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Abstract

We study a sieve bootstrap procedure for time series with a deterministic trend.
The sieve for constructing the bootstrap is based on autoregressive approximation.
Given time series data, one would �rst use a preliminary estimate of the trend of the
underlying time series and then approximate the noise process by a large autoregressive
model of increasing order as the sample size grows. The bootstrap scheme is based on
resampling estimated innovations of �tted autoregressive models.

We show the validity of such sieve bootstrap approximations for the limiting dis-
tribution of linear trend estimators, such as general regression predictors or kernel
smoothers. This bootstrap scheme can then be used to construct simultaneous con�-
dence intervals for the trend, where the simultaneity can be achieved over a range of
points which can be chosen by the user.

The time series context is substantially di�erent from the independent set-up:
methods from the independent, adapted to the dependent case, seem to loose much
of their accuracy. Our resampling procedure yields satisfactory results in a simulation
study for �nite sample sizes.
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1 Introduction

We are considering the problem of making con�dence statements for a trend in a time
series. More precisely, we consider the model Yt = s(t) + Zt; t 2 ZZ, where fs(t)gt2ZZ is
a deterministic trend (or signal) and fZtgt2ZZ a stationary noise with mean zero. Various
estimators, such as least squares in a parametric trend model or nonparametric smoothers,
are known for recovering such trends, for constructing con�dence intervals one usually
relies on asymptotic normal theory.

In the independent set-up, where the noise is white, several researchers proposed boot-
strap methods to construct more reliable interval estimators, cf. Freedman (1981, 1984),
Bickel and Freedman (1983), Wu (1986), H�ardle and Bowman (1988), Hall (1989, 1992),
H�ardle and Marron (1991). There are several reasons for this. The bootstrap, when used
correctly, exhibits a second order property and hence would usually yield a better cover-
age probability for �nite sample size. The bootstrap is able to correct for bias (for biased
estimation procedures such as smoothers), cf. H�ardle and Marron (1991), and it has the
potential to yield simultaneous con�dence bands, cf. H�ardle and Marron (1991).

In the time series context, things become inherently more complex. An estimate for
the asymptotic variance in a normal approximation for a trend estimator typically involves
an estimate of the noise spectral density, often at frequency zero. It is exactly here, where
the di�erence between independence and dependence becomes crucial. In the independent
case a normal approximation requires only estimation of the variance of an observation,
for this one can use

p
n-consistent estimators which are based directly on the observed

values. However, for estimating the spectral density of the underlying noise process thep
n-consistency is lost, and one seems to be forced to use estimated residuals and. This

methodological di�erence is found to be serious enough so that methods, which work well
in the independent set-up, cf. Eubank and Speckman (1993), break down when adapted
to the time series case.

Our approach relies on a bootstrap procedure which does not rely on an explicit es-
timate for the spectral density of the noise process. Unfortunately, there is not such a
unique bootstrap procedure for time series as Efron's (1979) bootstrap for the indepen-
dent set-up. A procedure that works for the rich sub-class of linear stationary processes
Zt =

P1
j=0  j"t�j which can be inverted and represented as

P1
j=0 �jZt�j = "t, f"tgt2ZZ

being an i.i.d. sequence with mean zero, is based on bootstrapping autoregressive pro-
cesses of order in�nity (AR(1)), cf. Kreiss (1988), B�uhlmann (1995b). Given data, the
idea is to select an autoregressive order, increasing with the sample size, �t an autore-
gressive model and use Efron's bootstrap on estimated residuals. In the limit for sample
size n tending to in�nity, we would �t an AR(1). Think of this as an approximation
with an increasing family of parametric models, this then explains the terminology `sieve
bootstrap', cf. B�uhlmann (1995b). This approach has the advantage that no particular
�nite parameter model for the noise process is assumed. It is shown in B�uhlmann (1995b)
that for many linear processes, a sieve bootstrap for AR(1) models has generally a better
performance than some nonparametric block-based bootstrap technique as proposed by
K�unsch (1989).

We extend here the sieve bootstrap for stationary AR(1) processes to non-stationary
time series with a deterministic trend and an AR(1) noise process. We will argue, also by
results from a simulation study, that the sieve bootstrap is superior over a normal approx-
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imation or over an extreme value approximation for constructing simultaneous con�dence
intervals for the underlying trend, and we will prove how bias in kernel smoothing can be
corrected in an automatic way by the sieve bootstrap. Our extension is a new contribution
in model free resampling for non-stationary time series and can serve as a new tool in time
series analysis.

The article is organized as follows. In section 2 we describe our bootstrap scheme, in
section 3 we give asymptotic results for bootstrapping parametric linear trend estimators
as well as for nonparametric smoothers, in section 4 we present some alternatives, which
all su�er from the fact that the spectral density of the noise process is estimated via
estimated residuals, in section 5 we show results from a simulation study and in section 6
we give some concluding remarks. The theoretical arguments and proofs are given in an
appendix.

2 The model and the resampling procedure

Consider the model

Yt = s(t) + Zt; t 2 ZZ; (2.1)

with fs(t)gt2ZZ a deterministic trend (or signal) and fZtgt2ZZ a zero mean stationary noise
process. We restrict ourselves to the case where fZtgt2ZZ is an autoregressive process of
order in�nity (AR(1)), i.e.,

1X
j=0

�jZt�j = "t; �0 = 1; (2.2)

where f"tgt2ZZ is an i.i.d. sequence with expectation IE["t] = 0.
The object to recover is the deterministic trend which is thought to be a function s(:) :
ZZ! IR. Given observations Y1; : : : ; Yn, there are various approaches to do so, we mention
now two generic examples which are discussed through the whole article.

Example 2.1 (Finite parameter linear model).
Consider the trend function

s(x) = sn(x) =
JX

j=1

�jgj;n(x); x 2 IR;

for some real-valued regressors gj;n(:) (j = 1; : : : ; J) which can depend on the sample size
n, and for some coe�cients �1; : : :�J in IR.

The least-squares estimates �̂1; : : : ; �̂J are in a broad range of situations asymptotically
BLUE, some su�cient conditions are known as `Grenander conditions', cf. Grenander and
Rosenblatt (1984, Ch. 7.3), Hannan (1971,Ch. IV.3).

Example 2.2 (Nonparametric kernel smoothing).
Assume that the trend function is s(t) = m(t=n); t = 1; : : : ; n for some function m :
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[0; 1] ! IR, where n denotes the sample size. Consider estimation of m(:) by kernel
smoothing

m̂(x) =
nX
t=1

K(
x� t=n

h
)Yt=

nX
s=1

K(
x� s=n

h
); x 2 [0; 1];

where h = h(n) = o(1); h(n)�1 = o(n) (n ! 1) is a bandwidth parameter and K(:) a
kernel function. This is the so called Nadaraya-Watson kernel estimator, cf. Nadaraya
(1964) and Watson (1964), other kernel smoothers like the Gasser-M�uller type (Gasser
and M�uller, 1979) could also be considered. Kernel smoothing with dependent errors has
been studied by H�ardle and Tuan (1986), Hall and Hart (1990), Altman (1990), Truong
(1991), Hart (1991, 1994), Herrmann et al. (1992). An estimate of the trend function s(:)
is then derived by setting ŝ(t) = m̂(t=n); t 2 IN with 1 � t � n.

2.1 A sieve bootstrap scheme

We develop here a general approach for constructing con�dence bands of the unknown
trend s(:). It is based on an extension of the bootstrap for stationary autoregressive
processes of order in�nity (AR(1)), cf. Kreiss (1988), B�uhlmann (1995b), Bickel and
B�uhlmann (1995). We de�ne now our bootstrap scheme. Assume that we have observa-
tions Y1; : : : ; Yn being realizations of the model as given in (2.1) and (2.2).

Step 1: Compute an estimate ~s(t) for the unknown trend values s(t); t = 1; : : : ; n. Then
form residuals

Zt;n = Yt � ~s(t); t = 1; : : : ; n:

Step 2: Assume p = p(n) ! 1; p(n) = o(n) (n ! 1). Fit an autoregressive model
of order p = p(n) to the residuals Zt;n; t = 1; : : : ; n, i.e., compute �̂1;n; : : : �̂p;n based on
fZt;ngnt=1 for the autoregressive coe�cients �1; : : :�p in formula (2.2). Then form another
set of residuals

"t;n =
pX

j=0

�̂j;nZt�j;n; t = p+ 1; : : : ; n; �̂0;n = 1:

Denote by ~"t;n = "t;n � ":;n, where ":;n = (n� p)�1Pn
t=p+1 "t;n.

Step 3: Denote by F~";n(:) = (n� p)�1
Pn

t=p+1 1[~"t;n�:] the empirical cumulative distribu-
tion function of f~"t;ngnt=p+1. Now resample

"�t i.i.d. � F~";n; t 2 ZZ (or in a subset of ZZ):

Step 4: Generate the bootstrap error process fZ�t gt, de�ned by

pX
j=0

�̂j;nZ
�
t�j = "�t ; �̂0;n = 1; t 2 ZZ (or in the subset f1; : : : ; ng):

Then generate bootstrap observations by setting

Y �t = ~s(t) + Z�t ; t = 1; : : : ; n;
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with f~s(t)gnt=1 the same estimates as in step 1.

The estimates �̂1;n; : : : ; �̂p;n in step 2 can be obtained by the Yule-Walker method.
They are de�ned by

�̂Ẑ�̂p = �
̂Ẑ ; (2.3)

where �̂Ẑ = [R̂Ẑ(i � j)]pi;j=1; 
̂Ẑ = (R̂Ẑ(1); : : : ; R̂Ẑ(p))
0, �̂p = (�̂1;n; : : : ; �̂p;n)

0, R̂Ẑ(j) =

n�1
Pn�jjj

t=1 Zt;nZt+jjj;n; jjj � n � 1.

For generating the bootstrap error process fZ�t gt in step 4, we start the recursion with
some starting values and wait until stationarity is reached. We implemented the algorithm
with starting values being equal to some resampled innovations "�t .

Fitting an autoregressive model of growing order p = p(n) in step 2 is a sieve procedure
for the true underlying AR(1) process, that is why we call this resampling scheme `sieve
bootstrap', cf. B�uhlmann (1995b). All the bootstrap quantities are denoted by an asterisk
�. This sieve bootstrap allows to resample observations Y �1 ; : : :Y

�
n for various purposes. In

this article we will only consider bootstrapped trend estimates ŝ�(:) which are de�ned by
the plug-in rule, i.e., if ŝ(x) = Tn;x(Y1; : : : ; Yn) is a measurable function of the observations,
then the bootstrap estimate is de�ned by ŝ�(x) = Tn;x(Y

�
1 ; : : : ; Y

�
n ). Note that the estimate

ŝ(x) above is not necessarily the same as in step 1 and step 4 of our sieve bootstrap. In the
example 2.2 we rather would take for ~s(t) = ~m(t=n) an oversmoothed kernel estimator, cf.
H�ardle and Marron (1991).

2.2 Choice of the approximating order p

The approximating order p = p(n) in step 2 of our bootstrap scheme acts as some kind
of smoothing parameter. We discuss now the question of a `good' choice of p. Since the
true underlying error process is assumed to be an AR(1) as de�ned in (2.2) the choice of
the order p determines the tradeo� between a variance and bias part in the autoregressive
approximation.

We propose the choice via the AIC criterion in an increasing range such as [�An; An]
with An ! 1; An = o(n1=2). This is motivated by the fact that the AIC criterion leads
to an asymptotically e�cient selection if the underlying AR(1) process is observed, cf.
Shibata (1980). In our case, we �rst estimate a trend in step 1 of the procedure and
then �t an autoregressive model in step 2. One expects that the estimation in step 1
causes additional variability so that for choosing an autoregressive model in step 2 we
should add an additional penalty term for high order models, due to the variability from
the preliminary estimation in step 1. By neglecting this additional variability we tend to
choose an autoregressive model with too many parameters. But such kind of over�tting
guarantees a resistance against a severe bias by paying a price for a larger variance part.

Another concept relies on the idea of prewhitening, as a graphical device. For some
candidates p, we �t the autoregressive model in step 2, obtain the residuals "t;n (t =
p+1; : : : ; n) and compute some spectral density estimate based on these "t;n's. We would
choose p such that this estimated spectral density is close to a constant.
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2.3 Con�dence bands via bootstrap

The sieve bootstrap can be applied for constructing con�dence bands In(x), pointwise
or, more remarkably, for simultaneous bands within a certain set K. There exist also
analytical approximations for uniform con�dence bands, we discuss them in section 4.3.
In practice, we always draw simultaneous con�dence bands for a �nite set of points, to
emphasize the �nite-ness of such a band we sometimes use the terminology `con�dence
grid' over a �nite set G.

The shape of a simultaneous grid over a set G is not canonical, in an asymptotic sense
we only require that limn!1 IP[s(x) 2 In(x) for all x 2 G] = 1 � �; 0 � � � 1. This
shows that one has not to stick with Kolmogorov-Smirnov type bands, which possess some
mathematical elegance but seem not to be the most natural in practice. We rather want
to construct simultaneous con�dence bands with non-equal width, it seems evident that
at some grid points there is less variability (at least for �nite sample sizes) than at others.

We propose to enlarge pointwise intervals until a certain probability level for a simul-
taneous grid over a �nite set G is reached, cf. H�ardle and Marron (1991). Say, we want
to construct a simultaneous con�dence grid over G to the level 1 � � by using B sieve
bootstrap replicates ŝ�1(:); : : : ; ŝ

�
B(:). Then we proceed as follows.

(i) Compute pointwise con�dence intervals In(x; 1� �P ) to the pointwise level �P < �
for every grid-point x 2 G,

In(x; 1� �P ) = [ŝ(x)� q̂1��P =2; ŝ(x)� q̂�P =2];

where q̂� = inffy;B�1PB
i=1 1[ŝ�i (x)�~s(x)�y] � �g is a pointwise bootstrap quantile.

(ii) Vary the pointwise error �P until

B�1
BX
i=1

1[ŝ�
i
(x)2In(x;1��P ) for all x2G] � 1� �

(the percentage of bootstrap curves within the con�dence grid is approximately
1� �).
Denote such an �P by �S . Then fIn(x; �S)gx2G is an approximate simultaneous
con�dence grid over the set G to the level 1� �.

This conception of a bootstrap algorithm for simultaneous con�dence grids is very attrac-
tive because the user can specify exactly in what range of the data simultaneity should be
considered, i.e., one can specify a set G of own choice. Unlike with simultaneous intervals of
the Sche��e-type (see section 4.2), one can avoid with the bootstrap a simultaneous region
which is unreasonably large or dense, as for example the whole space of all theoretically
possible (but not necessarily practically likely) observations.

3 Bootstrapping trend estimates

We are going to discuss now the validity of the sieve bootstrap scheme for linear trend
estimators ŝ(:). For the noise process and its estimation we make the following assump-
tions.
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(A1) Model (2.2) holds with IEj"tjs <1 for some s � 4.

(A2) The AR(1) transfer function �(z) =
P1

j=0 �jz
j (z 2 IC) of the model (2.2) satis�es:

�(z) is bounded away from zero for jzj � 1 and
P1

j=0 j
rj�j j < 1 for some integer

r > 0.

(A3) In step 2 of the sieve bootstrap scheme, �̂1;n; : : : ; �̂p;n are de�ned by formula (2.3).

These are the same conditions as for the sieve bootstrap in the stationary case, cf.
B�uhlmann (1995b). The conditions are met by a broad subclass of linear processes, includ-
ing many ARMA models. In particular, they also hold for models with a non-exponential
decay of autoregressive coe�cients, which represent a stronger dependence than usual
ARMA-processes. The restriction in (A3) is convenient for computational reasons. To
prevent against severe bias one could taper the time series �rst before calculating the
Yule-Walker estimates, cf. Dahlhaus (1983).

Our conditions are nice in the sense that the nonstationary nature of the process
fYtgt2ZZ, due to the deterministic trend fs(t)gt2ZZ, does not add any additional restrictions
for the stationary noise process fZtgt2ZZ. The same, rather mild, conditions are inherited
from the stationary sieve bootstrap as in B�uhlmann (1995b). In a rough way we can say
that the only additional condition for our nonstationary sieve bootstrap is on the growth
for the approximating order p = p(n) in step 2, which can now additionally depend on the
behavior of

n�1
nX
t=1

(~s(t)� s(t))2;

cf. Lemma A.1. Typically this bound is negligible so that no real additional restrictions
arise. Our theoretical arguments in the appendix give some good evidence that our sieve
bootstrap scheme works for reasonably regular linear predictors ŝn(x) =

Pn
t=1wt;n(x)Yt,

if the approximating order p = p(n) in step 2 satis�es

p(n)!1; p(n) = o

 
minf(n=log(n))1=4; (n�1

nX
t=1

(~s(t)� s(t))2)1=2g
!

(n!1)

and (A1)-(A3) hold.
To keep things simpler we focus here on some more special cases, we consider global

and local trend estimators as given by example 2.1 and 2.2 respectively.

3.1 Linear regression predictors

Consider the model (2.1) where the trend function s(:) is a linear regression model as in
example 2.1, i.e.,

s(x) = sn(x) =
JX

j=1

�jgj;n(x); x 2 IR

for some real-valued regressors gj;n(:) (j = 1; : : : ; J), which can depend on the sample size
n, and for some coe�cients �1; : : :�J in IR.
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We consider now the least-squares predictor for s(:), that is, the trend estimate is given
by

ŝ(x) =
JX

j=1

�̂jgj;n(x); x 2 IR; (3.1)

where �̂1; : : : ; �̂J are the ordinary least-squares estimates of �1; : : : ; �J .
Under some conditions, known as Grenander's conditions, one has asymptotic normality
for any point x 2 IR,

a(n; x)(ŝ(x)� s(x)) =
JX
j=1

dj(n)(�̂j � �j)gj;n(x) d�! N (0; �2as(x)); 0 < �2as(x) <1;

where dj(n)2 =
Pn

t=1 gj;n(t)
2; j = 1; : : : ; J . These normalizing constants then determine

the normalizing constant a(n; x). We remark here, that if dj(n)
2 = d(n)2 for all j, then

the normalizing constant a(n; x) = a(n) = d(n). A familiar example is trigonometric
regression, where gj;n(x) = gj(x) = cos(!jt); �� � !j < �, dj(n)

2 = n and a(n; x) =
a(n) =

p
n. We will describe now under which circumstances our bootstrapped estimates

converge to the appropriate Gaussian limiting distribution as indicated above. We assume
the following conditions.

(R1) The trend is of the form s(x) = sn(x) =
PJ

j=1 �jgj;n(x); x 2 IR, its estimate ŝ(x)
is given by ordinary least-squares as in formula (3.1) and the estimates f~s(t)gnt=1
in steps 1 and 4 of the sieve bootstrap scheme are the same least-squares estimate
~s(t) = ŝ(t); t = 1; : : : ; n.
For the regressors we assume the `Grenander conditions':

lim
n!1

nX
t=1

gj;n(t)
2 = lim

n!1
dj(n)

2 =1;

lim
n!1

gj;n(n)
2=dj(n)

2 = 0

lim
n!1

nX
t=1

gj;n(t)gk;n(t+m)=(dj(n)dk(n)) = �j;k(m); m 2 IN0:

Then �j;k(m) =
R �
�� e

im�dMj;k(�) for some J � J matrix M , cf. Hannan (1970, Ch.
II, Th 11). We assume that M is nonsingular and M�1

R �
�� fZ(�)M(d�)M�1 is not

the null matrix. Furthermore, we assume the existence of some limiting regressors
gj(:) : IR ! IR; (j = 1; : : : ; J), at least for one j 2 f1; : : : ; Jg the function gj(:) not
being the null function, such that for every x 2 IR,

gj;n(x)! gj(x) (n!1); j = 1; : : : ; J:

The assumptions on the regressors in (R1) are close to the almost minimal Grenander
conditions, we essentially ensure in addition that there is no degenerate behavior in the
limit.

We present now the consistency of the sieve bootstrap at �xed points x 2 IR.
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Theorem 3.1 Assume that (A1)-(A3), (R1) hold and the approximating order p(n) in
step 2 of the sieve bootstrap scheme satis�es p(n) = o((n=log(n))1=4). Then, for x 2 IR,
there exists a sequence fa(n; x)gn2IN such that

a(n; x)(ŝ(x)� s(x)) d�! N (0; �2as(x)) (n!1) with 0 < �2as(x) <1;
and

sup
y2IR

jIP�[a(n; x)(ŝ�(x)� ŝ(x)) � y]� IP[a(n; x)(ŝ(x)� s(x))]j = oP (1) (n!1):

A proof is given in the appendix.

We extend now Theorem 3.1 for constructing simultaneous con�dence regions. The
most elegant way to analyze such simultaneous properties is to consider for the estimator
in (3.1) the process

fZn(x)gx2K; Zn(x) = a(n; x)(ŝ(x)� s(x)); (3.2)

and its sieve bootstrapped counterpart

fZ�n(x)gx2K; Z�n(x) = a(n; x)(ŝ�(x)� ŝ(x)); (3.3)

where K is a compact subset in IR.
If the bootstrapped process Z�n(:) has the same limiting process as Zn(:), the construction
of bootstrap con�dence bands fIn(x)gx2K in some uniform or simultaneous sense is con-
sistent. To achieve this we describe now more precisely the framework. We denote by )
weak convergence in the space of continuous functions C(K) = fg : K ! IR; g continuousg
with respect to the sup-norm k:kK , i.e., kgkK = supx2K jg(x)j. We make the following
additional assumptions about the regressors.

(R2) The regressors gj;n(:) j = 1; : : : ; J satisfy a Lipschitz condition: there exists a 
 > 0
such that

sup
n2IN

sup
x;y2K

fjgj;n(x)� gj;n(y)j=jx� yj
g � Cj <1; j = 1; : : :J:

Lemma 3.1 Assume that (A1)-(A2) and (R1)-(R2) hold. Then there exists a sequence
fa(n; x)gn2IN;x2K such that for Zn(:) as de�ned in formula (3.2),

Zn ) G;

where G(:) is a Gaussian process with continuous sample paths, mean zero and
Cov(G(x1); G(x2)) =

PJ
j1;j2=1 gj1(x1)gj2(x2)�j1;j2 , where

�j1;j2 = limn!1dj1(n)dj2(n)Cov(�̂j1; �̂j2) (0 � j�j1;j2 j <1), dj(n)2 =
Pn

t=1 gj;n(t)
2.

A proof is given in the appendix.

Theorem 3.2 Assume that (A1)-(A3), (R1)-(R2) hold and the approximating order p(n)
in step 2 of the sieve bootstrap scheme satis�es p(n) = o((n=log(n))1=4). Then for the pro-
cess Z�n(:), as de�ned in formula (3.3) with the same normalizing constants fa(n; x)gn2IN;x2K
as in Lemma 3.1,

Z�n ) G in probability;

where G is the same Gaussian process as in Lemma 3.1.

The proof is given in the appendix.

9



3.2 Kernel smoothers

Consider now the general model (2.1), where the trend values are (deterministically) sam-
pled from a function m : [0; 1]! IR such that s(t) = m(t=n) t = 1; : : : ; n. As in example
2.2, we are looking at kernel smoothers for the function m(:), such as

m̂(x) =
nX
t=1

K(
x� t=n

h
)Yt=

nX
s=1

K(
x� s=n

h
); x 2 [0; 1]; (3.4)

where K(:) is a kernel function and h is a bandwidth with h = h(n) = o(1); h(n)�1 =
o(n) (n!1).

These estimates are known to exhibit edge-e�ects. They can cause problems in the
sieve bootstrap scheme, namely in step 1 and step 4 where a pilot estimate ~s(t) = ~m(t=n)
has to be computed. We will use for ~m(:) again a kernel smoother as in (3.4) but only in
a region [�; 1� �] for some small � > 0. Thus we will use in step 1 pilot estimates

~s(t); t = [n�] + 1; : : : ; [(1� �)n]; 0 < � < 1; (3.5)

and apply the bootstrap scheme in the same way but now with the smaller number of
Z-residuals Z[n�]+1;n; : : : ; Z[(1��)n];n.

By choosing the bandwidth of a mean square error optimal order, we have to deal with
a non-negligible bias,

n1=2h1=2(IE[m̂(x)]�m(x))! Bas(x) (n! 1) with

0 < Bas(x) =
Z 1

�1
x2K(x)dxm(2)(x)=2 <1; (3.6)

and under some regularity conditions, asymptotic normality holds,

n1=2h1=2(m̂(x)�m(x))
d�! N (Bas(x); �

2
as) (n!1) with

0 < �2as = fZ(0)
Z 1

1
K2(x)dx2� <1; (3.7)

where fZ(�) = (2�)�1
P1

k=�1 Cov(Z0; Zk)e�i�k is the spectral density of the noise process
fZtgt2ZZ.
For a successful approximation of this limiting normal distribution, the bootstrap should
be able to estimate the asymptotic bias Bas(x) as well. This can be achieved by using in
step 1 and step 4 of our sieve bootstrap scheme an oversmoothed estimate ~s(t) = ~m(t=n),
t = [n�] + 1; : : : [(1 � �)n], with ~m(:) being of the same form as in (3.4), with the same
kernel K(:), but with a larger bandwidth ~h than h. Then it will be possible that

n1=2h1=2(IE�[m̂�(x)]� ~m(x))�Bas(x) = oP (1):

The intuitive reason for this is that for a second order kernel K,

IE[m̂(x)]�m(x) � CKm
(2)(x)h2

IE�[m̂�(x)]� ~m(x) � CK ~m(2)(x)h2;

where CK =
R1
�1 x2K(x)dx=2. The convergence ~m(2)(x)�m(2)(x) = oP (1) is only possible

for a bandwidth ~h with ~hn1=5 !1, cf. Gasser and M�uller (1984).
We make now the following assumptions.

10



(K) The function m(:) is two times continuously di�erentiable on the open interval (0; 1)
with sup0<x<1 jm(j)(x)j <1 for j = 0; 1; 2.
The estimator m̂(:) is as given in formula (3.4) with K(:) a probability density,
symmetric, bounded, piecewise continuous, compactly supported and the order of
the bandwidth is h(n) � const:n�1=5.
The estimator ~m(:) is as given in formula (3.4) with the same kernel K(:) as for
m̂(x) but with bandwidth ~h such that ~hn1=5 !1.
Moreover, the sieve bootstrap scheme is modi�ed as described in formula (3.5).

Theorem 3.3 Assume that (A1)-(A3), (K) hold and the approximating order p(n) in
step 2 of the sieve bootstrap scheme satis�es p(n) = o(minf(n=log(n))1=4; n1=4~h1=4g) with
~h as in (K). Then for 0 < x < 1,

n1=2h1=2(m̂(x)�m(x))
d�! N (Bas(x); �

2
as) (n!1) with 0 < Bas(x); �

2
as <1;

and

sup
y2IR

jIP�[n1=2h1=2(m̂�(x)� ~m(x)) � y]� IP[n1=2h1=2(m̂(x)�m(x)) � y]j = oP (1) (n!1):

A proof is given in the appendix.

To establish a similar result for uniform con�dence bands as in Theorem 3.2 is a very
di�cult task. The processes

fZn(x)gx2K; Zn(x) = n1=2h1=2(m̂(x)�m(x)); K = [�; 1� �]; 0 < � < 1=2;

fZ�n(x)gx2K; Z�n(x) = n1=2h1=2(m̂�(x)� ~m(x)); K = [�; 1� �]; 0 < � < 1=2;

have now the property that neighboring values are asymptotically independent. One can
renormalize and consider

Zrenorm
n (x) = n1=2h1=2(m̂(hx)�m(hx)); x 2 [h�1�; h�1(1� �)]; (3.8)

and analogously for the bootstrap.
A rigorous proof for weak convergence of such kind of processes in the context of density
estimation for i.i.d. data can be found in Rosenblatt (1971), though under very restrictive
assumptions. However, the arguments involve approximations by a Gaussian process which
cannot be used directly for the bootstrap.

From a practical point of view we mention the work by H�ardle and Marron (1991),
which considers the bootstrap for kernel smoothers for independent observations to con-
struct simultaneous con�dence grids. They also do not present any theoretical result for
processes as described above, but they show a simulation study which justi�es to some
extent the use of the bootstrap for simultaneous con�dence grids.

3.2.1 Choice of tuning parameters for kernel smoothers

We address here the issue of selecting all the di�erent tuning parameters. We do not give
any exact theory here, this would be beyond the scope of the paper. All our proposals
are derived in a heuristic sense. The sieve bootstrap procedure for kernel smoothers
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as in section 3.2 involves a pilot bandwidth ~h, the `original' bandwidth h and also an
approximating order p for the sieve bootstrap scheme.

We take the point of view that the practitioner comes up with a certain `original'
bandwidth h. It can be chosen automatically via a cross-validation procedure, cf. Altman
(1990), Hart (1991, 1994), via an iterative plug-in approach, cf. Herrmann et al. (1992),
or it can be chosen by eye or by some other reasons. Moreover, we keep our proposal for
choosing the approximating order p via AIC as described in section 2.2, though the choice
of the bandwidth ~h for the pilot estimator ~m could have a minor in
uence on the choice of
the approximating order p. However, we believe that the procedure is not so sensitive to
the choice of the order p which allows to choose p independent of other tuning parameters.

The main di�culty in this context is the choice of the pilot-bandwidth ~h. The choice
of ~h corresponds to the accuracy of estimation for the bias IE[m(x)] � m(x), which is
done here by IE�[m̂�(x)] � ~m(x). H�ardle and Marron (1991) describe the problem very
well in the independent set-up. Motivated by their Theorem 3, the rates for the optimal
pilot-bandwidth ~h and for the `original' bandwidth h should be for second order kernels
K(:),

~h � ~Cn�1=9; h � Cn�1=5 ~C and C constants:

This gives a rough idea about the size of ~h in comparison to the size of h, though the
constants ~C and C are unknown. Instead of trying to estimate these constants, which
would complicate the procedure a lot, we suggest as a rough guide-line to take

~h = h5=9: (3.9)

The problem of bias estimation in this context is a delicate issue, no satisfactory answers
seem to be known. H�ardle and Marron (1991) explain in greater details about this.

3.3 Higher order accuracy

Often, the bootstrap becomes even more powerful for constructing con�dence regions when
resampling a pivotal quantity, such as a studentized statistic, cf. Hall (1989, 1992). In our
examples 2.1 and 2.2 a version of a studentized statistic is

for example 2.1:

t̂student(x) = a(n; x)(
JX
j=1

(�̂j � �j)gj;n(x))=Vn; a(n; x) as in Theorem 3.1; x 2 IR;

V 2
n =

JX
j1;j2=1

gj1;n(x)gj2;n(x)�̂j1;j2 ;

�̂i;j =

�
M�12�

Z �

��
f̂Z(�)dM(�)M�1

�
i;j

=di(n)dj(n);

where M = [�i;j(0)]i;j=1;:::;J with �:;:(:) as de�ned by Grenander's condition in (R1).

for example 2.2:

t̂student(x) = n1=2h1=2(m̂(x)�m(x))=Vn; x 2 [�; 1� �]; � > 0;

V 2
n = f̂Z(0)m(x)2

Z 1

�1
K2(x)dx2�; see (3.7):
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In both cases we have to construct an estimate f̂Z of fZ , the spectral density of the
underlying noise process fZtgt2ZZ. In our case we have a `natural estimate', based on the
autoregressive sieve. Step 1 and step 2 of our sieve bootstrap scheme yield coe�cient
estimates �̂1;n; : : : �̂p;n and estimates of the innovation variance based on the centered
residuals f~"t;ngnt=p+1. By using this set of estimates we propose the autoregressive spectral
estimator

f̂Z(�) =
(n� p)�1

Pn
t=p+1 ~"

2
t;n

2�j�̂n(e�i�)j2
; �̂n(z) =

pX
j=0

�̂j;nz
j (z 2 IC):

As one can see, the analytical approximation for V 2
n in example 2.1 can become very

complex. However, in some cases like trigonometric or polynomial regression the formula
simpli�es quite a bit. For sieve bootstrap versions we essentially use the plug-in principle,

t̂�student(x) = a(n; x)(ŝ�(x)� IE�[ŝ�(x)])=V �n for example 2.1;

t̂�student(x) = n1=2h1=2(m̂�(x)� ~m(x))=V �n for example 2.2:

Based on such studentized estimators one would then construct (pointwise) con�dence
intervals

In(x; 1� �) = [ŝ(x)� q̂1��=2Vn; ŝ(x)� q̂�=2Vn];

where q̂� = inffy; IP�[t̂�student(x) � y] � �g.
Such con�dence intervals lead in the independent case to better coverage properties in
theory, cf. Hall (1989, 1992). We leave a theoretical investigation of higher order accuracy
for the sieve bootstrap as an open research problem, but we include this method in our
simulation study in section 5.

4 Classical approaches

We describe here some classical methods which could be applied to construct pointwise
or simultaneous con�dence bands. All these classical approaches rely on asymptotic argu-
ments and we do not aim to give an exact justi�cation for them, we rather see them as
methods which have been used in practice as `ad hoc' procedures.

4.1 Asymptotic normality for pointwise bands

To construct pointwise con�dence bands one can use the normal approximation, this is
justi�ed by our Theorems 3.1 and 3.3. In particular, the con�dence bands for a �xed x
would be

for linear regression:

ŝ(x)�
�

^V ar(ŝ(x))
�1=2

z1��=2; z: the standard normal quantile;

for kernel smoothing:

m̂(x)�
�

^V ar(m̂(x))
�1=2

z1��=2; z: the standard normal quantile;
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or with a bias correction

m̂(x)� B̂as(x)�
�

^V ar(m̂(x))
�1=2

z1��=2; z: the standard normal quantile;

where B̂as(x) = m̂(2)(x)
R1
�1 x2K(x)dx=2 is a bias estimate, based on a kernel esti-

mate m̂(2)(x) for estimating the second derivative m(2)(x). One proposal is

m̂(2)(x) = n�1~h�3
nX
t=1

K2(
x� t=n

~h
)Yt;

with K2(x) = 105=32(�5x4+ 6x2 � 1)1�1�x�1, see Gasser et al. (1985).

The estimates for the variances of the predictors can be obtained in the same way as in
section 3.3.

4.2 Sche��e's method for simultaneous bands in linear regression

For constructing simultaneous con�dence bands in the linear regression case as in (3.1),
one can use Sche��e's approach, cf. Seber (1977, Ch. 5.1). Relying on the asymptotic
normality of �̂ � � as given in Theorem 3.1, the simultaneous con�dence bands are then

ŝ(x)�
�
JFJ;n�J;1�� ^V ar(ŝ(x))

�1=2
; x 2 IR;

where ^V ar(ŝ(x)) can be obtained as in section 3.3.
By construction, these con�dence bands are conservative because one is usually not in-
terested in simultaneity over the whole range of the design. Moreover, the asymptotic
arguments are for quadratic forms and therefore more critical.

4.3 Poisson clumping heuristics for simultaneous bands via smoothing

For the case of kernel smoothing as in (3.4), one can make use of the very elegant and
beautiful method of Poisson clumping heuristics, given by Aldous (1989). This approach
is not widely known in statistics, therefore we give a few more details.

Our starting point is the renormalized process Zrenorm
n (:) given in (3.8). Then one

easily veri�es that

V ar(Zrenorm
n (x)) = fZ(0)

Z 1

�1
K2(x)dx2� (0 � x � h�1);

Cov(Zrenorm
n (x); Zrenorm

n (x+ y)) = fZ(0)
Z 1

�1
K(x)K(x+ y)dx2� (0 � x; x+ y � h�1);

compare also with (3.7).
Hence the self-standardized process

Wn(:) = Zrenorm
n (:)(fZ(0)

Z 1

�1
K2(x)dx2�)�1=2

converges to a Gaussian process W with mean zero and variance one. Moreover, this
limiting Gaussian process is stationary since its covariances are

Cov(W (x);W (y)) =

Z 1

�1
K(x)K(x+ y)dx=

Z 1

�1
K2(x)dx =: RW (jx� yj):
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Therefore Aldous' heuristics for smooth Gaussian processes applies, namely

RW (y) � 1 +
1

2

R1
�1K(x)K(2)(x)dxR1

�1K2(x)dx
y2 as y ! 0;

yielding

IP[ max
0�y�h�1

Wn(y) � b] � exp(��bh�1);

�b = (�
Z 1

�1
K(x)K(2)(x)dx=

Z 1

�1
K2(x)dx)1=2(2�)�1exp(�b2=2);

see Aldous (1989, (C23d)). If we take into account that h�1 ! 1, this is actually the
same result as given in a long argument by Rosenblatt (1971, (62)) for density estimation.
By symmetry one then can use the following simultaneous con�dence band

m̂(x)� n�1=2h�1=2f̂Z(0)

Z 1

1
K2(x)dx2�q1��=2;

q1��=2 = (�2log(h) + 2log(C)� 2loglog(1� �=2))1=2 ;
C = (�

Z 1

�1
K(x)K(2)(x)dx=

Z 1

�1
K2(x)dx)1=2(2�)�1):

By Taylor expansions of
p
x for large x and of log(1� x) for small x, this is also the same

result as in Eubank and Speckman (1993, (16a)-(16c)). Of course, we could also here
apply a bias correction and use the band for 0 < x < 1,

m̂(x)� B̂as(x)� n�1=2h�1=2
�
f̂Z(0)

Z 1

1
K2(x)dx2�

�1=2
q1��=2;

where the bias estimate B̂as(x) can be derived as in section 4.1.
The estimate f̂Z(0) can be obtained as in section 3.3.

4.4 A crucial step from independence to dependence

All of the methods described in sections 4.1-4.3 involve an estimate for the spectral density
of the noise process. In our case, where the noise process is assumed to be an AR(1)
process, a natural way for estimation is given by the autoregressive spectral estimator, as
given in section 3.3. But a crucial step has taken place here.

In the independent set-up, Eubank and Speckman (1993) use extreme value approxi-
mations for constructing simultaneous con�dence bands via kernel smoothing and obtain
surprisingly good results in a simulation study for �nite sample sizes. Why? One needs an
estimate of the asymptotic variance of the kernel smoother. In the independent case this
is quite easy to achieve because one needs only to estimate the variance of an observation.
This can be done in a direct way by a

p
n-consistent estimator, e.g.,

^V ar(Yt) = (n� 2)�1
n�2X
i=1

(0:809Yi � 0:5Yi+1 � 0:309Yi+2)
2;
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as used by Eubank and Speckman (1993). Such estimators have the great advantage that
they operate directly on the observed data rather than on estimated residuals. In the time
series case, the relevant quantity to know is not the variance of an observation but the
spectral density of the noise process. For estimating this quantity, the

p
n-consistency is

lost and we see no other obvious way than estimating such a spectral density via estimated
residuals. But it seems exactly here, where a lot of inaccuracy comes in, see also in section
5. This then explains that the methodological di�erence between the time series and the
independent set-up is substantial. The lack of a good and simple method for variance
estimation of a trend estimator in time series creates a new additional problem. The sieve
bootstrap is successful to handle this problem in an implicit way, which makes explicit
variance estimation unnecessary.

5 Numerical examples

We study our procedure on some simulated examples. We consider here the accuracy of
the sieve bootstrap approximation in terms of coverage probabilities. We focus on the
situation in example 2.1 and example 2.2 respectively and consider the two trend models

(T1) s(x) = 3g(x); g(x) = cos(�x=256); x 2 IR,

(T2) s(x) = m(x=n), x 2 [0; n] (n the sample size),
m(y) = 2� 5y + 5exp(�100(y � 0:5)2); y 2 [0; 1].

The trend model (T2) is the same as in Herrmann et al. (1992). The trigonometric
trend in (T1) is scaled so that the `variability' of (T1) and (T2) is approximately the
same for n = 512, i.e., the quantities (n � 1)�1

Pn
t=1(s(t) � �s)2 (�s = n�1

Pn
t=1 s(t)) are

approximately the same for both trend models. To both trend models we add the same
ARMA(1,1) noise Z1; : : : ; Zn (also the same realization of noise for both trend models),

Zt = 0:8Zt�1 � 0:5"t�1 + "t; (5.1)

where "t i.i.d. � t6=
p
1:8, i.e.,

p
1:8"t i.i.d � t6.

This noise process has been studied in connection with the bootstrap in B�uhlmann (1995b).
It is scaled so that V ar(Zt) � 1. We generate data sets of sample size n = 512, according
to

Yt = s(t) + Zt; t = 1; : : : ; n;

where s(:) is as in (T1) or (T2) and Z1; : : :Zn follow the model in (5.1). Each trend model
(T1) and (T2) with the same realization of noise is shown in �gure 5.1. For the trend
model (T1) and (T2) we use methods (M1) and (M2) respectively,

(M1) Least squares predictor ŝ(:) as in (3.1) for the trigonometric regression model,

(M2) Kernel smoothing as in (3.4) with the Parzen-kernel (convolution of the triangular
kernel on [�0:5; 0:5]) and ~h = 0:19; h = 0:05. (The bandwidths are standardized:
the upper and lower quartiles of the Parzen-kernel are �0:25 when bandwidth is 1,
this is the standardization in S-Plus).

16



T1

0 100 200 300 400 500

-6
-4

-2
0

2
4

6

T2

0 100 200 300 400 500

-4
-2

0
2

4
6

Figure 5.1: Models (T1) and (T2) overlaid with the same realization of ARMA(1,1) noise

We will consider the coverage for pointwise intervals at x = 250 and for simultaneous
intervals over the grids

x1; : : : ; x50; xi = 10i; i = 1; 2; : : : ; 50 in case (T1,M1);

x1; : : : ; x32; xi = 10i; i = 10; 11; : : : ; 41 in case (T2,M2):

Based on the sieve bootstrap, the con�dence bands are constructed as described in section
2.3: the pointwise as in step (i), the simultaneous intervals as in steps (i)-(ii), both with
� = 0:1. The number of bootstrap replicates is 500. We construct also some intervals
based on a studentized sieve bootstrap procedure as described in section 3.3.

For comparison, we consider in the case of pointwise intervals the method based on
asymptotic normality described in section 4.1. The variances of the predictors are then

V ar(ŝ(x)) � 4�cos(�x=256)2fZ(�=256)n
�1 in case (T1,M1)

V ar(m̂(x)) � 2�
Z 1

�1
K2(x)dxfZ(0)n

�1h�1 = 1:53�fZ(0)n
�1h�1 in case (T2,M2);

where fZ(:) is the spectral density of the noise process as in (5.1).
An estimate of the spectral density fZ(:) can be obtained as in section 3.3. In the case
(T2,M2) we used the original bandwidth h = 0:05 for constructing such an estimate; using
the pilot bandwidth ~h resulted in a poorer result.
The bias correction was made as proposed in section 4.1 with the same bandwidth ~h = 0:19
as in (M2). We did not achieve any better results by using other bandwidths for the bias
correction.
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The following table shows relative coverage frequencies with estimated standard devi-
ations, which were derived by simulating over 100 di�erent model realizations, i.e., real-
izations of the noise process in (5.1).

pointwise coverage (T1,M1) (T2,M2)

sieve bootstrap 0.88 (0.033) 0.95 (0.022)
studentized sieve bootstrap 0.90 (0.030) 0.96 (0.020)
as. normality without bias corr. 0.89 (0.031) 0.50 (0.050)
as. normality with bias corr. { 0.51 (0.050)

For pointwise con�dence intervals, the sieve bootstrap procedure yields a very satis-
factory result for both trends and both methods. In the case (T1,M1) the asymptotic
normality is a good competitor, but in the case (T2,M2) the sieve bootstrap outperforms
both normal approximations, with and without bias correction. The bias correction with
estimating the second derivative m(2)(x) directly did not enhance performance in this case,
where the bias is already small, see also �gure 5.2.

The sieve bootstrap for studentized statistics as given in section 3.3 seems to work but
does not yield any signi�cant gains in our examples.

The next table shows the empirical simultaneous coverage for sieve bootstrap simul-
taneous con�dence grids as described above. For comparison we give the coverages of the
following alternatives: pointwise con�dence based on asymptotic normality as described
in section 4.1 and based on the extreme value approximation via the Poisson clumping
heuristics as described in section 4.3. Note that in case (T1,M1) the pointwise con�dence
intervals based on asymptotic normality give an asymptotically correct answer which is
equivalent to Sche��e's method described in section 4.2, since

max
x
j(�̂ � �)cos(�=256x)j= j�̂ � �j; (5.2)

which can be analyzed with a limiting normal distribution.
In the case (T2,M2) the pointwise approach based on asymptotic normality is conceptually
wrong, nevertheless one might wonder about the price of doing such a wrong thing.

simultaneous coverage (T1,M1) (T2,M2)

sieve bootstrap 0.89 (0.031) 0.99 (0.001)
pointwise as. normality without bias corr. 0.79 (0.041) 0.00 ({)
pointwise as. normality with bias corr. { 0.00 ({)
Poisson clumping without bias corr. { 0.02 (0.014)
Poisson clumping with bias corr. { 0.02 (0.014)

For simultaneous con�dence intervals, the sieve bootstrap yields again an approxi-
mately correct coverage probability. The pointwise normal approximation in case (T1,M1),
which is also a simultaneous approximation (see (5.2)), exhibits a drop of 12% of the re-
quired coverage level 0:9. Knowing that the pointwise normal approximation is conceptu-
ally wrong for simultaneous intervals in case (T2,M2), the pointwise normal approximation
breaks down completely. The extreme value approximation yields also a very poor result,
for an explanation see also section 4.4. The bias correction in all the analytic approxi-
mations does not yield any improvement. An explanation is given by �gure 5.2, where
one can easily see that the bias and its estimation are of a much smaller order than the

18



confidence bands

100 150 200 250 300 350 400

-4
-2

0
2

4
6

bias correction

100 150 200 250 300 350 400

-0
.8

-0
.4

0.
0

0.
4

Figure 5.2: Con�dence bands: true trend (line), sieve bootstrap simultaneous con�dence
band (small dashes), simultaneous band based on Poisson clumping heuristics, without
bias correction (large dashes). Bias correction: estimated bias over 100 simulations (line),
bias correction B̂as(x) (small dashes), m̂(x)�m(x) (large dashes). Both based on a typical
realization of (M2).

di�erence between the original estimator and the truth. Our original bandwidth h = 0:05,
chosen bye eye, seems to undersmooth so that the variance part is dominating.

The big advantage of the sieve bootstrap is demonstrated here for the construction
of simultaneous con�dence grids. The method based on extreme value approximation
exhibits a serious lack of accuracy, �gure 5.2 illustrates in an impressive way that the
bands from extreme value approximation are much too small and yield to a completely
invalid con�dence statement.

We also tried for the sieve bootstrap in case (T2,M2) some other pilot bandwidths ~h,
resulting in a poorer performance. Our suggestion is to take the rule as in (3.8).

Finally we want to re
ect the drastic e�ect of having no accurate variance estimator,
see section 4.4. When plugging in the true spectral density at zero for the noise process we
found an asymptotic variance �2as = 0:1520 for the kernel smoother in (M2) , whereas the
mean over the 100 simulations of the estimated variances was ave[�̂2as] = 0:0260, which
is smaller by about a factor 6. By using the correct �2as (which in practice would be
unknown) we achieved in the case (T2,M2) a simultaneous coverage of 0.94, based on
Poisson clumping heuristics (with and without bias correction).
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6 Summary and discussion

We have given a method for constructing con�dence bands for a deterministic trend in
time series. We focus on the case where the noise process is stationary and restricted
to be in a large subclass of linear processes, examples would be many of the well known
ARMA processes. Our method relies on a sieve bootstrap scheme from stationary time
series which is fairly simple to apply and computationally feasible. We propose a boot-
strap technology because we believe that it comes close to the aim for constructing a
simultaneous con�dence band over some arbitrary set of points, which can be speci�ed by
the user. In this sense, such intervals do not su�er from the conservative approach of a
Sche��e-type band, see section 4.2. Moreover, the theory does not rely on extreme value
approximation as discussed in section 4.3.

We have also argued why known methods from the independent case cannot be directly
adapted to the time series case. The extreme value approximation, as given in Eubank
and Speckman (1993) performs very poor, when adapted to our example.

The theory for the sieve bootstrap in the case of time series with deterministic trends
works almost under the same conditions as in the case for stationary time series, this
justi�es the method as a good procedure from a theoretical point of view. From a practical
point of view we report satisfactory �nite sample results from our simulation study with
a `middle sample size' n = 512. In particular, in a time series set-up such sample sizes are
not considered as large.

Though the tuning parameters in the procedure were selected by heuristical rules, our
method performed well in the simulation study. There is hope that this sieve bootstrap
procedure is not very sensitive when varying the di�erent tuning parameters.

Open problems in this area are re�ned choices of tuning parameters, see section 3.2.1,
and higher order accuracy as discussed in section 3.3 which would rule out classical analyt-
ical approximations from a theoretical point of view. There is also a considerable interest
in using wavelet methods for estimating a trend function in time series. Brillinger (1995)
proves asymptotic normality of linear wavelet estimators in the time series set-up. Our
sieve bootstrap yields again a consistent procedure for approximating the distribution of
such estimators. The validity of the sieve bootstrap for nonlinear wavelet estimators which
are based on shrinking coe�cients, see for example Donoho et al. (1995), is not straight-
forward. A quite di�erent problem would be the extension from linear to nonlinear noise
processes. Block bootstrap techniques, see K�unsch (1989), might be used, by paying a
higher price for the `nonparametric' character of such a general nonlinear stochastic error
process, see also B�uhlmann (1995b).

Appendix

We �rst consider the e�ect of non-stationarity, i.e., the e�ect of estimating the trend values
s(t) (t = 1; : : : ; n) in step 1 and 4 of the sieve bootstrap scheme. We do not treat the case
as given in formula (3.5) separately, the modi�cations are obvious. For jjj � n � 1, we

denote by RZ(j) = Cov(Z0; Zj), R̂Z(j) = n�1
Pn�jjj

t=1 ZtZt+jjj, and for R̂Ẑ(j) see (2.3).
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Lemma A.1 Assume that (A1), (A2) with r = 1 hold and n�1
Pn

t=1(~s(t) � s(t))2 =
OP (b(n)) for some sequence b(n) = o(1) (n! 1). If p(n) = o((n=log(n))1=2), then

max
0�j�p

jR̂Ẑ(j)�RZ(j)j = OP ((log(n)=n)
1=2) + OP (

1X
j=p+1

j�j j) +OP (b(n)
1=2):

Remark: If b(n)1=2 = O(maxf(log(n)=n)1=2;P1
j=p+1 j�j jg), then Lemma A.1 yields

the same bound as in the stationary case for max0�j�p jR̂Z(j)� RZ(j)j, cf. Hannan and
Kavalieris (1986, Th. 2.1).

Proof: We write for jjj � n� 1,

R̂Ẑ(j) = R̂Z(j) + n�1
n�jjjX
t=1

(Zt;n � Zt)Zt+jjj

+ n�1
n�jjjX
t=1

(Zt+jjj;n � Zt+jjj)Zt + n�1
n�jjjX
t=1

(Zt;n � Zt)(Zt+jjj;n � Zt+jjj):

Therefore, we get by the Cauchy-Schwarz inequality in a straightforward way,

max
0�j�n�1

jR̂Ẑ(j)� R̂Z(j)j = OP (b(n)
1=2):

Now we complete the proof by using the known bound

max
0�j�p

jR̂Z(j)�RZ(j)j = O((log(n)=n)1=2) + O(
1X

j=p+1

j�j j) almost surely;

cf. Hannan and Kavalieris (1986, Th. 2.1). 2

Denote by �j the autoregressive coe�cients as given in (2.2), by �̂j;n the coe�cients
as de�ned in (2.3) and by �j;n the corresponding theoretical quantities with RZ instead
of R̂Z , i.e., �Z�p = �
Z , �p = (�1;n; : : : ; �p;n)0.

Lemma A.2 Assume that (A1) with s = 4, (A2) with r = 1,(A3) hold,
n�1

Pn
t=1(~s(t) � s(t))2 = OP (b(n)) for some sequence b(n) = o(1) (n ! 1) and p(n) =

o(minf(n=log(n))1=2; b(n)�1=2g). Then

max
1�j�p

j�̂j;n � �j;nj = OP ((log(n)=n)
1=2) + OP (

1X
j=p+1

j�j j) +OP (b(n)
1=2);

and the same bound holds for max1�j�p j�̂j;n � �j j.
Proof: Denote by �̂p = (�̂1;n; : : : ; �̂p;n)

0, �p = (�1;n; : : : ; �p;n)
0. According to An et al.

(1982, formula (25)),

�̂p � �p = ���1Z [(
̂Ẑ � 
Z) + (�̂Ẑ � �Z)(�̂p � �p) + (�̂Ẑ � �Z)�p]:

By denoting

kzk1 =

(
max1�j�d jzj j for z a d� 1 vector;

max1�j�d1
Pd2

i=1 jzjij for z a d1 � d2 matrix;
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we arrive at

k(�̂Ẑ � �Z)(�̂p � �p)k1 � p max
0�j�p

jR̂Ẑ(j)� RZ(j)jk�̂p� �pk1;

k(�̂Ẑ � �Z)�p)k1 � max
0�j�p

jR̂Ẑ(j)�RZ(j)j
pX

j=1

j�j;nj:

Therefore

k�̂p � �pk1 � k��1Z k1 max
0�j�p

jR̂Ẑ(j)�RZ(j)j(1+ pk�̂p � �pk1 +
pX

j=1

j�j;nj);

and hence

k�̂p � �pk1(1� k��1Z k1p max
0�j�p

jR̂Ẑ(j)�RZ(j)j)

� max
0�j�p

jR̂Ẑ(j)�RZ(j)j(k��1Z k1 +
pX

j=1

j�j;nj):

By the assumption and Lemma A.1, pmax0�j�p jR̂Ẑ(j) � RZ(j)j = oP (1); by An et al.
(1982, p. 929, l-4), k��1Z k1 < 1 ; by Baxter's inequality,

Pp
j=1 j�j;nj �

Pp
j=1 j�j j +

const:
P1

j=p+1 j�j j = O(1). This, together with the bound for k�̂p � �pk1(1 � k��1Z k1p
max0�j�p jR̂Ẑ(j)� RZ(j)j) above and Lemma A.1 completes the proof. 2

It is very helpful to represent

Zt =
1X
j=0

 j"t�j ;  0 = 1 (A.1)

Z�t =
1X
j=0

 ̂j;n"
�
t�j ;  ̂0;n = 1; (A.2)

where 	(z) =
P1

j=0  jz
j = 1=�(z); �(:) as in (A2), 	̂n(z) =

P1
j=0  ̂j;nz

j = 1=�̂n(z),

�̂n(z) =
Pp

j=0 �̂j;nz
j . This representation is possible by assuming (A2).

Lemma A.3 Assume that (A1) with s = 4, (A2) with r = 1, (A3) hold,
n�1

Pn
t=1(~s(t) � s(t))2 = OP (b(n)) for some sequence b(n) = o(1) (n ! 1) and p(n) =

o(minf(n=log(n))1=4; b(n)�1=4g). Then the following holds:

(i) there exists a random variable n1 such that

sup
n�n1

1X
j=0

jj ̂j;nj <1 in probability;

(ii)

sup
j2IN

j ̂j;n �  j j = OP ((log(n)=n)
1=2) +OP (p

�1):
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Proof: Both statements follow by using Lemma A.2 and then proceeding as in the
proofs of Theorem 3.1 and 3.2 in B�uhlmann (1995a). 2

Lemma A.4 Assume that (A1) with s = maxf2w; 4g, w 2 IN, (A2) with r = 1, (A3)
hold, n�1

Pn
t=1(~s(t) � s(t))2 = OP (b(n)) for some sequence b(n) = o(1) (n ! 1) and

p(n) = o(minf(n=log(n))1=2; b(n)�1=2g). Then

IE�j"�t j2w = IEj"tj2w + oP (1):

Proof: We write

"t;n = "t + Qt;n +Rt;n + Ut;n + Vt;n;

where Qt;n =
Pp

j=0(�̂j;n � �j;n)Zt�j , Rt;n =
Pp

j=0(�j;n � �j)Zt�j , Ut;n =
Pp

j=0 �̂j;n(s(t �
j)� ~s(t� j)), Vt;n = �P1

j=p+1 �jZt�j . Now the proof is straightforward as in B�uhlmann
(1995b, Lem.5.3). The only additional quantities to control are Ut;n; Vt;n: by the Cauchy-
Schwarz inequality and Lemma A.2,

(n� p)�1
nX

t=p+1

jUt;nj2w � [p2(k�pk1 + k�̂p � �pk1)2OP (b(n))]
w = oP (1);

(n� p)�1
nX

t=p+1

jVt;nj2w = OP ((
1X

j=p+1

j�j j)2w) = oP (1):

With these bounds we complete the proof. 2

Proof of Theorem 3.1. The �rst statement follows directly from Theorem 10, Ch. IV.4
in Hannan (1971), our conditions imply the conditions for this theorem.
By (A.2) we know that the bootstrap noise fZ�t gt2ZZ is a linear process and by Lemma
A.3 and A.4 we are able to control its coe�cients and its innovations. The main key is to
write

a(n; x)(ŝ(x)� s(x)) =
nX
t=1

wt;n(x)Zt;

a(n; x)(ŝ�(x)� ŝ(x)) =
nX
t=1

wt;n(x)Z
�
t : (A.3)

The weights wt;n(x) are such that

sup
n2IN

nX
t=1

jwt;n(x)j <1: (A.4)

To see this, write

a(n; x)(ŝ(x)� s(x)) =
JX

j=1

dj(n)(�̂j � �j)gj;n(x) =
JX

j=1

((D�1
n G0GD�1

n )�1D�1
n G0Zn)jgj;n(x);

where Dn = diag(d1(n); : : : ; dJ(n)), G the n�J design matrix with element Gt;j = gj;n(t)
and Zn = (Z1; : : : ; Zn)0.
By assumption (R1),

(D�1
n G0GD�1

n )�1 ! ([�j;k(0)]
J
j;k=1)

�1 (n!1):
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Therefore, by changing the order of summation and by (R2), (A.4) follows.
By (A.3)-(A.4) and Lemma A.3 and A.4 we get

V ar�(a(n; x)ŝ�(x))� V ar(a(n; x)ŝ(x)) = oP (1):

Now, again by using Lemma A.3 and A.4, we proceed as in the proof of Theorem 10, Ch.
IV.4 in Hannan (1971). This completes the proof. 2

Proof of Lemma 3.1. As in Theorem 3.1 we get asymptotic normality for a �nite
collection, i.e., for Zn(x1); : : : ; Zn(xd), where x1; : : :xd 2 K; d 2 IN. What remains to
show is stochastic equicontinuity, i.e., for all � > 0, for all � > 0 exists � > 0 and exists
n0 = n0(�) such that

IP[ sup
x;y2K;jx�yj��

jZn(x)� Zn(y)j > �] < � for all n � n0; (A.5)

cf.Billingsley (1968, Th. 8.2).
But by the Lipschitz condition for the regressors (R2),

sup
x;y2K;jx�yj��

jZn(x)� Zn(y)j �
JX

j=1

dj(n)j�̂j � �j jCj�

 ;

which implies (A.5) since dj(n)(�̂j � �j) = OP (1), j = 1; : : : ; J . 2

Proof of Theorem 3.2. The proof is analogous to the proof of Lemma 3.1 above. 2

Proof of Theorem 3.3. In Hall and Hart (1990) it is shown that for 0 < � < 1=2,

((1� 2�)n)�1
[(1��)n]X
t=[n�]+1

(~s(t)� s(t))2 = ((1� 2�)n)�1
[(1��)n]X
t=[n�]+1

( ~m(t=n)�m(t=n))2 = OP (n
�1~h1):

This explains that for p(n) = o(minf(n=log(n))1=4; n1=4~h1=4g) Lemma A.2 - A.4 are valid.
It is also known, cf. Hall and Hart (1990), that

Bas(x) = lim
n!1

n1=2h1=2h2m(2)(x)

Z 1

�1
x2K(x)dx=2; 0 < x < 1: (A.6)

Moreover

�2as = lim
n!1

n1=2h1=2V ar(m̂(x)) =
1X

k=�1

RZ(k)m(x)2
Z 1

�1
K2(x)dx;

where RZ(k) = Cov(Z0; Zk).
Now we write

n1=2h1=2(m̂(x)� IE[m̂(x)]) = n1=2h1=2
nX
t=1

wt;n(x)Zt; with
nX
t=1

wt;n(x) = 1;

n1=2h1=2(m̂�(x)� IE�[m̂�(x)]) = n1=2h1=2
nX
t=1

wt;n(x)Z
�
t ; with the same weights wt;n(x):
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These expressions are similar to an arithmetic mean for stationary variables. The limiting
normal distribution for the above quantities can be proved in the same way, we just
outline the case for the bootstrap. We are reasoning as in the proof of Theorem 3.1 in
B�uhlmann (1995b). The idea is to replace Z�t by Z�t;M =

PM
j=0  ̂j;n"

�
t�j , compare with

(A.2). Using the M -dependence of fZ�t;Mgt2ZZ we prove convergence in d�-distribution forPn
t=1 wt;n(x)Z

�
t;M via blocking and the Lindeberg central limit theorem (a possible choice

for the block sizes is a(n) = n1=2h, b(n) = n1=2h2:4). Then we prove that the truncation
error

Pn
t=1 wt;n(x)(Z

�
t �Z�t;M ) is asymptotically negligible. For these steps we use Lemma

A.3 and A.4. Summarizing, with the same arguments as in the proof of Theorem 3.1 in
B�uhlmann (1995b) we get

n1=2h1=2(m̂�(x)� IE�[m̂�(x)])
d��! N (0; �2as) in probability:

What remains to show is

n1=2h1=2(IE�[m̂�(x)]� ~m(x))�Bas(x) = oP (1):

But by (A.6) and the same argument for the bootstrap,

n1=2h1=2(IE�[m̂�(x)]� ~m(x))�Bas(x) � n1=2h1=2h2CK( ~m
(2)(x)�m(2)(x));

hence it su�ces to show

~m(2)(x)�m(2)(x) = oP (1):

But this holds true because ~hn1=5 ! 1, cf. Gasser and M�uller (1984) (our assumptions
are stronger than their conditions). 2

Acknowledgments: I would like to thank David Brillinger for many helpful com-
ments and discussions.
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