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1 Introduction

A partition of the set Nn := f1; 2; � � � ; ng is an unordered collection of non-
empty subsets of Nn. Let Pn denote the set of all such partitions, and let
Bn = #(Pn), the number of partitions of Nn. The numbers Bn are known
as the Bell numbers [4, 3]. See Rota [35] for a survey of their properties and
applications. Dobinski [13] discovered the remarkable formula

Bn = e�1
1X
m=1

mn

m!
(n = 1; 2; � � �) (1)

which leads ([26] 1.9) to the asymptotic evaluation

Bn � 1p
n
�(n)n+1=2e�(n)�n�1 as n!1 (2)
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where �(n) log(�(n)) = n. As noted by Comtet [9], for each n the in�nite
sum in (1) can be evaluated as the least integer greater than the sum of the
�rst 2n terms.

From a probabilistic perspective, the right side of Dobinski's formula
represents the nth moment of the Poisson distribution with mean 1. So the
initially surprising fact that this expression yields an integer for all n amounts
to the fact that all positive integer moments of the Poisson(1) distribution
are integers. As explained in Section 2, Dobinski's formula follows easily
from the fact that the factorial moments of the Poisson(1) distribution are
identically equal to 1, an identity which can be understood probabilistically
with essentially no calculation.

While such probabilistic interpretations of various identities related to set
partitions are the main theme of this paper, section (1.2) o�ers an elementary
combinatorial proof of Dobinski's formula which seems simpler than other
proofs in the literature (Rota [35], Berge [5], p. 44, Comtet [9], p. 211). This
argument involves identities whose probabilistic interpretations are brought
out later in the paper.

1.1 Notation

Following the notation of [20], let

(
n
k

)
denote the number of partitions of

Nn into exactly k distinct non-empty subsets, so that

Bn =
nX

k=1

(
n
k

)
(3)

The

(
n
k

)
are known as the Stirling numbers of the second kind. Let mk

denote the falling factorial with k factors

mk = m(m� 1) � � � (m� k + 1) (4)

which, for positive integers m and k, is the number of permutations of length
k of m distinct symbols. The formula

mn =
nX

k=1

(
n
k

)
mk (5)
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decomposes the number mn of sequences of m distinct symbols of length n
as the sum over k of the number of such sequences that contain exactly k
distinct symbols ([38], p 35.). As an identity of polynomials in m of degree

n this identity provides an alternative de�nition of the coe�cients

(
n
k

)
for

1 � k � n. See [9, 33, 34, 38]. for background and a wealth of further
information about Stirling numbers.

1.2 A quick proof of Dobinski's formula.

Divide (5) by m! to obtain for positive integer m and n

mn

m!
=

nX
k=1

(
n
k

)
1

(m� k)!
(6)

This is the identity of coe�cients of �m in the power series identity

1X
m=1

mn

m!
�m =

 
nX

k=1

(
n
k

)
�k
!0@ 1X

j=0

�j

j!

1
A (7)

which rearranges as to give the following the following horizontal generating
function for the Stirling numbers of the second kind:

nX
k=1

(
n
k

)
�k = e��

1X
m=1

mn

m!
�m (8)

Take � = 1 and use (3) to obtain Dobinski's formula (1).

2 Moments

For a non-negative integer valued random variable X with

P (X = m) = pm (m = 0; 1; � � �) (9)

and a non-negative function f let

E[f(X)] :=
X
m

pmf(m) (10)
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called the expected value of f(X) for X with distribution (9). See [16, 31]
for background. From (5) and the linearity of the expectation operator E
there is the following well known formula for E[Xn], the nth moment of X,
in terms of E[Xk], the kth factorial moment of X for 1 � k � n [33, 10]:

E[Xn] =
nX

k=1

(
n
k

)
E[Xk] (11)

For � > 0 let X� denote a random variable with the Poisson distribution

P (X� = m) = e��
�m

m!
(m = 0; 1; � � �) (12)

so that

E[f(X�)] = e��
1X
m=0

f(m)
�m

m!
(13)

Take f(m) = mn to see that the right side of (8) equals E[Xn
� ]. So the

identity (8) amounts to the formula

E[Xn
� ] =

nX
k=1

(
n
k

)
�k (n = 1; 2; � � �) (14)

for the moments of the Poisson(�) distribution [32, 30]. This formula is the
particular case of (11) for X with Poisson(�) distribution, for it is known
[32, 10] that

E[Xk
�] = �k (k = 1; 2; � � �) (15)

Formula (15) follows easily from (13) with f(m) = mk by change of summa-
tion variable from m to j = m � k. In particular, for � = 1 the factorial
moments of the Poisson(1) distribution are identically equal to 1. So Dobin-
ski's formula (1) can be read from (14) for � = 1, which follows as indicated
above from from (11) and (15). In essence, this is Rota's [35] proof of Dobin-
ski's formula cast in probabilistic notation. This argument di�ers from the
proof in Section 1.2 in that it involves checking (15) for � = 1.

Formula (15) has the following interpretation in terms of a Poisson process
[24, 31]. Let

0 < U(1) < � � � < U(X�) < 1 (16)

denote the random locations in (0; 1) of the points of a homogeneous Poisson
process on (0; 1) with mean intensity measure � du for 0 < u < 1. For each
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k = 1; 2; � � � de�ne an associated k-tuple point process, with points in (0; 1)k,
to have a point at each of the locations (U(�1); � � � ; U(�k)) as � ranges over the

X
k
� di�erent permutations of f1; � � � ;X�g of length k. For distinct ui 2 (0; 1),

independence properties of the basic Poisson process on (0; 1) imply that the
mean intensity of the k-tuple point process at (u1; � � � ; uk) 2 (0; 1)k is

P (some U(�i) 2 dui for each 1 � i � k)

du1 � � � duk =
(� du1) � � � (� duk)

du1 � � � duk = �k (17)

So the expected number of points in the k-tuple point process is

E[X
k
� ] = �k

Z 1

0
du1 � � �

Z 1

0
duk = �k (18)

See [33, 8] for various applications of Stirling numbers and their gener-
alizations to the computation of moments of probability distributions. Mo-
ments of the normal distribution also have interesting combinatorial inter-
pretations [14, 19]. More generally, the idea of representing combinatorially
de�ned numbers by an in�nite sum or an integral, typically with a proba-
bilistic interpretation, has proved to be a very fruitful one. Other examples
are the representation of n! as a gamma integral, which leads to Stirling's
formula [7, 12, 27], and Laplace's representation of kth di�erences of pow-
ers [25, 10, 23], which yields an asymptotic formula for the Stirling numbers
of the second kind. See [29] for a recent survey of asymptotic enumeration
methods.

3 Variations of Dobinski's Formula

The derivation of Dobinski's formula given the previous section yields the
following proposition:

Proposition 1 Let X be a random variable with probability distribution (pm)
on f0; 1; 2; � � �g and let n be a positive integer. The following conditions are
equivalent:

(i) the �rst n factorial moments of X are identically equal to 1;
(ii) the kth moment of X equals Bk for every 1 � k � n.
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It is well known that for each � > 0 the Poisson(�) distribution is
uniquely determined by its moments. See for instance [6], Section 30. So
the Poisson(1) distribution is the unique probability distribution whose nth
moment is Bn for every n. But for each �xed n there are many probabil-
ity distributions on f0; 1; 2; � � �g which have the same �rst n moments as
Poisson(1). It is obvious that there can be at most one such distribution
of X with P (X � n) = 1, because the moment conditions amount to a
system of n linearly independent equations in n unknowns p1; � � � ; pn. Less
obvious is the fact that the unique solution of these equations is such that
pi � 0 for 1 � i � n and

Pn
i=1 pi � 1, so that (p1; � � � ; pn) is the restriction

to f1; � � � ; ng of a unique probability distribution on f0; 1; � � � ; ng. But this
probability distribution on f0; 1; 2; � � � ; ng whose �rst n factorial moments
are identically equal to one, is known to arise in the setting of the classical
matching problem [10, 16]. IfMn is the number of �xed points of a uniformly
distributed random permutation of Nn, then it is easily shown by the method
of indicators that the �rst n factorial moments of Mn are identically equal to
1. See [10]. The distribution of a random variable X with range f0; 1; � � � ; ng
is recovered from its factorial moments by the classical sieve formula [10]:

P (X = m) =
1

m!

nX
k=m

(�1)m�kE[Xk]

(m� k)!
(m = 0; 1; � � � n) (19)

For X =Mn with E[Mk
n ] � 1 for 0 � k � n, this simpli�es to

P (Mn = m) =
1

m!

n�mX
s=0

(�1)s
s!

(m = 0; 1; � � � n) (20)

See Section IV.4 of [15] for further discussion. According to Proposition (1),
the kth moment of Mn is Bk for every 1 � k � n. That is to say

Bk =
nX

m=1

mk

m!

n�mX
s=0

(�1)s
s!

(1 � k � n) (21)

This variation of Dobinkski's formula is derived in quite a di�erent way by
Wilf [42] p.22 by substitution of the classical formula(

n
k

)
=

1

k!

kX
j=1

(�1)k�j
 
k

j

!
jn (22)

into (3). As observed by Wilf, Dobinski's formula (1) follows easily from (21)
by letting n!1. See also Lov�asz [26],1.9, for a similar argument.
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3.1 The moment generating function.

Consider now the moment generating function (m.g.f.) of the Poisson(�)
distribution:

E[exp(�X�)] = E

"
1X
n=0

�nXn
�

n!

#
=

1X
n=0

E[Xn
� ]
�n

n!
(23)

where the series converge for all real � and the switch of E and
P

is easily
justi�ed. See [6] for a modern treatment of m.g.f's. From (13) with f(m) =
e�m there is the standard formula

E[exp(�X�)] = e��
1X
m=0

(�e�)m

m!
= exp(�(e� � 1)) (24)

This combines with (8) to yield the following double generating function of
the Stirling numbers of the second kind. This classical formula (see e.g.
Comtet [9], p 206) is an identity between two di�erent expressions for the
m.g.f. in � of the Poisson (�) distribution:

1 +
1X
n=1

nX
k=1

(
n
k

)
�k �n

n!
= exp(�(e� � 1)) (25)

In particular, for � = 1 this reduces by (3) to Bell's [4, 3] formula

1 +
1X
n=1

Bn
�n

n!
= exp(e� � 1) (26)

which gives two expressions for the m.g.f. of the Poisson(1) distribution.
Equating coe�cients of �k in (25) yields the vertical generating function of
the Stirling numbers of the second kind:

X
n�k

(
n
k

)
�n

n!
=

1

k!
(e� � 1)k (k = 1; 2; � � �) (27)

See [9, 33, 38] for alternative derivations of these identities. There are sim-
ilar identities for many other arrays of combinatorial numbers, such as the
binomial coe�cients and Stirling numbers of the �rst kind (see e.g. [9, 42],
[20],p. 351), most of which admit probabilistic interpretations. Formulae
with binomial coe�cients typically involve independent trials, while those
with Stirling numbers of the �rst kind typically involve the cycle structure
of random permutations [1]. See also [2] for probabilistic analysis of more
general combinatorial structures and further references.
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4 Random Partitions

A random partition of Nn is a random variable � with values in the set Pn
of partitions of Nn. The distribution of � then refers to the collection of
probabilities P (� = �) as � ranges over Pn. Questions about enumeration of
partitions of Nn of various kinds can be phrased probabilistically in terms of
a uniform random partition, that is a random partition � with the uniform
distribution P (� = �) = 1=Bn for each partition � 2 Pn. For developments
of this idea see [22, 21, 36, 18]. Random partitions with non-uniform distri-
bution also arise naturally in various contexts. So it is useful to have models
for random partitions, both uniform and non-uniform.

The following random allocation scheme is the simplest way to generate
a random partition of Nn. See [10, 40, 41] for extensive study of this and
related schemes, and further references. Throw n balls labelled by Nn into
m boxes labelled by Nm, and assume all mn possible allocations of balls
into boxes are equally likely. Let �nm be the partition of balls by boxes.
More formally, let Xi be the number of the box containing the ith ball for
1 � i � n. Then the Xi are independent and uniformly distributed on Nm,
and �nm is the partition of Nn induced by the random equivalence relation
i � j i� Xi = Xj . Formally, the Xi can be regarded as co-ordinate maps
de�ned on (Nn)m, and �nm is then de�ned as a map from (Nn)m to Pn, the
set of partitions of Nn. Let #(�) denote the number of subsets in a partition
� 2 Pn. The distribution of �nm induced by the uniform distribution P on
Nm can be read from formula (5):

P (�nm = �) =
mk

mn
if #(�) = k (28)

The distribution of #(�nm), the number of occupied boxes when n balls are
thrown into m boxes, is given by the following probabilistic equivalent of (5):

P [#(�nm) = k] =

(
n
k

)
mk

mn
(1 � k � n) (29)

Because the probability displayed in (28) depends on the number of occupied
boxes k, this random partition � of Nn has a non-uniform distribution for all
n;m � 2. However, as observed by Stam [37], for each �xed n it is possible
to generate a uniformly distributed random partition � of Nn by a suitable
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randomization of m. The following Proposition was suggested by Stam's
construction, which is described in Corollary 3.

Proposition 2 Let �nM denote the random partition of Nn generated by
random allocation of n balls into M boxes, where M is random and given
M = m the n balls are thrown independently and uniformly at random into
m boxes. Then the following conditions are equivalent:

(i) �nM has uniform distribution over all partitions of Nn;
(ii) the distribution of M is of the form

P (M = m) =
mnpm
Bn

(m = 1; 2; � � �) (30)

for some probability distribution (pm) on f0; 1; 2; � � �g whose �rst n factorial
moments are identically equal to 1.

Before the proof, here are two corollaries that follow immediately from
the Proposition and the discussion of Sections 2 and 3:

Corollary 3 [37] If M has the distribution (30) for pm = e�1=m!, then �nM

is uniform.

Corollary 4 The unique distribution of M such P (M � n) = 1 and �nM

is uniform is de�ned by (30). for pm = P (Mn = m) as in (30), with Mn the
number of �xed points of a random permutation of Nn.

Proof of Proposition (2). By conditioning on M and using (28),

P (�nM = �) =
1X
m=1

mk

mn
P (M = m) if #(�) = k (31)

So the distribution of � is uniform on Pn i�

1X
m=1

mk

mn
P (M = m) =

1

Bn
(1 � k � n) (32)

De�ne
pm = Bnm

�n P (M = m) (m = 1; 2; � � �) (33)
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so that (32) becomes

1X
m=1

mk pm = 1 (1 � k � n) (34)

which for k = 1 implies that
P1

m=1 pm �
P1

m=1mpm = 1. So �nM is uniform
i� (pm) derived from the distribution of M via (33) is the restriction to
f1; 2; � � �g of a probability distribution on f0; 1; 2; � � �g whose �rst n factorial
moments are equal to 1. This is condition (ii). 2

As shown by Stam, Corollary 3 allows numerous results regarding the
asymptotic distribution for large n of a uniform random partition of Nn to
be deduced from corresponding results for the classical occupancy problem
de�ned by random allocations of balls in boxes, for which see [40, 41]. See
also [22, 21, 36, 11, 18, 2] for a more detailed account of the asymptotics of
uniform random partitions of Nn.

As a variation, the following Corollary is easily obtained by a similar
argument:

Corollary 5 Suppose that M has the distribution

P (M = m) =
mnP (X� = m)

�n(�)
(m = 1; 2; � � �) (35)

where X� has the Poisson(�) distribution (12), and �n(�) = E(Xn
� ). Then

the distribution of �nM is given by

P (�nM = �) =
�k

�n(�)
if #(�) = k (36)

As a check, (36) implies

P [#(�nM) = k) =

(
n
k

)
�k

�n(�)
(1 � k � n) (37)

so the fact that these probabilities sum to 1 amounts to formula (14) for
�n(�). The distribution of �nM de�ned by formula (36) de�nes a Gibbs'
measure on partitions of Nn. See Steele [39] for further discussion of such
measures on combinatorial objects. See also Nijenhuis and Wilf [28] for a
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recursive algorithm for construction of a uniform random partition of Nn

based on the recurrence

Bn = 1 +
n�1X
k=1

 
n� 1

k

!
Bk (38)

where the right side counts the number of partitions � of Nn acording to the
size k of the subset in � that contains n. ([26] Problem 1.10). For a re-
cent systematic approach to the random generation of labelled combinatorial
structures, and further references on this topic, see [17].
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