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Partitions �etiquet�ees fusionnantes suivant un processus
de Markov et un mod�ele g�en�etique o�u le positions
forment un continu et o�u il y a une in�nit�e de types

R�esum�e: Soit Z un processus droit Borelien dont les �etats forment un espace de Lusin E.
On peut, pour tout ensemble S �ni, associer �a Z un processus � de partitions fusionnantes
dont les composantes sont �etiquett�ees par des �el�ements deE, eux-mêmes soumis �a �evolution
�a la mani�ere de Z.

On montre que, sous une hypoth�ese faible de dualit�e pour Z, il y a un processus
de Feller X dont les �etats sont des fonctions sur E �a valeurs mesures de probabilit�e. Le
processus X a des \moments" d�e�nis par des esp�erances pour Z d'une fa�con d�ej�a sugg�er�ee
par des exemples divers de dualit�e de probl�emes de martingales entre des processus Markov
fusionnants et des syst�emes de particules repr�esentant les votes, des syst�emes de Fisher-
Wright entrelac�es et les di�usions de Fleming-Viot ainsi que les �equations di��erentielles
partielles stochastiques dont le bruit est de Fisher-Wright.

On examine quelques propri�et�es des trajectoires pour un cas sp�ecial o�u Z est un
processus stable sym�etrique d'indice �, 1 < � � 2, �a valeurs dans R. Entre autres choses,
on montre que pour t > 0, �x�e, le support essentiel de la fonction al�eatoire �a valeurs
mesures de probabilit�e Xt est presque sûrement un ensemble d�enombrable de masses de
Dirac.
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1. Introduction

A powerful tool for analysing a number of stochastic systems that are de�ned as

solutions to martingale problems is the notion of duality between two martingale problems

(cf. xII.3 of [10] or x4.4 of [6]). A particularly successful application of this idea is to be

found in the study of the voter model using duality with a system of coalescing random

walks (see Ch. V of [10] for a number of results obtained using duality and a comprehensive

bibliography).

Shiga [12] noted an analogous duality between systems of delayed coalescing Markov

chains and certain systems of interacting Fisher-Wright di�usions. The latter interact-

ing processes arise as di�usion limits for two-type genetics models with populations at

a countable set of discrete sites for which there is within site resampling and between

site migration. The form of the duality is that multivariate moments for the system of

di�usions can be represented as certain expectations for the delayed coalescing Markov

chains. Shiga's observation has been particularly useful in studying the phenomenon of

cluster formation in such models (see [7] or [3] for recent bibliographies covering papers in

this area). Shiga [13] also showed that the natural stochastic partial di�erential equation

analogue of such a system of interacting Fisher-Wright di�usions is dual in a similar way

to a system of delayed coalescing Markov processes.

The above two-type genetics models have in�nitely-many-types counterparts, and du-

ality for these has been investigated in [9] and [3]. Here the processes at each site are

Fleming-Viot di�usions that take values in the set of probability measures on the type-

space [0; 1], and once again the processes interact via a migratory drift given by the jump

rates of a Markov chain on the site-space. Now the dual process has values that are par-

titions of some �nite set, with each component of the partition labelled by a point in the

site-space. The labels evolve as a system of delayed coalescing Markov chains, and when

two labels coalesce the corresponding components of the partition are aggregated together

to form one component. Once again, the form of the duality is that moment-like expec-

tations for the Fleming-Viot di�usions can be represented as appropriate expectations for

the system of labelled partitions.

In all of the above instances, the duality did not play an explicit role in establishing

the existence of the process. Rather, existence was obtained using general Markov chain,

weak convergence or stochastic di�erential equation techniques. The duality �rst entered

in when establishing uniqueness of the solution to a martingale problem and deriving

properties of the process.
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In [7] the use of coalescing systems was more fundamental. There the authors con-

sidered a two-type genetics model with continuous site-space, within sites resampling, and

between sites migration. The state-space of this process is a suitable space of functions

from the site-space into [0; 1], with the value of the function at a given site being thought

of as the proportion of the \population" at that site that has one of the two types. The

process was constructed by explicitly de�ning a Feller semigroup that had its associated

\moments" expressed as expectations for a certain system of delayed coalescing Markov

processes. The existence of transition kernels was established using weak convergence ar-

guments beginning with a discrete site-space system of interacting Fisher-Wright di�usions

of the sort discussed above. However, the Feller, Chapman-Kolmogorov and strong conti-

nuity properties of the transition kernels were established directly from the description in

terms of delayed coalescing Markov processes.

It was shown in [7] that the particular class of continuous sites models considered there

have space-time rescaling limits that are again Feller processes with semigroups that have

similar explicit descriptions in terms of systems of (instantaneously) coalescing Markov

processes. Each of the limit processes has the interesting property of being somewhat like

a continuous sites \particle system": at any �xed time the value of process lies in a set

of f0; 1g - valued functions. One might expect this from the abovementioned fact that

the voter model particle system is dual to a system of instantaneously coalescing random

walks. Moreover, it should be the case (as pointed out in [7]) that the limit processes also

appear as rescaling limits of suitable long-range, voter-like models.

Our aim in this paper is to show that, subject to a weak duality condition (here

duality is used now in the sense of the general theory of Markov processes), any system of

coalescing Borel right processes gives rise to a Feller semigroup via the sort of prescription

that arose from duality considerations in [7].

Some of our argument is similar to that in [7]. One major di�erence is that, because

of the generality in which we are working, weak convergence arguments are no longer

available to establish the existence of transition kernels. Instead, we proceed analytically

and base the proof on the solution to the multidimensional Hausdor� moment problem.

This state of a�airs is somewhat similar to that which occurred in the development of the

theory of superprocesses, where existence proofs based on weak convergence ideas were

superseded by ones incorporating analytic characterisations of those functions that appear

as the Laplace functional of an in�nitely divisible random measure (cf. [8]).

Another signi�cant di�erence is that we work in the in�nitely-many-types setting.

The type-space in in�nitely-many-types models is usually taken to be the interval [0; 1].

From a modelling perspective, only the measure-theoretic properties of [0; 1] are relevant.
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In order to make our proofs more transparent, we use instead the Borel-isomorphic space

f0; 1gN. However, our results can easily be translated into ones for [0; 1].

The plan of the rest of the paper is as follows. In x2 we discuss the \dual" process

of coalescing partitions labelled by points in the site-space that evolve according to some

Markov process. In x3 we review some elementary ideas from the theory of vector measures

and introduce the space that will be the state-space of the process we are trying to con-

struct. This is a suitable space of functions from the site-space into the set of probability

measures on f0; 1gN. In x4 we state and prove our main theorem on the existence of a

Feller semigroup de�ned in terms of coalescing Markov labelled partitions. We examine the

special case of the general construction that arises when the labels come from a symmetric

�-stable process on R with 1 < � � 2 in x5, and prove some results about the clumping

behaviour of this model. Finally, we record in an Appendix a couple of facts about Lusin

spaces that we are unable to �nd in the literature.

2. Coalescing Markov labelled partitions

Given a �nite set S, let �S denote the set of partitions of S. That is, elements of

�S are subsets fA1; : : : ; ANg of P(S) (:= the power set of S) with the property thatS
iAi = S and Ai \ Aj = ; for i 6= j. Equivalently, we can think of �S as the set of

equivalence relations on S. We de�ne a partial order on �S by declaring that � � �0 if �0

is a re�nement of �, that is, if the components of � are obtained by aggregating together

one or more components of �0. Given � = fA1; : : : ; ANg 2 �S , put �(�) = N .

Fix another (possibly in�nite) set E. An E-labelled partition of S is a subset of

P(S)�E of the form f(A1; eA1 ); : : : ; (AN ; eAN )g, with fA1; : : : ; ANg 2 �S and eAi 6= eAj

for i 6= j. Given � = f(A1; eA1); : : : ; (AN ; eAN )g 2 �S, put �(�) = fA1; : : : ; ANg and

�(�) = (eA)A2�(�). Let �
S denote the set of E-labelled partitions of S.

Given � 2 �S and e = (eA)A2� 2 E� such that eA 6= eA0 for A 6= A0, put �(�; e) =

f(A; eA) : A 2 �g. That is, �(�; e) is the labelling of � with e.

Denote f1; : : : ; ng by S(n). Write �(n) and �(n) for �S and �S when S = S(n). Put

�
(n)
max = ff1g; � � � ; fngg 2 �(n); and for (e1; : : : ; en) 2 En such that ei 6= ej for i 6= j, put

�
(n)
max(e) = f(f1g; e1); : : : ; (fng; en)g 2 �(n).

Assume now that E is a Lusin space and that (Z;P z) is a Borel right process on E

with semigroup fPtgt�0 satisfying Pt1 = 1, t � 0, so that Z has in�nite lifetime. We wish

to de�ne an associated �S-valued Borel right process �S that has the following intuitive
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description. Let � 2 �S . The evolution of �S starting at � will be such that �(�S(t))

remains unchanged and �(�S(t)) evolves as a vector of independent copies of Z starting

at �(�) until immediately before two (or more) such labels coincide. At this time, the

components of the partition corresponding to the coincident labels are merged into one

component. This component is labelled with the common element of E. The evolution

then continues in the same way.

It is possible to give a rigorous de�nition of �S using a \concatenation of processes"

construction (cf. x14 of [11]). Alternatively, it is possible to build �S explicitly from N

independent copies of Z started at �(�) by proceeding along the lines of the construction in

[7]. Essentially, that latter construction builds the process of labels, and the corresponding

partitions can then be added on in a simple, deterministic manner. As either of these con-

structions is rather straightforward but involves the introduction of a substantial amount

of notation, we will omit the details.

We will denote the law of �S starting at � as P�
S . When S = S(n) we write �(n) and

P�
(n) for �

S and P�
S .

Given two �nite sets S and T and an injection � : S ! T , we can de�ne an induced

map R� : �T ! �S as follows. If � 2 �T is of the form f(A1; e1); : : : ; (An; en)g, then

R�� = f(��1(Ai); ei) : ��1(Ai) 6= ;g

The following observation is immediate from the de�nition.

Lemma (2.1). If S, T , �, and R� are as above, then the law of R� � �T under P�
T is that

of �S under P
R��
S .

Assumption. From now on, we will suppose that there is another Borel right process Ẑ

with semigroup fP̂tgt�0 and a di�use, Radon measure m on (E; E) such that Z and Ẑ are

in weak duality with respect to m; that is, for all nonnegative Borel functions on f; g on E

we have
R
m(de)Ptf(e)g(e) =

R
m(de) f(e)P̂tg(e).
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3. The state-space.

We need some elementary ideas from the theory of vector measures. A good reference

is [4].

Let (E; E;m) be the measure space introduced in x2, and let X be a Banach space with

norm k�k. We say that a function � : E ! X is simple if � =
Pk

i=1 xi1Ei for x1; : : : ; xk 2 X

and E1; : : : ; Ek 2 E. We say that a function � : E ! X is m-measurable if there exists

a sequence f�ngn2N of simple functions such that limn!1 k�n(e) � �(e)k = 0 for m-a.e.

e 2 E. The de�nitions in [4] are given in the case when m is �nite, but they make sense

in this more general setting. Also, much of the resulting theory holds unchanged, and we

will apply without comment results from [4] that are stated for �nite m but hold (with

trivial modi�cations to the proof) for our Radon m (or, indeed, for an arbitrary �-�nite

measure).

Write K for the compact, metrisable coin-tossing space f0; 1gN equipped with the

product topology, and let K denote the corresponding Borel �-�eld. Equivalently, K is the

�-�eld generated by the cylinder sets.

Write M for the Banach space of �nite signed measures on (K;K) equipped with

the total variation norm k � kM , and let M1 denote the closed subset of M consisting of

probability measures.

Let L1(m;M) denote the space of (equivalence classes of) m-measurable maps � :

E !M such that ess supfk�(e)kM : e 2 Eg <1, and equip L1(m;M) with the obvious

norm to make it a Banach space. Let � denote the closed subspace of L1(m;M) consisting

of (equivalence classes of) maps with values in M1.

Write C for the Banach space of continuous functions on K equipped with the usual

supremum norm k � kC . Let L1(m;C), denote the Banach space of (equivalence classes

of) m-measurable maps � : E ! C such that
R
m(de) k�(e)kC <1, and equip L1(m;C)

with the obvious norm to make it a Banach space. Then L1(m;C) is the Banach space of

Bochner integrable C-valued functions on E (cf. Theorem II.2.2 of [4]).

From the discussion at the beginning of xIV.1 in [4] and the fact that M is isometric

to the dual space of C under the pairing (�; y) 7! h�; yi =
R
�(dk) y(k), we see that

L1(m;M) is isometric to a closed subspace of the dual of L1(m;C) under the pairing

(�; x) 7!
R
m(de) h�(e); x(e)i.

It is not true that L1(m;M) is isometric to the whole of the dual of L1(m;C). From

Theorem IV.1.1 of [4] this would be the case if and only if M had the Radon-Nikodym

property with respect to m. If � is coin-tossing measure on K, then M contains L1(�) as
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a closed, separable subspace. By the remarks following De�nition III.1.3 of [4] we see that

L1(�) fails to have the Radon-Nikodym property, and hence, by Theorem III.3.2 of [4], the

same is true of M .

From Corollary V.4.3 and Theorem V.5.1 of [5] we see that, as L1(m;C) is separable,

� equipped with the relative weak� topology is a compact, metrisable space.

For a �nite set T , let MT (respectively, CT ) denote the Banach space of �nite signed

measures (respectively, continuous functions) on the Cartesian product KT with the usual

norm k � kMT (respectively, k � kCT ). With a slight abuse of notation, write h � ; � i for the

pairing between these two spaces. Following our usual convention, we will write M (n) and

C(n) when T = f1; : : : ; ng.

Given � 2 L1(m
T ; CT ), de�ne IT ( � ;�) 2 C(�) by

IT (�;�) =

Z
m
T (de) h

O
t2T

�(et); �(e)i:

When T = f1; : : : ; ng we write In( � ;�). Of course, IT ( � ;�) is always of the form In( � ;�0)

for n = jT j and a suitable �0, but this more general notation will be useful in what follows.

Lemma (3.1). The linear subspace spanned by the constant functions and functions of

the form In( � ;�) with � =  
 �,  2 L1(m
n) \ C(En) and � 2 C(n) is dense in C(�).

Proof. The subspace in question is an algebra that contains the constants. The result

will follow from the Stone-Weierstrass theorem if we can show that the subspace separates

points of �. However, by de�nition of L1(m;C) and Lemma (A.2) in the Appendix,

functions of the form � =
Pk

i=1  i
�i, with  i 2 L
1(m)\C(E) and �i 2 C, are dense in

L1(m;C), and hence the set of linear functions I1( � ;�) for � of this type separates points.

ut

4. Statement and proof of the main result

In order to complete our preparation, we need a little more notation. Given a �nite set

S, partitions �; �0 2 �S such that � � �0, and k = (kA)A2� 2 K
�, de�ne (k;�0; �) 2 K�0

by setting, for each A0 2 �0 such that A0 � A 2 �, (k;�0; �)A0 = kA. For example, if

S = S(4) = f1; 2; 3; 4g, � = ff1; 3g; f2; 4gg, and �0 = �
(4)
max = ff1g; f2g; f3g; f4gg, then
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((kf1;3g; kf2;4g);�
0; �) = (k0f1g; k

0
f2g; k

0
f3g; k

0
f4g) where k0f1g = k0f3g = kf1;3g and k0f2g =

k0f4g = kf2;4g.

Further, for �; �0 2 �S with �(�) � �(�0) and � 2 �, de�ne the probabil-

ity measure �(�;�0; �) on (K�0

;K�0

) to be the push-forward of the product measureN
(A;e)2��(e) under the map ( � ;�(�0); �(�)). For example, if S = S(4) = f1; 2; 3; 4g,

�(�) = ff1; 3g; f2; 4gg, and �(�0) = �
(4)
max = ff1g; f2g; f3g; f4gg, then for a bounded Borel

function (k0f1g; k
0
f2g; k

0
f3g; k

0
f4g) 7! F (k0f1g; k

0
f2g; k

0
f3g; k

0
f4g) we have

�(�;�0; �)(F ) =

Z
(�(ef1;3g) 
 �(ef2;4g))(dkf1;3g; dkf2;4g)F (kf1;3g; kf2;4g; kf1;3g; kf2;4g):

Given a �nite set S, � 2 �S , t � 0, and � 2 �, de�ne the probability measure

A 7! q(A;S; �; t; �) on (K�;K�) to be A 7! P�
S [�(�;�; �

S(t))(A)].

Recall that a probability kernel P on � is Feller if PF 2 C(�) when F 2 C(�), and

a Markov semigroup fQtgt�0 on � is Feller if each kernel Qt is Feller in the above sense

and limt#0QtF = F in C(�) for F 2 C(�) (that is, fQtgt�0 is strongly continuous).

Theorem (4.1). There exists a unique, Feller, Markov semigroup fQtgt�0 on � such that

for all � 2 L1(m
n; C(n)), n 2 N, we have

Z
Qt(�; d�)In(�;�) =

Z
m
n(de) q(�(e)(�);S(n); �(n)max(e); t; �); (4:1)

where the integrand is interpreted as 0 on the null set of (e1; : : : ; en) such that ei = ej for

some pair (i; j). Consequently, there is a Hunt process, (X;Px), with state-space � and

transition semigroup fQtgt�0.

Proof. We break the proof into a number of steps that we identify as we proceed.

(i) Well-de�nedness. We need to check that the right-hand side of (4.1) doesn't depend

on the choice of representative for the equivalence class of �. For this we need to make a

few observations.

It follows from the duality hypothesis that if  2 L1(m
�) and D is a m
�-null Borel

subset of E�, then

Z
m
�(de) (e)(

O
A2�

Pt(eA; �))(D) =

Z
m
�(de) 1D(e)(

O
A2�

P̂t(eA; �))( ) = 0;
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and hence the �nite signed measure
R
m
�(de) (e)

N
A2� Pt(eA; �) is absolutely continu-

ous with respect to m
�. Therefore, by de�nition of �S , if �; �0 2 �S with � � �0 and

 2 L1(m
�0

), then the �nite signed measureZ
m
�0

(de0) (e0)P
�(�0;e0)
S f�(�S(t)) 2 de; �(�S(t)) = �g

is absolutely continuous with respect to m
� (recall that �(�;0 e0) is the labelling of the

partition �0 with the vector e0).

Denote the Radon-Nikodym derivative of this latter measure by �t(�0; �) . Note that

�t(�0; �) : L1(m
�0

)! L1(m
�) is a bounded linear operator with norm at most 1.

Thus, for � =  
 �, where  2 L1(m
n) and � 2 C(n), we haveZ
m
n(de) q(�(e)(�);S(n); �(n)max(e); t; �)

=
X

�2�(n)

I�(�; (�t(�
(n)
max; �) ) 
 (� � ( � ;�(n)max; �)): (4:2)

Consider an arbitrary � 2 L1(m
n; C(n)). De�ne ~ = k�kC(n) 2 L1(m
n), and put
~� = ~ 
 1 2 L1(m
n; C(n)). For any �; �0 2 � we have, by (4.2), that

j

Z
m
n(de) q(�(e)(�);S(n); �(n)max(e); t; �) �

Z
m
n(de) q(�(e)(�);S(n); �(n)max(e); t; �

0)j

�

Z
m
n(de) q( ~�(e)(�);S(n); �(n)max(e); t; j� � �0j)

=
X

�2�(n)

I�(j�� �0j; (�t(�
(n)
max; �)

~ ) 
 1):

(Here, of course, j� � �0j is typically not a member of �, and we are extending in the

obvious way the functions q and I� de�ned on � to all of L1(m;M).) In particular, if �

and �0 both belong to the same equivalence class, then the rightmost member above is 0,

as required.

We remark at this point that it can be the case that two di�erent functions � 2

L1(m
n; C(n)) and �0 2 L1(m
n0

; C(n0)), n; n0 2 N, are such that In( � ;�) = In0( � ;�0).

Hence, there appears to be a potential ambiguity in (4.1): the left hand side should be the

same for all choices of n and � that lead to the same element of C(�), whereas it appears

that, a priori, the right hand side can depend on the particular choice of n and �. We

show below in part (ii) of the proof that this ambiguity is not present.

(ii) Existence of measures. We next show that for each � 2 � and t � 0 there exists a

Borel probability measure Qt(�; �) on � that satis�es (4.1). It su�ces to show that on
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some complete probability space (
;F ;P) there is a �-valued random variable V such that

for all � 2 L1(m
`; C(`)), ` 2 N, we have

P[

Z
m
`(de)hV (e)
`; �(e)i] =

Z
m
`(de) q(�(e)(�);S(`); �(`)max(e); t; �); (4:3)

because then we can de�ne Qt(�; �) to be the distribution of V . We note that (4:3) will

certainly be enough to establish that the possible ambiguity mentioned in part (i) does

not occur.

Let B be a countable ring of sets of �nite m-measure that generates the �-�eld E, and

G be the �eld of sets generated by the cylinder sets in K. We begin with the claim that

on some complete probability space (
;F ;P) it is possible to construct a family of random

variables fYB;GgB2B;G2G such that YB;G takes values in [0;m(B)] for all B 2 B, G 2 G,

and

P[
Ỳ
i=1

YBi;Gi
] =

Z
m
`(de)

Ò
i=1

1Bi(e)q(
Ỳ
i=1

Gi;S
(`); �(`)max(e); t; �) (4:4)

for B1; : : : ; B` 2 B and G1; : : : ; G` 2 G.

In order to establish (4.4), let (D1;H1); (D2;H2); : : : be an enumeration of B � G

(note that it is not necessarily the case that both Di 6= Dj and Hi 6= Hj for i 6= j). By

Kolmogorov's extension theorem, it su�ces for (4.4) to show that for each k 2 N there

exist random variables W1; : : : ;Wk 2 [0; 1] such that

P[
kY
i=1

Wni
i ] =

Z
m
jnj(de)

kO
i=1

(
1Di

m(Di)
)
ni (e)q(

kY
i=1

Hni
i ;S(jnj); �(jnj)max (e); t; �)

:= F (n1; : : : ; nk);

where n = (n1; : : : ; nk) 2 N
k
0 and jnj := n1 + � � �+ nk.

By the solution of the multidimensional Hausdor� moment problem (cf. Proposition

4.6.11 of [1]), we need to check for all n; q 2 Nk0 that

X
0�p�n

(�1)jpj
�
n

p

�
F (q + p) � 0; (4:5)

where � is the usual coordinatewise partial order on Nk0 and
�
n
p

�
:=
Q
i

�
ni
pi

�
.

Put �E =
Qk
i=1E

ni+qi . From Lemma (2.1) the left hand side of (4.5) is just

Z
�E

kO
i=1

m
(ni+qi)(de)
kO
i=1

(
1Di

m(Di)
)
(ni+qi)(e)q(J ;S; �(e); t; �);
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where

S =
k[
i=1

f(i; 1); : : : ; (i; ni + qi)g;

�(e) =
k[
i=1

f(f(i; 1)g; ei;1); : : : ; (f(i; ni + qi)g; ei;ni+qi)g;

and

J =
kY
i=1

(Ji;1 � � � � � Ji;ni+qi);

with

Ji;j =

�
Hi; if 1 � j � qi,
KnHi; if qi + 1 � j � ni + qi,

and so (4.5) certainly holds.

If B;D 2 B and G;H 2 G, with B \D = ; and G \H = ;, then computations using

(4.4) show that

P[(YB[D;G � YB;G � YD;G)
2] = 0;

P[(YB;G[H � YB;G � YB;H)
2] = 0;

and

P[(YB;K �m(B))2] = 0:

We may thus suppose that the construction of fYB;GgB2B;G2G is such that the equalities

YB[D;G = YB;G + YD;G;

YB;G[H = YB;G + YB;H; (4:6)

and

YB;K =m(B)

hold identically.

For n 2 N, let Kn denote the sub-�-�eld of K generated by cylinder sets of the form

A1�� � ��An�f0; 1g�f0; 1g�� � �. We can identify Kn in the obvious way with the �-�eld

of all subsets of f0; 1gn. Write M(f0; 1gn) and C(f0; 1gn)), respectively, for the Banach

spaces of �nite signed measures and continuous functions on f0; 1gn. Of course,M(f0; 1gn)

is isometric to `1(R
2n) and C(f0; 1gn) is isometric to `1(R2n). Write M1(f0; 1gn) for the

subset of M(f0; 1gn) consisting of probability measures.

We see from (4.6) that for each ! 2 
 the map 1B
1G ! YB;G(!), B 2 B,G 2 Kn, ex-

tends to a unique, positivity preserving, linear functional with norm 1 on L1(m;C(f0; 1gn))

12



(where we again stress that we are identifying sets in Kn with subsets of f0; 1gn). Further-

more, this functional assigns the value m(B) to the function 1B
1, B 2 B. Consequently,

for each ! 2 
 there is an element Un(!) of L1(m;M(f0; 1gn)) = L1(m;C(f0; 1gn))�

such that
R
m(de) 1B (e)(Un(e)(!))(G) = YB;G(!) for B 2 B and G 2 Kn, and Un(!) has

a representative that takes values in M1(f0; 1gn). A monotone class argument shows that

Un is a L1(m;M(f0; 1gn)) - valued random variable if we equip L1(m;M(f0; 1gn)) with

the Borel �-�eld arising from the weak� topology.

The sequence fUngn2N is consistent in the sense that, for m�P-a.e. (e; !) 2 E and

all n0 < n, if we we compose the natural projection fromM(f0; 1gn) ontoM(f0; 1gn
0

) with

Un(e)(!), then we obtain Un0(e)(!).

For n 2 N, e 2 E and ! 2 
, de�ne Vn(e)(!) 2M1 by setting

Vn(e)(!)(
1Y
i=1

Ai) = (Un(e)(!))(
nY
i=1

Ai) �(
1Y

i=n+1

Ai):

It is clear that Vn is a �-valued random variable.

By the consistency property noted above, form�P-a.e. (e; !) 2 E�
 the sequence of

probability measures fVn(e)(!)gn2N converges in the weak� topology onM1 as n!1 to

the unique probability measure that coincides with Un(e)(!) on Kn. Hence, by dominated

convergence, for P-a.e. ! 2 
 and every and � 2 L1(m;C) we have that the sequence

f
R
m(de)hVn(e)(!); �(e)ign2N is convergent. Therefore, the sequence fVn(!)gn2N con-

verges in � to a point V (!). In particular, V is a �-valued random variable. Moreover,

for P-a.e. ! 2 
 the function V (!) has the property that for m-a.e. e 2 E the value

V (e)(!) 2M1 is the unique probability measure that coincides with Un(e)(!) on Kn.

With B1; : : : ; B` 2 B and G1; : : : ; G` 2 G as above, set  =
N`

i=1 1Bi 2 L
1(m
`) and

� =
N`

i=1 1Gi
2 C(`). By construction, we have

P[

Z
m
`(de)hV (e)
`;  
 �(e)i] =

Z
m
`(de) (e)q(�;S(`); �(`)max(e); t; �)

Linear combinations of functions of the same form as  (respectively, �) are dense in

L1(m
`) (respectively, C(`)), and so (4.3) holds, as required.

(iii) Uniqueness. It is immediate from Lemma (3.1) and a monotone class argument that

for each � 2 � and t � 0 there is at most one probability measure Qt(�; �) satisfying (4.1).

(iv) Feller property. We now show that if F 2 C(�), then � 7!
R
Qt(�; d�)F (�) is also an

element of C(�). By Lemma (3.1), it su�ces to check the special case of F = In( � ;�),

where � =  
 �, with  2 L1(m
n) and � 2 C(n), but this is immediate from (4.2).
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One consequence of the Feller property is, of course, that � 7!
R
Qt(�; d�)G(�) is

Borel for G bounded and Borel; and so Qt(�; �) is a kernel on � for each t � 0.

(v) Semigroup property. Noting Lemma (3.1) and (4.2), the semigroup property of the

kernels fQtgt�0 follows from the two observations that for s; t � 0 and � � �0 � �00 2 �(n)

we have

( � ;�00; �0) � ( � ;�0; �) = ( � ;�00; �)

and, by the Markov property of �(n),

X
��~���00

�s(�
00; ~�)�t(~�; �) = �s+t(�

00; �):

(vi) Strong continuity. Given what we have already shown, in order to show that

limt#0QtF = F in C(�) for F 2 C(�), it su�ces by standard semigroup arguments (cf.

the Remark after Theorem I.9.4 in [2]) to show that limt#0QtF (�) = F (�) for each � 2 �.

By Lemma (3.1), it further su�ces to consider the case F = In( � ;�), where � =  
 �

with  2 L1(m
n) \ C(En), � 2 C(n), and both  and � are nonnegative.

By de�nition of �(n), the total variation distance between the distribution of �(n)(t)

under P
�(n)max(e)

(n) and the push-forward of the probability measure
Nn

i=1 Pt(ei; �) by the

function �(�
(n)
max; �) is bounded above by P

�(n)max(e)

(n) f�(�(n)(t)) 6= �
(n)
maxg (that is, by the

probability that a coalescence has not occurred by time t). This probability converges to

0 as t # 0.

We are thus left with showing that

lim
t#0

Z
m
n(de) (e)

Z nO
i=1

Pt(ei; dfi)G(f) =

Z
m
n(de) (e)G(e); (4:7)

where we put G(e) = h
N

i �(ei); �i. By the duality hypothesis,

Z
m
n(de) (e)

Z nO
i=1

Pt(ei; dfi)G(f) =

Z
m
n(de)G(e)

Z nO
i=1

P̂t(ei; dfi) (f);

and (4.7) follows.

(vii) Existence of a Hunt process. The existence of a Hunt process with transition semi-

group fQtgt�0 is immediate from general theory (see, for example, Theorem I.9.4 of [2]).

ut
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Remarks. (a) An inspection of the above proof shows that a similar result will hold

if the processes �S are replaced in the de�nition of Qt by certain other Markov systems

of coalescing labelled partitions. This will be the case provided that the new systems

have the following properties. Firstly, the consistency condition Lemma (2.1) should hold.

Secondly, the set of the labels at a �xed time should have the distribution of a subset

of a collection of independent copies of Z (so that an analogue of (4.2) holds). Finally,

the total variation distance between the distribution of the labels at time t and that of

a collection of independent copies of Z should converge to 0 as t # 0 (cf. the proof of

strong continuity). For example, one could have the components of the partition coalesce

at a rate proportional to a \collision local time" between the associated labels in a manner

analogous to that considered in [7].

(b) Fix k 2 N and let G1; : : : ; Gk be a partition of K into non-empty sets that are both

open and closed (that is, sets with a continuous indicator function). Such a partition exists

for all k. Let � = f(p1; : : : ; pk) 2 [0; 1]k : p1+ � � �+pk = 1g denote the standard k-simplex.

De�ne L :M1 ! � by L� = (�(G1); : : : ; �(Gk)) and de�ne a process f ~Xtgt�0 with state-

space the subset of L1(m;Rk) consisting of �-valued functions by ~Xt(e) = L(Xt(e)).

It is easy to verify Dynkin's well-known su�cient condition for a function of a Markov

process to be Markov and conclude that ~X is a Feller process. The process ~X is the k-

types analogue of our in�nitely-many-types model. In particular, when k = 2 the process

f �Xtgt�0 with state-space the subset of L1(m) consisting of [0; 1]-valued functions de�ned

by �Xt(e) = ( ~Xt(e))1 is also a Feller process. The \cluster process" of [7] is a particular

instance of this latter construction.

Open Problem. When Z belongs to the class of L�evy processes considered in [7], the

sort of weak convergence arguments used there in the two-type case show that the process

X has continuous sample-paths. The same result should hold (for similar reasons) when

Z is a nice enough process on R. It would be interesting to know general necessary and

su�cient conditions on Z for the path continuity of X.

5. The stable case.

Let ((Z1; Z2); P (z1;z2)) be the Cartesian product of the right process (Z;P z) with

itself. It follows from a variance calculation using (4.1) that the Hunt process X evolves
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deterministically if and only if

m
mf(z1; z2) 2 E
2 : P (z1;z2)f9 t � 0 : Z1(t) = Z2(t)g 6= 0g = 0: (5:1)

When (5.1) holds, for � 2 � we have P�-a.s. that Xt = �t for all t � 0, where �t 2 � is

the unique point that satis�es, for  2 L1(m) and � 2 C, I1(�t; 
 �) = I1(�; t 
 �),

with  t the Radon-Nikodym derivative (
R
m(de) (e)Pt(e; df))=m(df).

A particularly interesting example of a non-deterministic evolution is the case when

Z is a symmetric stable process on R with index 1 < � � 2. (Of course, Z is in weak

duality to itself under m = Lebesgue measure.) For the remainder of this section we will

consider this special case. It is not di�cult to check using the scaling properties of Z and

(4.1) that for c > 0 the law of the process fXc�t(c �)gt�0 under P
� coincides with the law

of fXtgt�0 under P
�(c �) (cf. the proof of Proposition 5 in [7]). In particular, if � = 1
 �,

� 2M1, then the laws of fXc�t(c �)gt�0 and fXtgt�0 under P
� coincide.

The group of translations on R induces a group of shift maps f�xgx2R on � by

(�x�)(e) = �(e+x). Suppose that M is a probability measure on � that is stationary and

ergodic with respect to this group of shifts. An argument using the above scaling relations

and the L2 ergodic theorem shows that as c ! 1 the law of fXc�t(c �)gt�0 under PM

converges to the law of fXtgt�0 under P
1
�, where � 2M1 is de�ned by

Z
M(d�)I1(�; 
 �) = I1(1 
 �; 
 �)

for  2 L1(m) and � 2 C (cf. the proof of Theorem 6(i) in [7]).

In genetics terminology, the following Proposition (5.1) states that, at a given time,

m-a.e. site has a population that is purely one of a countable set of types.

On the other hand, ifM is as above and � is di�use, then it follows from Lemma (5.2)

below and the pointwise ergodic theorem that the sequence of random probability measures

fN�1
R
[�N=2;N=2]

m(de)Xt(e)gN2N converges PM-a.s. to � in the weak� topology on M1,

and so globally no particular type is present with positive density.

Proposition (5.1). For � 2 � and t > 0 �xed, P�-a.s. the probability measure Xt(e) is

a point mass for m-a.e. e 2 R. Moreover, P�-a.s. there exists a countable set S � K such

that for m-a.e. e 2 R, Xt(e) = �k for some k 2 S.

Proof. Consider the �rst claim. Let G(2) be the countable �eld of subsets of K2 generated

by sets of the form G1 �G2, where G1 and G2 are cylinder sets in K. For G 2 G(2) put
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�G = 1G 2 C(2), and de�ne ��G 2 C by ��G(k) = �G(k; k). Observe that � 2M1 is a point

mass if and only if h� 
 �; �Gi = h�; ��Gi for all G 2 G(2).

Let B be a countable ring of sets of �nite m-measure that generates the Borel �-�eld

on R. ForB 2 B and � > 0, de�ne  �B 2 L1(m
2) by  �B(x; y) = (2�)�11fjx�yj � �g1B(y).

Observe that

lim
z1!z2

P (z1;z2)f9 0 � s � t : Z1(s) = Z2(s)g = 1:

It follows from (4.1) that

lim
�#0
P
�[I2(Xt; 

�
B 
 �G)

2] = lim
�#0
P
�[I4(Xt; ( 

�
B 
 �G)


2)]

= P�[I2(Xt; (1B 
 ��G)

2)];

lim
�#0
P
�[I2(Xt; 

�
B 
 �G)I1(Xt; 1B 
 ��G)] = lim

�#0
P
�[I3(Xt; ( 

�
B 
 �G)
 (1B 
 ��G))]

= P�[I2(Xt; (1B 
 ��G)

2)];

and, of course,

P
�[I1(Xt; 1B 
 ��G)

2] = P�[I2(Xt; (1B 
 ��G)

2)]:

Thus,

lim
�#0
P
�[(I2(Xt; 

�
B 
 �G)� I1(Xt; 1B 
 ��G))

2] = 0:

Note also that P�-a.s.

lim
�#0

I2(Xt; 
�
B 
 �G) =

Z
B

m(de) hXt(e)

2; �Gi

by the Lebesgue di�erentiation theorem. By de�nition,

I1(Xt; 1B 
 ��G) =

Z
B

m(de) hXt(e); ��Gi:

Therefore, P�-a.s. for m-a.e. e 2 R we have

hXt(e) 
Xt(e); �Gi = hXt(e); ��Gi;

for all G 2 G(2), as required.

Now consider the second claim. By the Pettis measurability theorem (see Theorem

II.1.2 of [4]), there exists a (random) m-null set N � R such that the set Xt(RnN) is

separable in the norm (that is, total variation) topology on M . A set of point masses is

separable in the total variation topology if and only if it is countable, and the result follows

17



from the �rst claim.

ut

Open Problem. It follows from Fubini's theorem that the behaviour described in Propo-

sition (5.1) for a �xed time t > 0 occurs P�-a.s. at set of times t > 0 with full Lebesgue

measure. It is natural to inquire if P�-a.s. the behaviour occurs at all times t > 0.

Lemma (5.2). If M is a stationary, ergodic probability measure on �, then so is MQt

for each t � 0.

Proof. Let f�xgx2R be the group of operators on L1(m
n; C(n)) de�ned by

(�x�)(e1; : : : ; en) = (e1 + x; : : : ; en + x):

It follows from (4.1) that

QtIn( � ;��x�) = Qt(In( � ;�) � �x) = (QtIn( � ;�)) � �x (5:2)

for all � 2 L1(m
n; C(n)). Thus, by Lemma (3.1) and a monotone class argument, Qt(F �

�x) = (QtF ) � �x for all bounded Borel functions F , and the stationarity of MQt follows

from the stationarity of M.

Turning to the ergodicity claim, we need to show for all functions F;F 0 2 L2(MQt)

that

lim
N!1

N�1

Z
[0;N ]

m(dx)MQt((F � �x)F
0) = (MQtF )(MQtF

0):

As the continuous functions are dense in L2(MQt), it su�ces by Lemma (3.1) to take F =

In( � ;�) and F 0 = In0( � ;�0) for � 2 L1(m
n; C(n)) and �0 2 L1(m
n0

; C(n0)), n; n0 2 N.

Note that for each z2 2 R

lim
jz1j!1

P (z1;z2)f9 0 � s � t : Z1(s) = Z2(s)g = 0: (5:3)

As

Qt((In( � ;�) � �x)In0( � ;�0)) = QtIn+n0( � ; (��x�)
 �0);

it follows from (4.1) and (5.3) that for each � 2 �

lim
x!1

j(QtIn+n0( � ; (��x�)
 �0))(�) � (QtIn( � ;��x�))(�)(QtIn0( � ;�0))(�)j = 0:
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The result now follows from (5.2) and the ergodicity of M.

ut

Appendix: Lusin spaces

Lemma (A.1). Suppose that m is a Radon measure on a Lusin space E. There exists a

bounded, continuous, strictly positive function f such that
R
m(de) f(e) <1.

Proof. By de�nition, each point x 2 E has an open neighbourhood Vx such that

m(Vx) < 1. As E is a separable metric space, Lindel�of's theorem implies that there

exists a countable subcollection of fVxgx2E, say fWigi2N, such that E =
S
iWi. The

function 1Wi
is lower semicontinuous and so there exists an increasing sequence of con-

tinuous, nonnegative functions ffijgj2N such that 1Wi
= supj fij (cf. the remark at

the beginning of xA2 of [11]). It su�ces to take f =
P

i;j cijfij , where cij > 0 andP
i;j cij(1 _

R
m(de) fij (e)) <1.

ut

Lemma (A.2). Suppose that m is a Radon measure on a Lusin space E. The continuous

integrable functions are dense in L1(m).

Proof. Let f be the function guaranteed by Lemma (A.1). Consider g 2 L1(m). As

limn!1 k((g ^ nf) _ (�nf)) � gk1 = 0, it su�ces to prove that (g ^ nf) _ (�nf) is the

limit in L1(m) of a sequence of continuous, integrable functions for each n 2 N. Any

bounded, Borel function is a limit in m-measure of a sequence of bounded, continuous

functions (for example, by a monotone class theorem such as Theorem A0.6 of [11]). Let

fhkgk2N be a sequence of bounded, continuous functions that converges in m-measure to

(g^nf)_ (�nf). Then limk k((hk ^nf)_ (�nf))� ((g ^nf)_ (�nf))k1 = 0, as required.

ut
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