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Abstract

A new method for estimating the frequency of antigen-responsive

T-cells, using a cell proliferation assay, is described. In this assay, the

uptake of tritiated thymidine, by peripheral blood mononuclear cells

which have been exposed to antigen, is measured for each well on a mi-

crotiter plate. Whereas this assay is generally used as part of a limiting

dilution assay, here we estimate the frequency of responding cells using

a single, carefully chosen cell density. The traditional analysis of such

data uses a cut-o� to separate wells which contain no responding cells

and wells which contain at least one responding cell. The new method

uses the scintillation count to estimate the number of responding cells

for each well on the plate.
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1 Introduction

In this paper we describe a method for estimating the frequency of antigen-

responsive T-cells among peripheral blood mononuclear cells (PBMC) from

human subjects. It was developed in a particular context, but we believe

that the approach may have wider applicability. The proliferation assay which

motivates our method seeks to quantitate the response of human subjects to

a herpes simplex vaccine consisting of HSV type 2 glycoproteins D and B,

expressed as recombinant proteins in Chinese hamster ovary cells and admin-

istered as a vaccine combined with alum (Parr et al., 1991; Straus et al.,

1993) or an oil-in-water emulsion adjuvant MF59 (Langenberg et al., 1995). A

standard proliferation assay (James, 1991) utilizing the responses in triplicate

wells was found to be inadequate in this context, while a full limiting dilution

assay (LDA) was not feasible because of the need for more PBMC than were

available from the vaccine recipients. Accordingly, our analysis was developed

for estimating the number of antigen-responsive T-cells based on a single care-

fully chosen dilution, and so we sought to make greater use of the data than

is usually the case.

Two other factors prompted our approach, which we now describe. In the

present context, a standard LDA begins with a classi�cation of the wells in all

or part of a microtiter plate into the categories positive (contains at least one

responding cell) and negative (contains no responding cells). Use is then made

of a statistical model, typically the single-hit Poisson model (SHPM), which

relates the frequency of positive wells to the frequency of responding cells in

the wells. The frequency of responding cells is then estimated from the data

on wells using the method of maximum likelihood or minimum chi-square. All
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such analyses have to use some method of determining which wells contain

responding cells, that is, of classifying wells into positives and negatives. The

data with which this classi�cation is done is generally a scintillation count,

and it is usual for the assay to contain some wells which should all be nega-

tive to provide an estimate of the size of the background count. A common

approach (see e.g. Langhorne and Fischer-Lindahl, 1981) is to select a thresh-

old, often the mean plus two or three standard deviations of the background

counts, and consider a well positive if its count exceeds this threshold. This

approach clearly works well much of the time, as indicated by the straight

lines frequently obtained when plotting the log of the frequency of negative

wells against the number of cells per well. However, the background counts

are usually not normally distributed about their mean, the more common

situation being where there is considerable skewness, with the left-hand tail

of the distribution being much shorter than its right-hand tail. Under these

circumstances, reliance upon a threshold de�ned in terms of the mean and

standard deviation of such counts can be problematic. This was the case with

the data we consider in the present paper: determination of a threshold was

not at all straightforward. A comparison of the counts corresponding to the

wells in which no responding cells were expected with those for wells to which

antigen was added revealed no clear cut-o� in many cases. E�orts to develop

more elaborate methods of determining the threshold for positive wells were

not completely satisfactory. This led us to seek an analysis of the data which

made direct use of the scintillation counts, and which did not reduce them to

positive and negative well frequencies. There are good statistical reasons for

avoiding the use of thresholds in situations where they are not entirely clear.

In such cases, the actual threshold used can have a very great impact, indeed
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be the dominant contributor to the �nal frequency estimates, yet the very real

uncertainty in the determination of the threshold is typically not re
ected in

the standard errors or con�dence limits given for these frequency estimates.

Doing so presents formidable technical statistical problems, yet ignoring this

important source of uncertainty can lead to quite unrealistic impressions con-

cerning the precision of the frequency estimates.

There was a second, independent reason why it was desirable to avoid clas-

sifying wells as positive or negative: in many cases the entire set of wells for

a given antigen would be positive. This arose whenever the density of cells

chosen for the assay was a poor guess, something that could not always be

avoided. In such cases the standard analysis of the data, given as a frequency

of 100% of wells positive, does not yield a point estimate of the frequency of re-

sponding cells, but only a lower con�dence limit. This causes di�culties later,

when such results are to be compared or combined with other results. Since

up to 20% of our assays would yield all positive wells, however the threshold

was de�ned, we had a strong incentive to develop a method of estimating the

frequency of responding cells another way. Similar remarks apply to the less

frequent cases in which all wells would have been scored negative.

As with most studies of this kind, the approach we adopt below makes use

of the Poisson model (PM) for the distribution of responding cells in a well.

But instead of relating frequencies of responding cells to proportions of positive

wells, we relate them to averages of suitably transformed scintillation counts.

Our model involves plate-speci�c parameters which need to be estimated, but

the evidence so far suggests that this can be done well enough to permit useful

estimates of the frequencies of responding T-cells to be obtained from replicate

pairs of microtiter plates involving cells at a single density. Full details are
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given in the Methods section below, and in Appendix 1.

In order to demonstrate the validity of the new method, we analyse four

LDAs on cells from three subjects, each involving three antigens and a control,

carried out on replicate pairs of plates at six, �ve and four dilutions. We then

compare the results obtained from a single dilution with those obtained using

the entire LDA. We also analyse a number of assays run at a single dilution.

As a further demonstration of the usefulness of this approach, we reanalyse the

data from a quite di�erent type of LDA, see Langhorne and Fischer-Lindahl

(1981), namely a 51Cr-release assay designed to estimate the frequency of cyto-

toxic T-lymphocyte precursor cells in mixed lymphocyte cultures. Finally, we

analyse two additional proliferation assays of di�erent designs to demonstrate

the 
exibility of this method: one a single density assay applied to samples

pre- and post-immunization (S. Rodda, Chiron Mimotopes, Melbourne, Aus-

tralia) and a set of three assays designed as limiting dilution assays (D. Koelle,

University of Washington, Seattle, WA).

2 Materials and methods

2.1 Vaccine, antigens and subjects

Two subjects (#711 and #713) in a clinical trial of an HSV vaccine provided

informed consent for the collection of additional blood for development of the

assay. These subjects had never been infected with either HSV-1 or HSV-2

prior to vaccination with a vaccine consisting of 30 �g each of two HSV gly-

coproteins (D and B) expressed as a recombinant product in Chinese hamster

ovary (CHO) cells. The proteins were combined with an oil-in-water emulsion
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adjuvant (MF59, Chiron Corporation) and administered by intramuscular in-

jection in the deltoid muscle at 0, 1 and 6 months (Langenberg et al., 1995).

A third subject (NIH 1394) who was subject to frequent recurrences of genital

herpes and who is HSV-2 positive was also recruited (Kost et al., 1993). The

gD and gB proteins used in the assay were from the vaccine lots or compa-

rable lots manufactured by Chiron Biocine (Emeryville, CA). Tetanus toxoid

was a gift from Wyeth Laboratories (Nutley, NJ). Phytohemagglutinin was

purchased from Sigma (St. Louis, MO).

2.2 Preparation of cells

Peripheral blood mononuclear cells (PBMC) were collected from the two vac-

cine study subjects 60{69 days after the third immunization by three pass

leukapheresis. PBMC were prepared from the third subject by one pass leuka-

pheresis. The recovered cells were further puri�ed by density centrifugation

onto Ficoll-Hypaque (Pharmacia), washed free of separation medium and pre-

pared for cryopreservation in RPMI 1640 medium containing 20% pooled hu-

man serum and 7.5{10% DMSO. The cells were stored in multiple aliquots in

vapor-phase liquid nitrogen until assay.

2.3 Description of the assays

Six point LDAs of PBMC from subjects #713 and #711 and a second 5 point

LDA of PBMC from subject #713 were set up using information obtained

from a frequency analysis assay (Reece et al., 1994a; M. Tigges, unpublished

observations). PBMC from #713 contain a high frequency of gD2 and gB2

speci�c T-cells while #711 PBMC responded poorly to these two antigens.
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The expected frequencies were 100 and 200 responders per 106 PBMC to gD2

and gB2 respectively from #713 and 5 and 2 responders per 106 PBMC to gD2

and gB2 respectively from #711. The frequency of gB2 and gD2 responsive

T-cells in the NIH 1394 sample was expected to be on the order of 20{40 per

106 PBMC based on the results of assays with PBMC from HSV-2 seropositive

subjects in other trials.

The PBMC were thawed and washed free of preservative with LGM-1

(RPMI 1640, JRH Biosciences, supplemented with 1 mM Na pyruvate, JRH

Biosciences, 5 mM HEPES pH 7.2, Gibco, 2 mM glutamine, JRH Biosciences,

50 �g/ml gentamicin, Gibco, and 1% pooled human serum). The pooled

human serum (PHS) was prepared from screened units of recovered plasma.

The washed cells were resuspended in lymphocyte growth medium containing

10% PHS (LGM-10), the cell concentration was adjusted, and the appropriate

volume of the cell suspension was placed in the culture plates. The test anti-

gens consisted of gD2 and gB2 at a concentration of 1 �g/ml in 48 wells each

distributed between two plates at each concentration. The control antigen

consisted of Tetanus toxoid at 2 Lf/ml in 44 wells and the control mitogen,

PHA, was added to two wells on each plate. The PBMC from subject #711

were seeded into U-bottom plates and those from subjects #713 and NIH 1394

were seeded into V-bottom plates. For U-bottom plates, the test and control

antigens were diluted to 10 �g/ml in LGM-10 then 20 �l were transferred to

the appropriate wells. The #711 PBMC were diluted into three cells suspen-

sion with densities of 106, 5� 105 and 2� 105 cells/ml then either 200 or 150

�l of the suspension were transferred to two plates. For PBMC from subject

#713, the washed cells were adjusted to 105 cells/ml in LGM-10 then mixed

with an equal volume of LGM-10 containing the test and control antigens at
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2 �g/ml. The cells were then seeded into 48 replicate V-bottom wells in vol-

umes of 150, 100, 75, 50, 35 and 25 �l. In a second assay the #713 cells were

prepared similarly. The cells were resuspended at 5� 105 cells/ml and seeded

into replicate V-bottom wells in volumes of 100, 80 or 60 �l or resuspended

at 2 � 105 cells/ml and seeded in volumes of 100 or 50 �l. The assay design

for the NIH 1394 PBMC di�ered slightly in that the antigens and cells alone

were seeded into 36 wells distributed over three plates (12 wells/plate); the

Tetanus toxoid was included in only 6 wells and the PHA in 3 wells. After

the cells were diluted for dispensing into the wells, a sample was taken to

determine the actual number of cells seeded per well. All of the microwell

plates were cultured for four days in humidi�ed boxes at 37�C in 7% CO2

before being labeled for six hours with 0.5 �Ci/well of 3H-thymidine. PHA

was added to the appropriate wells on day 2. The plates were harvested using

a Cambridge Technologies automated harvester and the �lters counted in a

Wallac/Pharmacia beta-plate scintillation counter.

The assay design for the data from S. Rodda was similar to that described

above, except that 64 replicates were plated for each antigen tested and cells

were plated at 200,000 cells/well. The PBMC were obtained from a single

individual before and 3 weeks after immunization with Tetanus toxoid (Reece,

et al., 1994a). The assays included preimmune cells, post-immunization cells,

and a 1:1 mixture of of the two. Test antigens included in
uenza ribonucle-

oprotein and a peptide that includes an epitope from Tetanus toxoid that is

recognized by CD4+ T-cells from many individuals (Reece, et al., 1994b). The

data from D. Koelle were taken from an LDA design that consisted of 10,000

irradiated autologous PBMC/well, a graded number of between 50,000 and

780 PBMC and HSV-2 viral antigen in 24 replicates. The cells alone controls
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were seeded in replicates of 12 or 24 on plates separate from the antigen con-

taining wells. The cells were cultured for 5 days before being labeled with

3H-thymidine and harvested on day 6.

2.4 Description of the data analysis

Our analysis of the data from a single microtiter plate makes use of all but

two of the counts for the 96 wells: we do not use the counts for the two wells

with PHA, which simply serve as a positive control for helping select usable

data. We will describe the analysis of data from a single plate �rst, although

our �nal analysis involves replicate pairs of plates.

The analysis is based upon the same PM that underlies most LDAs, but we

need an extra relationship connecting the scintillation count to the number of

responding cells in a well. Speci�cally, we suppose that there are plate-speci�c

parameters a, b and �, and a widely-applicable power parameter p such that

the pth power of the scintillation count in a well with k responding cells is

approximately normally distributed with mean a+ bk and standard deviation

�. As with other analyses using the PM, we suppose that the number of

responding cells in a well with c PBMC is Poisson distributed with mean

fc � 10�6, where f is the frequency of responding cells per million PBMC.

Since we have 24 wells with cells alone, 24 with gD2, 24 with gB2 and 22 with

Tetanus toxoid in any given plate, there will be 4 frequencies and 3 additional

parameters for each plate. When we analyse replicate pairs of plates, there

will be 10 parameters: the frequencies of each of the 4 classes of responding

cells, assumed the same in each plate, and a set of 3 plate-speci�c parameters

a, b and � for each plate.
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Algebraically, our assumptions are as follows. Let yij denote the trans-

formed scintillation count for well j of class i, and let kij denote the cor-

responding number of responding cells. Here i = 1; 2; 3; 4 corresponds to the

cells alone, gD2, gB2 and Tetanus toxoid classes, respectively. We assume that

the (yij; kij) are mutually independent, that kij follows a Poisson distribution

with mean �i, and that, given kij , yij follows a normal distribution with mean

a+ bkij and standard deviation �. The aim of our analysis is to estimate the

parameters �i, and hence, using the estimated numbers of cells per well, the

frequencies fi of responding cells per million PBMC.

An initial plotting of the mean scintillation count across each set of wells

against PBMC frequency was used to see if there was su�cient information in

the count for analysis under this model to be feasible. We then turned to the

estimation of the power parameter. It was selected by maximum likelihood

from the values 1, 1/2, 1/4 and 0 (corresponding to log). The suitability of

the normality assumption was examined by carrying out a Q{Q plot (Venables

and Ripley, 1994) of the estimated residuals. The model itself was �tted by

the method of maximum likelihood, speci�cally, using a form of the so-called

EM algorithm (Dempster et al., 1977), although we also carried out a number

of con�rmatory analyses using the fully calculated likelihood. Standard errors

for the parameter estimates were computed using the SEM algorithm (Meng

and Rubin, 1991). We refer to Appendix 1 for full details of the algorithms

used to carry out the analysis.

A by-product of the EM algorithm, which regards the \complete" data for

any well as a pair (y; k), where y is the observed scintillation count, and k the

unobserved number of responding cells, is an estimate of k for each well. These

can be plotted against the count, and provide an informative diagnostic for the
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analysis of a plate. In particular, one can usually see the e�ective threshold

distinguishing wells with no estimated responding cells from those with one or

more.

The foregoing analysis provides estimates of the frequencies �1, �2, �3 and

�4 of responding cells per well for each of the four classes: cells alone, gD2, gB2

and Tetanus toxoid. We next obtained MLEs of the frequencies of responding

cells per well above background, i.e. of �2 � �1, �3 � �1 and �4 � �1, and

then converted the resulting �gures to frequencies per 106 cells. This last step

involved scaling by the estimated number of cells/well in each plate, and the

errors associated with such estimation are discussed in detail in Appendix 2.

We note that as long as �̂2, �̂3 and �̂4 are all � �̂1, the MLEs of the di�erences

�2��1, etc., are just the di�erences �̂2��̂1, etc., of the MLEs. In the rare cases

where one or more of �̂2, �̂3 and �̂4 was � �̂1, a slightly modi�ed analysis was

necessary, involving combining sets of counts. The details are straightforward,

see e.g. Barlow et al. (1972), and will be omitted.

In order to analyse the 51Cr release assay, which has a more standard

structure, with 24 replicate wells at each of 8 concentrations, we used the same

basic method, modi�ed to correspond to only a single unknown frequency of

responder cells at each concentration.

The single density assay using data from S. Rodda consisted of six plates

with cells from one subject taken before and after Tetanus immunization: a

pair of plates with 200,000 preimmune cells per well, a pair with 200,000

post-immunization cells per well, and a pair containing a mixture of 100,000

preimmune cells per well and 100,000 post-immunization cells per well. Each

plate consisted of three groups of 32 wells containing cells alone, cells treated

with in
uenza RNP antigen, and cells treated with an epitope from Tetanus
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toxoid, respectively. For each pair of plates, we estimate the frequency of

responding cells per well for the three groups of wells (denoted �c, �t and �i,

corresponding to cells alone, Tetanus, and in
uenza RNP, respectively), and

two sets of plate-speci�c parameters (a; b; �).

The data from D. Koelle consist of three seven-point LDAs, corresponding

to three di�erent subjects. For each LDA, four plates were used. On the �rst

plate, 24 wells were dedicated to each of four cell densities: 50,000, 25,000,

12,500 and 6,250 cells per well; antigen was added to each well. On the second

plate, 24 wells were dedicated to each of three cell densities: 3,125, 1,563

and 781 cells per well; again, antigen was added to each well. The third and

fourth plates in each LDA were like the �rst two, but with no antigen added.

We analysed these data using the �rst and third plates together, with the

parameters (a; b; �) constrained to be equal for the two plates. The second

and fourth plates were analysed similarly.

3 Results

In Table 1 we exhibit the scintillation counts for the duplicate pair of microtiter

plates having cells from subject #713 at density 11,400 cells/well. Wells in

columns 1{3 contains cells alone; wells in columns 4{6 contain cells together

with the gD2 antigen; wells in columns 7{9 contain cells together with the gB2

antigen; while 22 of the 24 wells in columns 10{12 contain cells together with

Tetanus toxoid, and wells A12 and B12 contain cells together with PHA. This

is a typical set of data for two plates, and will be used below for illustrative

purposes.

Figure 1 consists of plots of mean scintillation counts against cell density
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for each of the �ve classes of wells, from one of the LDAs conducted on cells

from subject #713. The vertical coordinate of each plotted point is a mean

of the counts in 24 (for cells alone, gD2 and gB2), 22 (for Tetanus toxoid) or

2 (for PHA) wells, from one of the two microtiter plates, while the horizontal

coordinate is the corresponding cell density. This �gure strongly suggests that

there is potentially usable information in the scintillation counts beyond that

which helps classify a well as positive or negative. It shows a roughly linear

relationship between mean scintillation count and the number of cells/well in

all �ve cases. There is a tendency for this relationship to level o� at high cell

densities, particularly with the PHA and the Tetanus toxoid counts. Means

of the square roots of the scintillation counts (data not shown, but see below)

exhibit a slightly better linear relationship with cell density over the range

seen with this assay. This linear relationship does not prove that the uptake

of 3H-thymidine is linearly related to the number of responding cells, but

this seems to be a plausible conclusion, and it is on this foundation that our

analysis is built. As we will see below, a square root transformation of the

raw scintillation counts provides a better �t to the model than do the counts

themselves.

Maximum likelihood estimates (MLEs) under the model (Finney, 1978) of

the mean number of responding cells/well for the data in Table 1 are presented

in Table 2, together with MLEs of the parameters a, b and � and estimated

standard deviations (SDs) for each estimate. We used the square root of the

scintillation count, see below. Estimates were obtained by treating each plate

separately, and also for the joint analysis of the pair of plates, where the mean

numbers of responding cells/well were constrained to be equal. The estimated

SDs given in parentheses after each parameter estimate take into account only
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within-plate variation. No attempt has been made to include a component of

variation between duplicates within duplicate pairs, and thus the SDs for the

joint estimates are somewhat understated. The results for di�erent members

of a duplicate pair are usually quite close, and so this underestimation is

unlikely to be a problem. When the two sets of results are quite di�erent, it is

usually the case that one of the pair is simply a bad plate, and the results are

discarded. In any event, the variability between duplicates within duplicate

pairs is usually very much smaller than the between-assay variability, as we

shall see.

After obtaining estimates of the numbers of responding cells/well we cal-

culate the frequency of responding cells/106 cells for each of the three antigens.

The results for the �rst assay of subject #713 at density 11,400 cells/well are

displayed in Table 3. In this table, these frequencies have been corrected for

background using the estimated number of cells/well responding in the cells

alone category. Furthermore, the estimated SDs presented incorporate varia-

tion due to cell counting and dilution errors, but between-assay variability is

still not re
ected in these SDs. It can be seen that at this stage our single

dilution frequency estimates have coe�cients of variation around 25%.

A by-product of the (EM) algorithm we use for maximum likelihood esti-

mation is an estimate, for each well, of the number of responding cells in that

well. These estimates are plotted against the square-root of the scintillation

count and exhibited in Figure 2 for a selection of plates from three di�erent

assays. In Figure 2a (#713: 11,400 cells/well, plate 1, data in Table 1) we see

that wells with counts less than 400 (20 on the square root scale) have been

assigned 0 responding cells, while wells with counts greater than 900 (30 on

the square root scale) have been assigned � 1 responding cell. In between 400
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and 900 is a grey area: there is no clear cut-o� for this data. The mean and SD

of the untransformed counts are 461 and 401 respectively, and so use of mean

+ 2SD as cut-o� would lead to a �gure of 1,263. It is evident that at least two,

perhaps three wells in the cells alone group seem to contain a responding cell.

Their scintillation counts in
ate the SD of the cells alone counts, which in turn

can lead to an unduly large cut-o� under the traditional analysis of such data.

In this case the count of 1,090 in well G1 would be classi�ed as negative under

the mean + 2SD rule, while for our analysis it is a positive well. Although this

is only a single well, the ultimate classi�cation of G1 could have a signi�cant

impact on estimates of frequencies of responding cells, and as noted above, the

uncertainty over cut-o�s is seldom, if ever, re
ected in the SDs or con�dence

intervals calculated for frequency estimates.

In Figure 2b (#713: 1,990 cells/well, 2nd plate) we can see quite clearly

the ranges of scintillation counts corresponding to estimates of 0, 1, 2 and

3 responding cells in a well, under the model. Figure 2c (#711: 155,200

cells/well, 1st plate) shows that when the number of responding cells in a well

can be large, up to 10 or 11 in this case), the estimated relation between this

number and the transformed scintillation count is a \broken stick" straight

line. It is important to remember that this linear relation is not a validation

of the model. We do not know (and cannot know in this context) the number of

responding cells in any well: what we plot is the inferred or estimated number

of such cells, on the assumption that the model is appropriate. In practice,

we get results like those in Figure 2a{2c when the number of responding cells

and the number of cells per well are not both large. Figure 2d (#713, 25,067

cells/well, 1st plate) shows what can happen when both numbers are large.

The maximum-likelihood estimation involves trade-o�s between the estimates
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of frequencies of cells responding in the cells alone group and to antigens,

and estimates of the plate-speci�c parameters a, b and �, which de�ne the

relationship between the scintillation counts and the number of responding

cells. It is not surprising that in very \crowded" conditions | high numbers of

responding cells, high densities of cells/well, V-bottom wells | unusual things

happen. The phenomenon exhibited in Figure 2d seems to be a consequence

of the estimated value of � being large in relation to that of b, for in such cases

we cannot clearly distinguish \signal" (counts due to responding cells) from

\noise" (variation about expected counts).

We now consider the evidence supporting our choice of the square-root of

the scintillation counts as the most appropriate power transformation for the

model as we structured it. Before we do this, however, a comment about our

model is in order. The Poisson assumption for the number of responding cells

in a well is made in line with most other writers on this and related assays,

and we will comment more on this issue below. On the basis of Figure 1 we

have proposed that within each well on a single plate a suitable transformed

scintillation count is linearly related to the number of responding cells in that

well, and, furthermore, the variation about the line is adequately described by

the normal distribution. The latter is purely an assumption of convenience,

for it permits the use of ordinary least-squares at the M-step of our iterative

algorithm leading to the MLEs of all parameters. Our view was and is that

provided there is no clear evidence of the inappropriateness of this assumption,

once the power transformation is found which makes it most plausible, then

the results of our analyses | their utility, reproducibility and consistency with

other approaches | are the basis upon which the approach should be judged,

not the validity of the precise details of the model.
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With that preamble, we turn to Table 4 which displays the re-centred max-

imized log-likelihoods following power transformations of 1 (untransformed),

1=2 (square root), 1=4 (fourth root) and 0 (natural logarithm) of the scintil-

lation counts. As can be seen from Table 4a, the best power transformation

for the two assays of subject #713 ranges from p = 1 (untransformed) for

the highest density of cells (31,333 cells/well), through to the p = 0 (natural

log) for the lowest density (1,990 cells/well). It is clear that if a single trans-

formation is to be used with these assays, and this is highly desirable, then

p = 1=2, corresponding to the square root of scintillation counts, is best for

the widest range of densities. The estimates of frequencies of responding cells

do di�er signi�cantly according to the transformation used, which is why a

widely-applicable transformation should be selected and used for a given, sta-

ble assay of this kind. The appropriateness of the square root transformation

is further supported by noting the corresponding result in Table 4b for the

dilution series involving subject #711: p = 1=2 is most frequently the best of

the four transformations in that case as well.

A second line of evidence supporting the square root transformation can be

found in the Q{Q plots of Figure 3. There the ranked scaled residuals r = (y�
â�b̂k̂)=�̂ (for all plates in the LDAs #713 and #711) are compared to standard

normal quantiles for each of the four power transformations considered here.

When the model �ts well, this Q{Q plot should be a straight line with slope

1, perhaps having a few outliers at either end. A comparison of the four plots

shows that these conditions are best achieved with the scaled residuals based

upon �tting the model to the square root transformed counts. (We point

out that this conclusion is not wholly independent of that obtained from the

Box{Cox analysis, but the linearity of the plot was not a foregone conclusion.)
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In Table 5 we display the parameter estimates obtained by �tting the basic

model to each plate separately. The data comes from the two LDAs of subject

#713, and the single LDA from subject #711. In this table we can see the

variation of parameter estimates between similarly treated pairs of plates,

between dilutions, and between assays (�rst six vs. last �ve of #713) of the

same stored sample. For example, we can see that both of the plates at 25,067

cells/well for #713 have a high � to b ratio, as does the �rst plate at 31,333

cells/well.

The main results of our analysis have frequencies constrained to be equal

across duplicate plates, while permitting the plate-speci�c parameters to vary.

These are presented in Tables 6 and 7 for all samples of cells from subjects

#713, #711 and NIH 1394. Table 6 gives the frequencies as numbers of

cells/well responding to antigen, after adjusting these for the frequency of

responding cells in the cells alone group. By contrast, Table 7 presents the

results as frequencies of responding cells per million cells. This variant requires

an estimate of the number of cells in each well, and there can be substantial

sampling error in such estimates. In order to display the impact of such errors

on the precision of the estimated frequencies, we have included two standard

deviations with each estimate, one (SD) which does not, and the other (SDa)

which does take into account this component of error. It can be seen that

the resulting coe�cients of variation (CVa) are largely in the 10%{25% range,

although they can get as high as 36%, and are unde�ned when the estimate

of frequency of responding cells is 0.

We turn now to the results which show the performance of the assay using

single dilutions. In Table 8 we present the estimated plate parameters for the

four LDAs discussed in this paper. The way in which a, b and � vary with
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the number of cells/well within and between assays can then be seen. In order

to avoid cluttering up this table, we have not displayed the estimated SDs of

the parameter estimates presented, but those given in Table 2 are typical. As

explained in Section 3 above, each plate in NIH 1394 contains cells at all four

dilutions used in that assay. A number of features of this table are worthy of

note. Firstly, there is a clear relationship between the estimated value of the

parameter a and the number of cells per well within each of the �rst two assays,

with higher cell densities corresponding to higher estimated values of a. By

contrast, the estimated values of b and � show no clear trend with cell density,

nor does the a for #713, assay 2. Secondly, the estimated magnitudes of a, b

and � vary markedly between assays, suggesting that these parameters are not

only plate speci�c, within assays, but to some extent assay speci�c. Thirdly,

we see that for the most part, the parameter � lies in the range from b=3 to

b=2, although at times � can be approximately equal to b (#713, assay 2, plate

1; NIH 1394, assay 2), or even greater (#713, assay 2). This last phenomenon

should be regarded as a failure of the model with data from these plates.

In Figure 4, estimates of the frequencies of responding cells per 106 cells are

plotted against cell density, with error bars corresponding to �1 SD. Here the
SD incorporates both within plate variation and errors involved in counting

the number of cells/well and dilution errors (see Appendix 2). The dotted line

in each plot corresponds to the estimated frequency of responding cells/106

cells obtained by carrying out a maximum likelihood analysis using all the

data from both LDAs, but not the single assays. It is immediately clear from

Figure 4 that the error bars we have calculated understate the variability

exhibited by the estimates. Roughly speaking, we would expect about 68% of

these +=� 1SD intervals to contain the true (but unknown) frequency, if they
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incorporated all sources of variability, and it seems evident that this is unlikely

to be the case. In particular, the intervals given in the second assay for #713

at the three highest cell densities, and those for the antigens gD2 and gB2 at

the four highest cell densities for #711, seem too small by perhaps a factor of

2. Despite these di�culties with the estimation of error, it is apparent that

the use of these assays at a single carefully chosen density of cells will yield

estimates of the frequency of responding cells with a coe�cient of variation of

the order of 20% { 25% or better.

In order to re-analyse the data from Langhorne and Fischer-Lindahl (1981),

it was �rst necessary to read the counts per minute (�10�2) from their Fig-

ure 2. The values we obtained and used are presented in Table 9. In Table 10

we exhibit the MLEs of the CTL-precursor frequencies for each cell density,

and also the associated estimates of plate-speci�c parameters. As before, the

SDs re
ect only within-plate variation. Figure 5 shows these estimates plot-

ted against the number of responders, where the estimates from the traditional

analysis are also presented. Note that for these data, the untransformed scin-

tillation counts were used, as indicated by a Box-Cox analysis.

The e�ectiveness of our analysis of the CTL-precursor assay data from

Langhorne and Fischer-Lindahl (1981) is evident from Figure 5. Not only do

our estimates of the CTL-precursor frequencies give a slightly better linear

relation than the traditional ones, based upon the �rst 6 frequencies, our

estimates of b and � were remarkably stable over this range, while the estimates

of a increase with cell density, as we saw above. It is worth pointing out that

we have analysed these data as though the di�erent sets of 25 counts at each

precursor cell density were obtained from di�erent microtiter plates, estimating

a new a, b and � for each set. It is not clear from the paper whether this was
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the case, but if not, then an analysis constraining some of the plate-speci�c

parameters to be equal would be both more appropriate and more e�cient.

Table 11 presents the results of our analysis of the data from S. Rodda.

Here �c, �t and �i denote the estimated frequencies of responding cells per well

for the cells alone, Tetanus and in
uenza RNP groups, respectively. For these

data, the square roots of the scintillation counts were used. Note that the

estimated frequency for the 50:50 mixture is the approximately the average of

the estimated frequencies of its components, within the estimated error.

Table 12 presents the results of our analysis of the data from three LDAs

from D. Koelle, while Figure 6 gives a plot of the estimated frequencies of

responding cells per well (above background) against cell density. We notice

that although there appears to be a reasonable linear relationship between

estimated frequency of responders and number of cells per well, the estimated

ratio of b to � for two pairs of plates (DK2, #2,4; KD, #2,4) suggests di�culty

�tting the model, while those for two other pairs (DK2, #1,3; EL, #1,3) are

only marginally satisfactory.

4 Discussion

The main objective of our analysis was to obtain estimates of frequencies of

responding cells based upon a single dilution. It is clear from the results in

Table 7 and Figure 4 that we can do this with a coe�cient of variation of about

30% or lower, apart from a component of assay-to-assay variation which we

discuss shortly. But before doing so, we recall the stated aim of our single

dilution assay: it was intended to be a signi�cantly more sensitive version

of the standard proliferation assay, which obtains a \stimulation index" as
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the ratio of the mean scintillation count from three test wells to the mean

count from three wells with cells alone. Our assay was not intended to be

a replacement for a standard LDA, whether analysed in the usual way by

reducing the well counts to quantal responses, or under the model presented

in this paper, although it does seem that our model and analysis will provide

an alternative, possibly more e�cient analysis of such LDAs, under certain

circumstances. We have presented analyses of a variety of full LDAs simply

to enable us to assess the extent to which our single dilution estimates can be

relied upon.

Between assay variation is clearly an important issue, and its extent can

be gauged from Table 7 and Figure 4. Apparently it can be quite substan-

tial, with the results for Tetanus toxoid being of particular concern. It might

therefore be thought essential that the SDs assigned to frequency estimates

should incorporate a component of between-assay variation, so that we get a

realistic impression of the true imprecision in these estimates. The issue is

not a simple one, however, as there are many contributors to between-assay

variation, not all of which operate to the same extent in each new assay. For

example, replicate assays carried out by the same experienced technician will

typically lead to more concordant frequency estimates than would be obtained

with di�erent, or less experienced technicians. The quality of the thawed cells

can vary in unpredictable ways, with time since freezing being an important

factor, and the reagents used in the assay can also a�ect the frequencies ob-

tained. We feel that this topic is best studied within the context of a larger

ongoing trial, in which some samples are routinely analysed in two or more

di�erent assays. For this reason we will not discuss the matter any further

here, apart from noting that on the basis of the evidence presented here, it
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might not be unreasonable to double the estimated SDs of frequency estimates

if between-assay variation is to be incorporated.

The method of analysis we have presented in this paper highlights certain

issues relating to the design of assays of the kind we discuss. The most im-

portant concerns the relation of the negative control wells, our cells alone, to

wells containing antigen. We have examined and analysed a number of assays

in which the negative control wells and the wells containing antigen were lo-

cated on di�erent microtiter plates. Although this practice is not necessarily

injudicious, there are at least three reasons why it should be avoided, partic-

ularly if our method of analysis is to be used, but even more generally. As is

made explicit by our estimation of the plate-speci�c parameters a, b and �,

the responses of cells from the same source can di�er from plate to plate, even

in well-conducted assays. It is good general practice to carry out compara-

tive analyses with the greatest possible degree of control over the conditions

which could cause di�erences, in this case, between negative control and anti-

gen wells, for the responses in wells with antigen will be adjusted to the extent

that the negative control wells respond. If it is not possible to make such

intra-plate adjustments, it becomes necessary to assume that the plate con-

taining the negative control wells has the same parameters as that containing

the wells with antigen, for otherwise the two classes of wells will not be treated

similarly in their analysis.

Further, it may not be possible to estimate all the parameters in our ap-

proach, for our method relies upon there being a certain level of variation in

response in order to ensure what is known as the identi�ability of the param-

eters. To take an extreme, but by no means unusual situation, suppose that

all the negative control wells were together on their own plate, and that there
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were no responding cells in this case. Then it is clearly impossible to estimate

a non-zero frequency of responding cells, and equally there will be no way to

estimate anything more than the average background count (our a) and the

variation (our �) about it; the increase in count per responding cell (our b) is

not estimable. Further, in order to use these results to adjust the responses

from a plate with the antigen containing wells, we would have to assume that

the conditions (our a and �) are the same for both plates, whereas with a de-

sign which had negative controls in both plates, this further assumption would

be unnecessary.

We close with some comments concerning the model and its validity. Firstly,

there is the question of the interpretation of our parameters and the range of

reasonable values for them. The parameter a is most easily interpreted as the

average or median value of the counts or transformed counts observed in the

wells in the cells alone category. Of course it will also have the same relation

to the counts from those wells with antigen in which there are no responding

cells, but we will not usually know de�nitely which these are, whereas we can

generally be con�dent that the overwhelming majority of counts from wells

in the cells alone category are simply background. The parameter b is the

slope of the line relating average count or transformed count to frequency of

responding cells within a plate. We can typically obtain 4 such points, corre-

sponding to the 4 groups of wells. (The mean count or transformed count for

a group with � responding cells/well is a + b�, which, when plotted against

�, has slope b.) Finally, the parameter � corresponds to the spread of counts

or transformed counts about their mean, for wells with the same number of

responding cells. Under our normality assumption, about 95% of such counts

would be within 2� of the mean, which has the form a+ kb. Thus satisfactory
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discrimination between adjacent values of k is only possible when � is b=2 or

smaller, and is really good if � � b=4. Our algorithm can converge and give

reasonable frequency estimates with values of � as large as b, or even larger

than b. However, we are inclined to regard such situations as failures of the

model to �t the data, and include them only when there is no other way to

get a frequency estimate, and a rough one is desired.

The appropriateness of our use of the Poisson distribution could also be

questioned. This is a natural and convenient assumption, but it is hard to

produce strong evidence of its validity. The linearity of estimates in an LDA,

when plotted against the number of cells per well, is suggestive, and its absence

would discon�rm the assumption, but not much more can be said without

large high quality data sets. We believe that the widespread and usually

satisfactory application of the SHPM has a similar justi�cation. Few, if any

studies exist o�ering detailed justi�cation of this model. Indeed it is not an

easy model to refute, as many quite di�erently motivated models (two-hit

Poisson, helper two-target Poisson, suppressor two-target Poisson, etc.) can

give rather similar results to those obtained under the SHPM, and would

require quite high-quality data and appropriate tests to be distinguished from

the SHPM (Bonnefoix and Soto, 1995).

A question which arises naturally with our analysis is the dependence of

our conclusions on the normality assumption, and the robustness of this as-

sumption. In another paper (Broman et al., 1995), we have discussed a non-

parametric alternative to the current model, in which the normal distribution

for the residual y� (a+bk) is replaced by an arbitrary symmetric distribution.

In that same paper a robust estimation procedure is discussed, based upon

empirical characteristic functions. What was striking about the analysis given
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there for the LDAs for subject #713, was how close the parameter estimates

obtained were to those found under the normal model. This was not just so for

the estimates of the frequencies of responding cells, but also for the parameters

a and b. (In the nonparametric model there is no parameter �.) We conclude

that the normality assumption, and its robustness are not important issues for

the data we have discussed here.

Our model is a form of mixture model, and with all such models, one must

take care to ensure that the estimates used are not those corresponding to local

maxima of the likelihood, but are genuine maximum likelihood estimates. The

steps we took to ensure this could certainly be strengthened, but what we did

was as follows. First, we chose a cut-o� point for the scintillation count of

wells containing no responding cells. Using this cut-o�, it is straightforward

to obtain estimates of the parameters �, and then (as described earlier) the

parameters a, b and �. Next, we picked a number of points at random from

the parameter space, centered at our rough estimate. Starting at each of

these points, we ran the EM algorithm until convergence to a local maximum,

and calculated the value of the likelihood at the local parameter combination

obtained. The parameters corresponding to the largest local maximum are

then taken. Simulations (data not shown) have reassured us that this approach

works well with data of the kind we have discussed in this paper.

There is a de�nite gain in e�ciency in the estimates of the parameters �

when one uses the analysis we have described, rather than the traditional one

based upon classifying the wells as positive and negative, even when this can

be done essentially without error. As one might expect, this gain is not so

great when the mean number of responding cells/well is small, such as unity

or smaller, but it can be signi�cant when the mean number of such cells is
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substantially greater than unity. As an indication of the possible gains, we

o�er the results in Table 13. This table gives estimates and estimated SDs

for �ve of the cell densities of the Langhorne and Fischer-Lindahl data, along

with a joint analysis, using both the cut-o� method and our new method.

Also given are the ratio of the estimated variances for the two methods, which

indicates the improvement obtained by the new method.

Finally, we remark that our model and analysis, originally designed for

the particular assay described in the Methods section, does appear to have a

wider usefulness. With only relatively minor adaptations, it could be applied

to the CTL-precursor assay of Langhorne and Fischer-Lindahl (1981), as well

as to data from LDAs (D. Koelle), and the single density assay of S. Rodda,

all of which had a structure quite di�erent from that of the original assays. In

each case analysis gave satisfactory results, and in a way which avoided the

arbitrary choice of cut-o�s. Assuming that the model we used is appropriate,

our analysis will also be more e�cient.
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7 Appendix 1. EM and SEM algorithms

Here we describe our methods for obtaining parameter estimates and estimates

of their standard errors. In Appendix 2, we describe our method for obtain-

ing revised estimated standard errors which incorporate the errors in the cell

counts and due to dilution.

Let yij denote the transformed scintillation count for well j of class i (where

j = 1; :::; ni, i = 1; :::; 4, and n =
P4

j=1 ni), and let kij denote the (unobserved)

number of responding cells in that well. We assume that the (yij; kij) are

mutually independent, that kij follows a Poisson distribution with mean �i,

and that, given kij, yij follows a normal distribution with mean a + bkij and

variance �2. For simplicity, we write � = (�1; :::; �4; a; b; �).

7.1 Maximum likelihood estimates

We use an implementation of the EM algorithm (Dempster et al., 1977) to

obtain maximum likelihood estimates of the parameters �. The EM algorithm

is a useful approach in situations, such as ours, where the observations can be

viewed as incomplete data, and where obtaining maximumlikelihood estimates

would be quite simple if one had observed the full data.

One begins with an initial estimate of the parameters. The algorithm is

composed of two steps, which are performed iteratively. In the expectation

or E step, one obtains the expected values of the full-data su�cient statistics,

given the observed data and the current estimates of the parameters. In the

maximization or M step, one obtains revised parameter estimates by maxi-

mization under the full likelihood, using the current expected values of the

full-data su�cient statistics. We denote the arrays of (yij) and (kij) by y and
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k respectively, and similarly � denotes the vector (�i).

Consider the full-data likelihood for our model:

L (�jy; k) = p(y; kj�)

= p(kj�)p(yjk; a; b; �)

=
Y
i;j

p(kij j�i)p(yij jkij; a; b; �)

=
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i;j

e��i�
kij
i

kij !
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This is easily seen to correspond to an exponential family, with su�cient statis-

tics
P

j kij (for i = 1; :::; 4),
P

i;j yij,
P

i;j y
2
ij,
P

i;j yijkij , and
P

i;j k
2
ij .

Now, consider a single iteration of the EM algorithm. In the E step, we

obtain the expected values of the above su�cient statistics given the yij and

the current estimates of the parameters. We �rst calculate the expected value

of kij and k2ij, for each i; j. This is done numerically, using the following

formulae (note that, for small �s, it is su�cient to perform the sums for k up
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to only 10 or 20):

E(kij jyij; �i; a; b; �) =
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The expected values of the su�cient statistics are then calculated as follows:
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In the M step, we estimate �i by our current estimate of
P

j kij=ni, and

we estimate a, b, and �2 by regressing the yij on the kij, using our current

estimates of the full-data su�cient statistics:

b̂ =

P
i;j yijkij �

�P
i;j yij

� �P
i;j kij
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To obtain our estimates, then, we begin with a set of initial estimates and

iteratively perform the above E and M steps until convergence.

Note that the likelihood surface for the problem under consideration is

generally multimodal. In order to ensure the achievement of the point at which

the likelihood is globally maximized, or at least is close to a global maximum,

it is necessary to perform the EM algorithm from a number of di�erent starting

points. To choose among the di�erent points to which the algorithm converges,

we explicitly calculate the observed-data likelihood at each of these points, and

determine which gives the maximum likelihood. We may still not achieve the

global maximum, but we feel that our choice of multiple starting points gives

quite good results.

Our method of choosing starting points is as follows. Having transformed

the scintillation counts, we use the cut-o� method to estimate the �i: we

choose a cut-o� and then estimate �̂i = � log(qi), where qi is the proportion

of wells, in the ith group, which are below the cut-o�. Our initial estimate
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of a is the median of the transformed scintillation counts, among the wells

below our chosen cut-o�. Let mi be the mean of the transformed scintillation

counts for group i; mi should be around a + b�i, and so our initial estimate

of b is the median (over all of the groups) of (mi � a)=�i. Since we've found

that � is generally between b=4 and b=2, our initial estimate of � is b̂=3. Using

this rough estimate, denoted �̂(rough), a number of additional starting points

can be obtained, for example, by sampling ui iid uniform(�1; 1), and letting

�̂
(0)
i = eui �̂

(rough)
i .

One might also obtain the maximumlikelihood estimates by explicitlymax-

imizing the observed-data likelihood (using, for example, the Nelder-Mead

simplex method (Nelder and Mead, 1965)). For our model, the observed-data

likelihood is as follows:

L (�; a; b; �jy) =
Y
i;j

p (yijj�i; a; b; �)

=
Y
i;j

2
4X
k�0

p(kj�i) p(yijjk; a; b; �)
3
5

=
Y
i;j

8<
:
X
k�0

e��i�ki
kij !

1

�
p
2�

exp

"
�(yij � a� bk)2

2�2

#9=
;

7.2 Estimated standard errors

To obtain estimates of the standard errors of our estimated parameters, we use

the fact that the asymptotic variance-covariance matrix satis�es V = I�1o (�jy),
where we write � = (�1; :::; �4; a; b; �), and where Io(�jy) is the observed-data
information matrix, obtained by calculating the matrix of second derivatives

of the negative log likelihood.
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Meng and Rubin have described a method, which they call the SEM algo-

rithm (Meng and Rubin, 1991), for obtaining the above observed-data infor-

mation matrix from the full-data information matrix, Io(�jy; k), and the rate

of convergence of the EM algorithm. Using the notation of Meng and Rubin,

we describe their SEM algorithm and its implementation for our problem.

The EM algorithm de�nes a map �(t+1) = M(�(t)), for which the maximum

likelihood estimate, �̂, is a �xed point, meaning �̂ = M(�̂). LetDM denote the

Jacobian matrix of M evaluated at �̂, so that, if we let rij denote the (i; j)th

element of DM , rij =
@Mj(�)
@�i

j
�=�̂

.

Let Ioc denote the expected value of the full-data information matrix, given

the observed data, evaluated at �̂, so that Ioc = E [Io(�jy; k)jy; �] j�=�̂
.

Meng and Rubin showed that the observed data asymptotic variance-

covariance matrix, V , can be written as V = I�1oc (I �DM)�1.

For our model, the full-data information matrix, Io(�jy; k), calculated by

taking the second derivative of the full-data negative log likelihood, is as fol-

lows, where empty cells are to be �lled in with zeros.
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As Meng and Rubin describe, since Io(�jy; k) is a linear function of the

su�cient statistics, the matrix Ioc can be calculated by evaluating Io(�jy; k) at
the expected value of the su�cient statistics, found in the last E step of the

EM algorithm, and at the maximum likelihood estimate, �̂.

Let rij denote the (i; j)th element of the matrix DM , and let �̂ denote the

MLE of �. Then

rij = lim
�i!�̂i

Mj(�̂1; : : : ; �̂i�1; �i; �̂i+1; : : : ; �̂7)� �̂j

�i � �̂i

Thus the matrix DM can be calculated as follows.

1. Calculate the MLE, �̂, using the EM algorithm.

2. Pick a starting point, �(0), some small distance from �̂.

3. Repeat the following until convergence.
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(a) Calculate �(k) =M�(k�1), using one step of the EM algorithm.

(b) For each i = 1; 2; : : : ; 7,

i. Let �(k)(i) = (�̂1; : : : ; �̂i�1; �
(k)
i ; �̂i+1; : : : ; �̂7). (Replace the ith

element of �̂ with the ith element of �(k).)

ii. Perform one step of the EM algorithm on �(k)(i), to obtain

M [�(k)(i)].

iii. Let r
(k)
ij = fMj[�(k)(i)]� �̂jg=f�(k)i � �̂ig.

As suggested by Meng and Rubin, we allow the rij to converge at di�erent

rates. The element rij is taken to be the �rst value of r(k)ij which satis�es

jr(k)ij � r
(k�1)
ij j < �, where � is some chosen tolerance value, and where the k at

which we stop is allowed to depend on (i; j).
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8 Appendix 2. Cell count errors

8.1 Method for obtaining cell counts

We start with a blood sample with a cell concentration of X cells per ml. A

100 �l aliquot of this sample is combined with 100 �l of Trypan blue dye and is

placed in a hemacytometer, which takes a �xed volume of cells and has marked

squares, each corresponding to a volume of 0.1 �l, thus allowing one to count

the number of cells in a known volume. The number of cells in a square is

counted; this is repeated for subsequent squares, until the total number of cells

counted is at least 100, or until the cells in �ve squares have been counted. A

volume of � ml of cells is added to each well of the microtiter plate.

Let K denote the average number of cells counted per square (i.e., the

number of cells counted divided by the number of squares considered). We

estimate the average number of cells per well by K � � � 2 � 104. (The 104

converts from cells per square to cells per ml; the 2 accounts for the fact that

the cells were diluted in an equal volume of dye; � is the volume of cells per

well.)

8.2 Model for errors

We model the errors in each dilution/pipetting to have mean 0 and SD �
�� (the target concentration of cells). Thus � is the coe�cient of variation for

the cell concentration for the dilution (conditioning on the cell concentration

in the sample from which the dilution was taken). Errors in the pipetting of

cells into each of the wells are ignored.

Next, we model the cell counts for each square to be independent unbiased
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Poisson counts. Finally, we assume that the dilution errors are stochastically

independent, and that they are independent of the Poisson counts.

8.3 Error in the estimated number of cells per well

Let X denote the initial cell concentration, in cells per ml. 100 �l of these

cells are combined with 100 �l of Trypan blue and placed in a hemacytometer;

let X 0 denote the resulting cell concentration, in cells per square (i.e., cells

per 10�4 ml). Let K denote the average number of cells counted in, say, m

squares.

It is relatively easy to see that our estimate of the average number of cells

per well is unbiased. We seek here to calculate var(20; 000 �K�).

Note that:

1. EX 0 = X=20; 000

2. varX 0 = (�EX 0)2 = (�X=20; 000)2

3. E(KjX 0) = X 0

4. var(KjX 0) = X 0=m

Thus the variance of K is as follows:

var(K) = E[var(KjX 0)] + var[E(KjX 0)]

= E(X 0=m) + var(X 0)

= X=(20; 000m) + (�X=20; 000)2
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The variance of our estimate, 20; 000 �K�, is thus:

var(20; 000 �K�) = 20; 000 �X�2=m+ �2�2X2

= 20; 000 � �(�X)=m+ �2(�X)2

Note that �X is the true average number of cells per well.

8.4 Impact of cell count error on error in the frequency

of responding cells

Let � be the number of responding cells per well, let c be the number of

cells per well (which had been written �X above), and let �̂ and ĉ denote the

corresponding estimates. (Note that ĉ was written 20; 000 � �K above.)

We estimate the variance of �̂ by the SEM algorithm. We estimated the

variance of ĉ above, as follows:

var(ĉ) � 20; 000 c�=m + �2c2

where � denotes the coe�cient of variation for the volume delivered by the

pipets (typically 0.01), � denotes the volume of cells in each well in ml (typically

0.18), and m denotes the number of squares of cells counted (typically 5).

We seek the variance of 106�̂=ĉ. Note that by the delta method (i.e., Taylor

expansion), h
CV(�̂=ĉ)

i2 � h
CV(�̂)

i2
+ [CV(ĉ)]2

where CV(X) denotes the coe�cient of variation of X (SD(X)=E(X)).
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Thus, we obtain

var(106�̂=ĉ) � 1012(�=c)[var(�̂)=�2 + var(ĉ)=c2]

� 1012var(�̂) + 1012var(ĉ)�2=c4

� 1012var(�̂)

c2
+
�1012�220; 000

mc3
+
�21012�2

c2

Note that the �rst term gives the nominal variance (ignoring the cell count

error), the second term gives the sampling error, and the third term gives the

pipetting error.

Consider an example: let �̂ = 3:1, var(�̂) = (0:3)2 = 0:09, ĉ = 11; 400,

� = 1=100, m = 5, and � = 0:150. Thus our estimated frequency of responding

cells per 106 cells is 272. Our estimated variance is as follows:

var(106�̂=ĉ) � 1012 � 0:09
(11; 400)2

+
0:15 � 1012 � (3:1)2 � 20; 000

5 � (11; 400)3

+
(0:01)2 � 1012 � (3:1)2

(11; 400)2

= 693 + 3; 892 + 7

In this example, the estimated SE of the frequency of responding cells per 106

cells is 26 when ignoring the cell count error, and 68 when considering the cell

count error. The pipetting error is negligible.
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TABLE LEGENDS

Table 1. Scintillation counts for the pair of plates from the �rst assay of subject

#713 at density 11,400 cells/well.

Table 2. Maximum likelihood estimates and estimated standard deviations of

model parameters for the results of the �rst assay of subject #713

at density 11,400 cells/well.

Table 3. Maximum likelihood estimates and estimated standard deviations of

frequencies of responding cells per 106 cells for the results of the �rst

assay of subject #713 at density 11,400 cells/well.

Table 4. Recentred maximized log-likelihoods for pairs of plates for di�er-

ent power transformations (Box{Cox analysis) for LDAs #713 and

#711.

Table 5. Parameter estimates for plates from LDA #713 and LDA #711,

analysed singly.

Table 6. Estimated frequencies per well for LDAs #713, #711 and NIH 1394.

Table 7. Estimated frequencies per 106 cells for LDAs #713, #711 and NIH

1394.

Table 8. Estimated plate parameters a, b and � for the assays performed on

subjects #713, #711 and NIH 1394.

Table 9. Counts per minute (�10�2) read from Figure 2 of Langhorne and

Fischer-Lindahl (1981).

Table 10. Maximum likelihood estimates of CTL-precursor frequencies and

plate parameters at each density for the data in Table 9.

Table 11. Maximum likelihood estimates of responder frequencies and plate

parameters for each experimental group for the data from S. Rodda.
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Table 12. Maximum likelihood estimates of responder frequencies and plate

parameters for the three LDAs from D. Koelle: DK2, KD and EL.

Table 13. Comparison of the cut-o� method to our new method, for �ve cell

densities from the Langhorne and Fischer-Lindahl data.
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FIGURE LEGENDS

Figure 1. Mean scintillation counts in relation to cell density for the six-point

LDA from #713.

Figure 2. Estimated number of responding cells vs. square root of scintillation

count.

a. #713: 11,400 cells/well, plate 1.

b. #713: 1,990 cells/well, plate 2.

c. #711: 155,200 cells/well, plate 1.

d. #713: 25,067 cells/well, plate 2.

Figure 3. Normal quantile-quantile plots of residuals after �tting the model to

power-transformed scintillation counts.

a. p = 1 (untransformed).

b. p = 1=2 (square root transformation).

c. p = 1=4 (fourth-root transformation).

d. p = 0 (natural log transformation).

Figure 4. Maximum likelihood estimates of frequencies (�106) of responding
cells using two plates at each dilution: estimates plotted against

#cells/well. Error bars correspond to +=� one SD. Dotted line cor-

responds to estimated frequency of responding cells (�106) obtained
using all the data.

a. Subject #713 (one six-point LDA, one �ve-point LDA, plus single

assays).

b. Subject #711 (one �ve-point LDA, plus single assays).

c. Subject NIH 1394 (one four-point LDA).

Figure 5. Maximum likelihood estimates of frequencies of CTL-Ps plotted
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against number of responding cells.

Figure 6. Maximum likelihood estimates of frequencies of responders plotted

against number of cells per well for the three LDAs from D. Koelle.

47



Table 1: Scintillation counts for the pair of plates from the �rst assay of subject
#713 at density 11,400 cells/well.

cells alone gD2 gB2 Tetox PHA
A 179 249 460 2133 2528 2700 2171 1663 6200 761 9864 12842
B 346 1540 306 8299 1886 3245 1699 2042 3374 183 7748 10331
C 117 249 1568 1174 4293 979 1222 1536 2406 6497 2492 6188
D 184 414 308 2801 2438 1776 2193 3211 1936 2492 5134 927
E 797 233 461 1076 1527 2866 2205 2278 2215 3725 3706 4050
F 305 348 480 3475 902 3654 2046 1285 1187 9899 5891 3646
G 1090 159 89 1472 90 3639 657 2393 1814 3330 4174 2389
H 280 571 329 4448 3643 881 3462 2118 1013 8793 4313 672

1 2 3 4 5 6 7 8 9 10 11 12

A 178 111 630 4699 5546 5182 3982 3104 2496 4275 2831 9727
B 244 593 259 5622 560 1073 1479 2978 4362 5017 5074 10706
C 261 964 167 2991 3390 3986 2321 2157 3278 8216 3579 3538
D 221 544 299 1838 4368 322 1022 1554 2980 2732 6177 5212
E 533 228 615 1938 4046 333 3253 5091 2843 200 1110 5063
F 818 98 160 1032 3269 4918 1778 3810 2372 6355 1869 2695
G 234 472 243 4143 3351 1118 530 1174 1881 3447 4491 2945
H 169 481 478 3237 1565 2211 2460 2715 4793 3029 6225 4679

1 2 3 4 5 6 7 8 9 10 11 12

Table 2: Maximum likelihood estimates and estimated standard deviations of
model parameters for the results of the �rst assay of subject #713 at density
11,400 cells/well.

�c �d �b �t a b �

joint:
plate 1 0.4 (0.1) 3.5 (0.3) 3.3 (0.3) 4.7 (0.3) 16.4 (0.9) 10.3 (0.3) 3.6 (0.5)
plate 2 0.4 (0.1) 3.5 (0.3) 3.3 (0.3) 4.7 (0.3) 14.8 (0.8) 9.4 (0.2) 2.9 (0.4)

separate:
plate 1 0.3 (0.1) 3.0 (0.4) 2.8 (0.4) 4.4 (0.5) 16.7 (0.9) 10.3 (0.3) 3.5 (0.4)
plate 2 0.5 (0.1) 3.9 (0.4) 3.9 (0.4) 5.0 (0.5) 14.5 (0.7) 9.3 (0.2) 2.8 (0.3)
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Table 3: Maximum likelihood estimates and estimated standard deviations of
frequencies of responding cells per 106 cells for the results of the �rst assay of
subject #713 at density 11,400 cells/well.

fd fb ft
joint 271 (67) 257 (64) 378 (92)
separate:
plate 1 238 (60) 219 (56) 356 (87)
plate 2 306 (75) 299 (73) 400 (97)
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Table 4: Recentred maximized log-likelihoods for pairs of plates for di�erent
power transformations (Box{Cox analysis) for LDAs #713 and #711.

(a)
#713 p

cells/well assay 1 0.5 0.25 0
31,333 2 0 �1 �6 �15
25,067 2 �5 0 �6 �21
18,800 2 �1 0 �5 �15
11,400 1 �6 0 �5 �20
9,000 2 �2 0 �2 �4
7,600 1 �13 0 �12 �24
5,700 1 �37 0 �3 �12
4,500 2 �21 0 �2 �8
3,800 1 �59 �4 0 �7
2,660 1 �86 �6 0 �4
1,990 1 �122 �24 �4 0
total �353 �35 �44 �130

(b)
#711 p

cells/well 1 0.5 0.25 0
155; 200 �11 0 �37 �19
116; 400 �20 �6 0 �31
80; 000 �64 0 �12 �9
60; 000 �56 �10 0 �13
40; 800 �18 0 �5 �7
30; 600 �1 0 �2 �7
total �170 �16 �56 �87
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Table 5: (a) Parameter estimates for plates from LDA #713, analysed singly.

#713

# cells/well �c �d �b �t a b �

11,400 0.3 3.0 2.8 4.4 16.7 10.3 3.5
11,400 0.5 3.9 3.9 5.0 14.5 9.3 2.8

7,600 0.3 2.3 2.3 3.1 14.9 13.4 4.1
7,600 0.1 2.2 2.1 3.3 14.9 13.2 3.9

5,700 0.2 1.8 2.4 2.8 11.8 11.5 4.2
5,700 0.1 1.4 1.3 1.3 13.9 17.5 4.8

3,800 0.0 0.9 0.9 1.2 13.7 18.7 5.1
3,800 0.0 1.1 1.0 1.0 12.6 19.2 5.5

2,660 0.0 1.0 0.9 0.7 10.3 12.7 3.1
2,660 0.0 0.9 1.7 1.1 9.6 13.4 3.4

1,990 0.1 0.5 1.2 0.5 8.1 9.9 2.2
1,990 0.1 0.5 1.0 1.0 8.2 11.8 2.8

31,333 0.0 9.2 9.0 7.8 9.4 1.0 1.8
31,333 1.0 8.8 8.0 6.4 8.8 1.4 0.5

25,067 0.0 13.2 11.8 9.3 12.8 0.9 2.9
25,067 0.0 9.6 9.5 6.9 13.0 0.7 4.0

18,800 1.7 7.2 7.7 6.3 8.6 1.8 0.7
18,800 2.0 9.9 10.3 7.6 7.8 1.3 0.5

9,000 0.6 2.7 4.4 1.5 8.3 2.1 0.7
9,000 0.8 3.1 3.3 1.8 7.9 2.7 0.8

4,500 0.2 1.2 2.1 1.1 8.8 3.1 1.1
4,500 0.6 1.4 2.6 1.1 8.4 2.9 0.8
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Table 5: (b) Parameter estimates for plates from LDA #711, analysed singly.

#711

# cells/well �c �d �b �t a b �

155,200 0.1 7.0 2.4 9.2 29.2 9.8 3.2
155,200 0.0 6.7 2.7 8.7 29.0 10.6 3.3

116,400 0.0 12.9 2.1 16.0 27.6 5.5 4.3
116,400 0.0 5.9 1.0 7.5 28.2 11.2 3.3

80,000 0.1 2.6 0.5 5.1 10.7 7.8 2.0
80,000 0.2 2.0 0.3 5.8 10.5 6.1 1.5

60,000 0.1 1.5 0.2 4.1 10.5 8.8 2.2
60,000 0.2 2.2 0.2 3.9 10.4 7.7 1.9

40,800 0.0 3.0 0.3 3.0 12.5 5.2 1.6
40,800 0.1 2.5 0.4 3.5 12.7 5.5 2.0

30,600 0.0 2.4 0.5 3.3 12.2 4.4 2.2
30,600 0.0 1.5 0.2 1.8 11.4 6.2 1.9
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Table 6: (a) Estimated frequencies per well for LDA #713.

#713

# cells gD2 gB2 Tetox
per well � SD CV � SD CV � SD CV

11,400 3.1 0.3 9 2.9 0.3 10 4.3 0.3 8
7,600 2.1 0.2 11 2.0 0.2 11 3.1 0.3 9
5,700 1.2 0.2 14 1.4 0.2 14 1.6 0.2 13
3,800 1.0 0.1 15 0.9 0.1 15 1.1 0.2 15
2,660 0.9 0.1 16 1.3 0.2 13 0.9 0.1 17
1,990 0.4 0.1 28 1.0 0.2 16 0.6 0.1 22
31,333 7.6 0.6 7 7.1 0.5 7 5.8 0.5 9
25,067 12.0 1.2 10 11.1 1.2 11 8.6 1.2 13
18,800 7.5 0.6 9 8.0 0.7 8 5.7 0.6 10
9,000 2.2 0.3 13 3.2 0.3 10 1.0 0.2 24
4,500 0.9 0.2 22 2.0 0.3 13 0.7 0.2 27

4,200 0.3 0.1 28 0.5 0.1 22 1.3 0.2 17
11,657 1.0 0.1 15 1.7 0.2 11 2.7 0.3 9
4,800 0.5 0.1 22 0.8 0.1 17 1.1 0.2 15
36,720 4.9 0.3 7 4.5 0.3 7 4.4 0.3 7
5,180 0.9 0.1 16 1.2 0.2 14 0.9 0.1 17
10,360 0.9 0.1 15 2.3 0.2 10 1.2 0.2 14
21,600 2.6 0.2 9 5.3 0.3 6 4.5 0.3 7
16,800 1.0 0.2 17 2.8 0.3 9 1.7 0.2 13
8,400 0.5 0.1 22 1.3 0.2 13 0.9 0.2 17
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Table 6: (b) Estimated frequencies per well for LDA #711.

#711

# cells gD2 gB2 Tetox
per well � SD CV � SD CV � SD CV

155,200 6.8 0.3 5 2.5 0.3 12 9.0 0.5 5
116,400 6.3 0.3 6 1.0 0.1 11 7.9 0.5 6
80,000 2.2 0.2 11 0.2 0.1 33 5.3 0.3 6
60,000 1.6 0.2 11 0.0 0.1 Inf 3.8 0.3 8
40,800 2.7 0.2 9 0.3 0.1 29 3.1 0.3 9
30,600 1.6 0.2 12 0.2 0.1 38 2.1 0.2 10

38,880 1.9 0.2 11 1.2 0.2 13 3.9 0.3 8
60,480 6.1 0.4 7 1.2 0.2 18 8.0 0.5 6
9,200 1.4 0.2 13 0.2 0.1 43 2.6 0.3 10
52,200 1.7 0.2 11 1.4 0.2 13 4.9 0.3 7
23,450 0.1 0.1 91 0.1 0.1 135 0.6 0.1 24
11,725 0.0 0.0 Inf 0.0 0.0 Inf 0.5 0.2 32

Table 6: (c) Estimated frequencies per well for LDA NIH 1394.

NIH 1394

# cells gD2 gB2 Tetox
per well � SD CV � SD CV � SD CV

54,000 4.1 0.4 9 0.6 0.2 31 5.4 0.8 14
15,825 0.9 0.2 21 0.0 0.0 Inf 1.1 0.4 33
9,533 0.8 0.2 21 0.1 0.1 93 0.4 0.2 56
4,385 0.5 0.2 37 0.0 0.1 Inf 0.0 0.3 Inf
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Table 7: Estimated frequencies per 106 cells for LDAs #713, #711 and NIH
1394. SD is the nominal estimated standard deviation. SDa is the estimated
standard deviation, adjusted for sampling error in the cell counts. CVa is the
adjusted coe�cient of variation.

(a)
#713

# cells gD2 gB2 Tetox
per well f SD SDa CVa f SD SDa CVa f SD SDa CVa

11,400 271 25 67 25 257 25 64 25 378 30 92 24
7,600 272 30 69 25 268 30 68 25 404 37 100 25
5,700 217 31 59 27 239 33 64 27 272 36 72 26
3,800 268 39 73 27 247 38 68 28 289 42 79 27
2,660 341 55 96 28 477 64 127 27 324 56 93 29
1,990 209 58 75 36 516 81 142 28 317 71 100 32
31,333 241 18 24 10 227 17 23 10 186 16 20 11
25,067 479 48 58 12 443 49 57 13 343 46 52 15
18,800 399 34 43 11 424 35 45 11 303 30 36 12
9,000 246 31 48 20 351 36 63 18 109 26 31 28
4,500 203 45 54 27 445 58 88 20 166 44 51 31

(b)
#711

# cells gD2 gB2 Tetox
per well f SD SDa CVa f SD SDa CVa f SD SDa CVa

155,200 44 2 4 9 16 2 2 12 58 3 5 9
116,400 54 3 5 9 9 1 1 11 68 4 6 9
80,000 27 3 4 15 3 1 1 33 66 4 8 12
60,000 27 3 4 15 0 1 1 Inf 64 5 8 12
40,800 65 6 11 17 7 2 3 43 77 7 13 17
30,600 52 6 10 19 8 3 3 38 69 7 12 17

(c)
NIH 1394

# cells gD2 gB2 Tetox
per well f SD SDa CVa f SD SDa CVa f SD SDa CVa

54,000 77 7 10 13 11 3 4 32 99 14 14 17
15,825 54 11 12 23 0 3 3 Inf 71 23 24 34
9,533 88 18 20 22 8 7 7 94 41 23 24 57
4,385 123 46 47 38 0 30 30 Inf 0 58 58 Inf
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Table 8: Estimated plate parameters a, b and � for the assays performed on
subjects #713, #711 and NIH 1394.

(a) (b)
#713, assay 1 #713, assay 2

cells/well a b � cells/well a b �

11,400 16.4 10.3 3.6 31,333 8.3 1.3 1.0
11,400 14.8 9.4 2.9 31,333 8.8 1.4 0.5

7,600 15.2 13.4 4.2 25,067 12.9 0.9 2.9
7,600 14.9 13.2 3.9 25,067 12.9 0.6 4.1

5,700 13.7 15.0 5.3 18,800 8.8 1.4 1.6
5,700 13.9 17.3 4.8 18,800 7.8 1.3 0.5

3,800 13.7 18.4 5.0 9,000 8.3 2.1 0.7
3,800 12.6 19.2 5.5 9,000 8.0 2.7 0.8

2,660 10.3 12.6 3.1 4,500 8.7 2.9 1.1
2,660 9.5 13.5 3.4 4,500 8.5 2.9 0.8

1,990 8.0 9.9 2.2
1,990 8.3 11.8 2.8

(c) (d)
#711 NIH 1394

cells/well a b � plate a b �

155,200 29.3 9.8 3.2 1 11.1 2.3 2.0
155,200 29.0 10.6 3.3 2 7.7 2.1 0.8

3 7.6 2.1 0.8
116,400 27.8 10.6 4.1 4 7.3 2.3 0.7
116,400 28.2 11.2 3.3 5 7.6 2.4 0.8

80,000 10.8 7.8 2.0
80,000 10.4 6.1 1.6

60,000 10.5 8.8 2.2
60,000 10.4 7.7 1.9

40,800 12.5 5.2 1.6
40,800 12.9 5.5 2.0

30,600 12.6 5.9 2.3
30,600 11.4 6.0 2.0
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Table 9: Counts per minute (�10�2) read from Figure 2 of Langhorne and
Fischer-Lindahl (1981).

Cell density
0 100 300 500 750 1000 3000 10000

5.2 4.8 5.4 5.8 6.0 6.0 8.4 9.0
5.2 5.0 5.4 6.0 6.0 6.4 9.2 9.4
5.4 5.0 5.6 6.0 6.2 6.6 9.4 9.4
5.4 5.4 5.6 6.0 6.6 7.2 10.8 11.8
5.6 5.4 5.6 6.2 6.8 8.4 11.0 11.8
5.6 5.4 5.8 6.2 6.8 8.6 11.2 12.0
5.6 5.6 5.8 6.4 7.0 9.2 12.2 12.0
5.8 5.6 5.8 6.4 7.6 9.2 12.2 12.0
5.8 5.6 6.0 6.4 8.0 9.4 12.2 12.2
5.8 5.6 6.0 6.8 8.2 9.4 12.4 12.2
5.8 5.6 6.2 7.4 8.4 9.8 12.6 12.4
6.0 5.8 6.2 7.4 8.4 10.2 12.6 12.4
6.0 5.8 6.2 8.2 8.8 11.0 13.0 12.6
6.0 5.8 6.4 8.2 9.4 11.2 13.2 13.0
6.0 5.8 6.4 8.6 9.8 11.6 13.6 13.6
6.0 5.8 6.4 9.2 10.0 11.6 13.6 13.6
6.0 5.8 8.2 10.2 10.2 11.8 13.8 13.6
6.2 6.0 8.4 10.4 11.2 11.8 14.4 14.0
6.2 6.0 8.6 11.0 11.8 12.4 14.8 14.2
6.2 6.2 8.8 11.2 12.4 12.6 15.2 14.4
6.4 6.4 8.8 11.8 13.2 13.4 15.4 14.4
6.4 6.4 9.0 12.4 13.6 14.6 15.6 14.6
6.4 6.8 10.2 12.6 13.8 15.2 16.0 14.6
6.4 9.6 14.4 12.8 15.2 16.4 16.6 15.6

57



Table 10: Maximum likelihood estimates of CTL-precursor frequencies and
plate parameters at each density for the data in Table 9.

cell density � a b �

0 0.0 (0.0) 5.9 (0.1) 0.0 (0.0) 0.4 (0.1)
100 0.1 (0.1) 5.7 (0.1) 1.9 (0.2) 0.4 (0.1)
300 0.5 (0.1) 6.0 (0.1) 2.2 (0.1) 0.4 (0.1)
500 1.1 (0.2) 6.3 (0.2) 2.1 (0.1) 0.5 (0.1)
750 1.7 (0.3) 6.5 (0.1) 1.8 (0.1) 0.4 (0.1)

1,000 2.5 (0.3) 6.4 (0.3) 1.7 (0.1) 0.4 (0.1)
3,000 3.4 (0.4) 8.2 (0.2) 1.4 (0.1) 0.3 (0.1)
10,000 3.2 (0.4) 7.6 (0.5) 1.6 (0.2) 0.4 (0.1)

Table 11: Maximum likelihood estimates of responder frequencies and plate
parameters for each experimental group for the data from S. Rodda.

group �c �t �i a b �

post-immunization 0.0 (0.0) 0.4 (0.1) 1.3 (0.2) 14.3 (0.2) 6.9 (0.2) 1.8 (0.2)
13.9 (0.2) 4.8 (0.3) 1.5 (0.1)

1:1 mixture 0.0 (0.0) 0.2 (0.1) 2.9 (0.2) 16.0 (0.3) 7.1 (0.2) 2.1 (0.2)
16.1 (0.2) 6.0 (0.2) 1.6 (0.1)

preimmune 0.0 (0.0) 0.2 (0.1) 5.1 (0.3) 18.1 (0.4) 5.3 (0.2) 2.3 (0.3)
19.1 (0.3) 8.2 (0.2) 2.5 (0.2)
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Table 12: Maximum likelihood estimates of responder frequencies and plate
parameters for each experimental group for the three LDAs from D. Koelle.

(a)
#cells/well �0 �a

50,000 1.1 (0.3) 15.1 (1.0)
25,000 0.0 (0.0) 9.3 (0.7) DK2
12,500 0.3 (0.2) 5.4 (0.5)
6,250 0.2 (0.1) 2.4 (0.4)
3,125 1.4 (1.1) 3.5 (2.4) plates a b �

1,563 0.0 (0.0) 1.6 (1.3) 1,3 19.7 (0.6) 5.6 (0.2) 3.3 (0.4)
781 0.2 (0.6) 1.6 (1.2) 2,4 20.1 (0.7) 1.7 (1.0) 3.5 (0.4)

(b)
#cells/well �0 �a

50,000 0.2 (0.1) 16.3 (0.9)
25,000 0.1 (0.1) 11.8 (0.7) KD
12,500 0.0 (0.0) 8.4 (0.6)
6,250 0.3 (0.1) 5.2 (0.5)
3,125 0.0 (0.0) 7.3 (1.6) plates a b �

1,563 0.1 (0.2) 4.9 (1.1) 1,3 17.9 (0.4) 7.7 (0.1) 2.8 (0.2)
781 0.5 (0.3) 2.5 (0.7) 2,4 21.1 (0.7) 4.8 (0.9) 4.2 (0.4)

(c)
#cells/well �0 �a

50,000 0.3 (0.2) 14.5 (0.9)
25,000 0.0 (0.0) 8.9 (0.7) EL
12,500 0.1 (0.1) 5.3 (0.5)
6,250 0.0 (0.0) 2.1 (0.3)
3,125 0.4 (0.2) 2.3 (0.3) plates a b �

1,563 0.5 (0.2) 1.7 (0.3) 1,3 19.5 (0.5) 6.3 (0.2) 3.5 (0.3)
781 0.8 (0.2) 0.8 (0.2) 2,4 17.4 (0.4) 4.6 (0.3) 1.8 (0.2)
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Table 13: Comparison of the cut-o� method to our new method, for �ve cell
densities from the Langhorne and Fischer-Lindahl data.

Cut-o� method New method var(cut-o�)=
# cells � SD � SD var(new)
100 0.09 0.06 0.10 0.07 0.8
300 0.41 0.14 0.50 0.14 1.0
500 0.98 0.26 1.05 0.22 1.5
750 2.08 0.54 1.67 0.26 4.2
1000 2.48 0.68 2.52 0.33 4.2
joint 2029 303 1834 171 3.1
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Figure 1: Mean scintillation counts in relation to cell density for the six-point
LDA from #713.
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Figure 3: Normal quantile-quantile plots of residuals after �tting the model to
power-transformed scintillation counts.

63



0 10000 30000

100

200

300

400

500

cells/well

es
t. 

fr
eq

. p
er

 1
0^

6 
ce

lls

#713, gD2

0 10000 30000

100

200

300

400

500

600

cells/well
es

t. 
fr

eq
. p

er
 1

0^
6 

ce
lls

#713, gB2

0 10000 30000

100

200

300

400

500

cells/well

es
t. 

fr
eq

. p
er

 1
0^

6 
ce

lls

#713, Tetox

6-point LDA
5-point LDA
single assays

Figure 4: a: Subject #713 (one 6-point LDA, one 5-point LDA, and single
assays). Maximum likelihood estimates of frequencies (�106) of responding
cells using two plates at each dilution: estimates plotted against #cells/well.
Error bars correspond to +=� one SD. Dotted line corresponds to estimated
frequency of responding cells (�106) obtained using the two LDAs.
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Figure 4: b: Subject #711 (one 6-point LDA and single assays). Maximum
likelihood estimates of frequencies (�106) of responding cells using two plates
at each dilution: estimates plotted against #cells/well. Error bars correspond
to +=� one SD. Dotted line corresponds to estimated frequency of responding
cells (�106) obtained using the data from the LDA.
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Figure 4: c: Subject NIH 1394 (one 4-point LDA). Maximum likelihood es-
timates of frequencies (�106) of responding cells using two plates at each
dilution: estimates plotted against #cells/well. Error bars correspond to +=�
one SD. Dotted line corresponds to estimated frequency of responding cells
(�106) obtained using all the data.
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Figure 6: Maximum likelihood estimates of frequencies of responders plotted
against number of cells per well for the three LDAs from D. Koelle.
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