two canonical moments of  can be expressed in terms of the transition
probabilities as

m1 =
1 + r0
2

; m2 =
p0q1
1� r20

:

Let ~ denote the measure corresponding to the sequence of canonical moments ~mj = 1�mj

(j � 1), then ~ is called the dual of the spectral measure  of the probability Q0.
Note that ~ is not necessarily the spectral measure of a probability ~Q0 governing the

random walk (Xn). By the previous discussion it follows that this property is only satis�ed if
one can �nd transition probabilities ~pj; ~rj and ~qj corresponding to ~Q0 that solve the equations

�1 + 2~�2j + 2~�2j+1 = ~rj (0 � j < i0)

(23)

4~�2j�1~�2j = ~pj�1~qj (0 � j < i0)
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for all j � 0, where ~�j = (1� ~mj�1) ~mj (j � 1), ~�0 = 0.

Theorem 5.1. Let  denote the spectral measure of the probability Q0 and ~ the dual of
 , then for all n � 2

Q0(T0 = n) =
Z

1

�1
(1� x2)xn�2d ~ (x) :

Proof. From Lau [14] it follows that the Stieltjes transform of the measure (1 � x2)d ~ (x)
is given by

H(z) =
Z

1

�1

(1� x2)d ~ (x)

1� zx

=
4~
1~
2 j

j1 + (1� 2~
2 � 2~
3)z
�

4~
3~
4z
2 j

j1 + (1� 2~
4 � 2~
5)z
� � � �

where ~
j = ~mj�1(1� ~mj) = (1�mj�1)mj = �j and ~
1 = �1. Now (21) and (22) give

P0(z) =
h
1 � r0z � z2H(z)

i�1
and from (7) we obtain

F0(z) = r0z + z2H(z) = r0z + z2
1X
n=0

Z
1

�1
(1� x2)xnd ~ (x)zn

which implies the assertion of the theorem.

Example 5.2. Consider the situation of Section 1, where P0 governs (Xn) with p0 = 1 and
rj = 0, pj + qj = 1 (j = 0; 1; 2; : : :). It is easy to see that in this case the the solution of (22)
is

m2j�1 =
1

2
; m2j = qj (j = 1; 2; : : :)

and the dual ~ of the spectral measure has canonical moments ~m2j�1 =
1

2
, ~m2j = pj. Thus

there is a one to one correspondence between the transition probabilities of P0 and ~P0 and
the canonical moments of the distributions  and ~ . Observing (23) we obtain that ~ is
the spectral measure of a probability ~P0 where the corresponding transition probabilities
satisfy ~rj = 0 (j � 0) and ~pj�1~qj = qj�1pj (j � 1). By the special choice ~p0 = 1 it follows

that ~ is the spectral measure of a random walk governed by ~P0 which is obtained from P0

by interchanging pj and qj for j � 1. This is Wall's duality described and investigated in
Section 1 - 3.

Theorem 5.3. Let Q0 govern (Xn) started at X0 = 0 with one step transition probabilities
pj , qj and rj for jumps up, down, and holds.

a)There exists a probability ~Q0 governing (Xn) such that the duality (18) holds for Q0 and
~Q0 if and only if rj = 0 for all j = 0; 1; 2; : : :.

12



b)If rj = 0 for all j = 0; 1; 2; : : : de�ne

Sn = 1 +
nX

k=1

p0(
kY

j=1

pj
qj
)Qk(1)Qk+1(1) ; S�1 = 0 ; S0 = 1 (24)

and S = limn!1 Sn (= 1 if the sum diverges). For every t 2 [0; 1
S
] the probability ~Q

t

0
with

transition probabilities ~rn(t) = 0,

~qn(t) = 1 � ~pn(t) =
1 � tSn�2
1 � tSn�1

�
Qn+1(1)

Qn(1)
pn ; ~q0(t) = 1 � ~p0(t) = t

is a dual of Q0 [in the sense of (18)]. Especially, the dual of the probability Q0 is unique if
and only if the sum in (24) diverges.

Proof. a] Let  denote the spectral measure of Q0 and ~ the corresponding dual spectral
measure. By the Karlin McGregor representation (19) and the determinacy of the Hausdor�
moment problem it follows from Theorem 5.1 that the assertion can be proved by showing
that ~ is the spectral measure of some probability ~Q0 if and only if rj = 0 for all j =
0; 1; 2; : : :.

Now let mj and ~mj = 1 � mj denote the canonical moments of  and ~ , respectively

and assume that ~ is the spectral measure of ~Q0 with transition probabilities ~pj , ~qj and ~rj.
Obviously a measure is a spectral measure of a random walk if and only if rj � 0 for all
j � 0. Thus we have from (22) and (23)

0 � r0 = �1 + 2m1 = 2 ~m1 � 1 = �~r0 � 0

which implies m1 =
1

2
, r0 = ~r0 = 0. Assume that ri = ~ri = 0, m2i+1 = ~m2i+1 =

1

2
for all

0 � i � j � 1, then

0 � rj = �1 + 2�2j + 2�2j+1 = �(1 �m2j)(1� 2m2j+1)

= �(1�m2j)(2 ~m2j+1 � 1) = �
1�m2j

1� ~m2j

~rj � 0

which proves rj = ~rj = 0 and m2j+1 = ~m2j+1 =
1

2
. Thus, if ~ is the spectral measure of a

random walk governed by ~Q0, then rj = ~rj = 0 for all j = 0; 1; 2; : : :.
Conversely assume that Q0 satis�es rj = 0 for all j = 0; 1; 2; : : :, then it is easy to see

that m2j�1 = ~m2j�1 = 1

2
for all j and the proof of the existence of a probability ~Q0 with

spectral measure ~ reduces to the problem of �nding transition probabilities ~pj , ~qj (~rj = 0)
such that

~pj�1~qj = (1 � ~m2j�2) ~m2j (25)

( ~m0 = 0) holds for all j � 1. Observing m2j�1 =
1

2
it follows by an induction argument that

the solution of (22) is given by

m2j = 1� ~m2j =
Qj�1(1)

Qj(1)
qj ; 1�m2j = ~m2j =

Qj+1(1)

Qj(1)
pj
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where the polynomials Qj(x) are de�ned in (20). Now (25) can be rewritten as

~pj�1~qj = qj�1pj
Qj�2(1)Qj+1(1)

Qj�1(1)Qj(1)
; ~p0~q1 =

Q2(1)

Q1(1)
p1 ; (26)

and putting ~p0 = 1 it follows that there is at least one solution of (26), namely

~pj =
Qj�1(1)

Qj(1)
qj ; ~p0 = 1 : (27)

Thus ~ is the spectral measure of ~Q0 with transition probabilities (27) (~rj = 0, ~qj = 1� ~pj)
and the assertion a] follows.

b] By the discussion in the proof of the converse part in a] we have to �nd all solutions of
(26). Now the right hand side of (26) is a chain sequence with minimal parameter sequence

~m2j = 1�m2j =
Qj+1(1)

Qj(1)
pj (j = 0; 1; 2; : : :)

(see Chihara [2]) and therefore the problem of solving (26) reduces to the problem of �nding
all parameter sequences of the given chain sequence f(1� ~m2j�2) ~m2jg

1
j=1. But this problem

is solved in [2] and therefore all solutions of (26) are obtained from ~q0(t) = t and

~qn(t) =
1 � tSn�2
1 � tSn�1

�
Qn+1(1)

Qn(1)
pn (n = 1; 2; 3; : : :)

where 0 � t � 1

S
(note that there is a typo in (3.8) of [2]). This proves assertion b].

We will conclude this Section with a discussion of the situation in Section 1 where P0

governs the random walk with transition probabilities rx = 0, p0 = 1, px = 1�qx. Observing
(20) it follows that Qk(1) = 1 (k � 0) and, by Theroem 5.3, a dual of P0 in the sense of (18)
is unique if and only if the dual ~P0 obtained from P0 by switching the px and qx for x � 1
is recurrent. By an application of a result in [7] we thus obtain the following result.

Corollary 5.4. Let P0 govern a re
ecting random walk (Xn) on the nonnegative integers
f0; 1; 2; � � �g started at X0 = 0 with one-step upward transition probabilities pi and one-step
downward transition probabilities qi where q0 = 0, and pi + qi = 1 for all i � 0. The dual of
P0 in the sense of (18) is unique if and only if the random walk governed by P0 is transient
or null recurrent.

Example 5.5. Let P0 govern the random walk with transition probabilities p0 = 1, px = p
(x � 1), then it is easy to see that

Sn =
1 � �n+1

1 � �
(n � 0) ; S�1 = 0

where � = p=q. If p � q we have S = 1 (the random walk is transient or null recurrent)
and there exists only one dual probability of P0 obtained by switching the px and qx (as we
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did in Section 1). If p < q (the random walk is positive recurrent) we have S = (1 � �)�1

and it follows that for every t 2 [0; 1� �] the probability ~Q
t

0 with transition probabilities

~pn(t) = 1�
1� �� t(1� �n�1)

1 � �� t(1� �n)
p ; ~p0(t) = 1 � t ; ~p1(t) = 1 �

p

1 � t

is a dual of P0. Note that the special choice t = (1 � �) gives the probability ~Q0 with
transition probailities ~p0 = p=q, ~px = p (x � 1) as a dual of P0 while the choice t = 0 gives
the dual probability ~P0 considered in Section 1 - 3.

6 Miscellaneous Remarks.

1. As an example where probabilities can be calculated much more easily on one side of
the identity (2) than on the other, �x 0 < p < 1, and let P0 govern the walk (Xn) with
transition probabilities

px =
px+1 + qx+1

px + qx
; qx = 1� px (x = 1; 2; � � �)

By Theorem 5.3 there exists a unique dual ~P0 of P0 [in the sense of (18)] which is obtained
by switching the transition probabilities px and qx for x � 1. Then for n = 0; 1; 2; � � �

~P0(T0 > 2n) = P0(X2n = 0) = (pq)n
 
2n

n

!
(28)

~P0(X2n = 0) = P0(T0 > 2n) = 1�
nX

m=1

(pq)m

2m� 1

 
2m

m

!
(29)

In each case the second equality follows from the fact that the P0 distribution of (Xn) is the
distribution of (jY1 + � � � + Ynj) for independent Yi with P (Yi = 1) = p, P (Yi = �1) = q.
This fact follows from the criterion of Rogers-Pitman [18] for a function of a Markov chain
to be Markov; or see Ross [19], Proposition 4.1.1. There does not seem to be any similar
representation for the ~P0 distribution of (Xn). So without exploiting the duality relation it
is not evident why there should be such simple formulae for the ~P0 probabilities. Due to the
representation in terms of (Yn), there is a fairly simple formula for n-step transition matrix
Pi(Xn = j).
2. While it does not seem obvious how to extend Wall's duality to birth-death processes in
continuous time, the expression of the duality in (5) allows passage to the limit to obtain a
duality relation for pairs of re
ecting di�usions on [0;1) obtained as weak limits of random
walks. Compare Siegmund [20] remark (e) on p. 923. It appears that apart from boundary
conditions, one obtains exactly the same pairs of dual processes in the limit from either
Siegmund's or Wall's duality. The simplest special case of the di�usion result is the following
fact about re
ecting BM with drift. Let P�

0
govern a BM (Xt; t � 0) on [0;1) with drift �

and instantaneous re
ection at 0. Let Lt = supfs � t : Xs = 0g. Then for all t > 0 the P�
0
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distribution of Lt is identical to the P��0 distribution of t� Lt. This can also be seen easily
from the well known representation of (Xt; t � 0) with distribution P�

0 as Xt = Bt �Mt

where (Bt; t � 0) is a BM with drift �, Mt = inf0�s�tBs, by a simple time reversal.
3. Continuing the previous remark, it seems clear that for di�usions the analog of (2) will
be a corresponding identity between the transition density p(0; 0; t) for one di�usion and the
right tail ~�(t;1) of the L�evy measure ~� of the inverse local time process at zero for the
dual di�usion. This duality is related to the question, studied by various authors, of what
are the possible L�evy measures � for the inverse local time of a di�usion process. See e.g.
Knight [12], K�uchler [13].
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Figure 1: Diagrams for n = 3
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