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Abstract

We consider the sets of moving-average and autoregressive processes and study
their closures under the Mallows metric and the total variation convergence on �nite
dimensional distributions. These closures are unexpectedly large, containing non-
ergodic processes which are Poisson sums of i.i.d. copies from a stationary process.
The presence of these non-ergodic Poisson sum processes has immediate implications.
In particular, identi�ability of the hypothesis of linearity of a process is in question.

A discussion of some of these issues for the set of moving-average processes has
already been given without proof in Bickel and B�uhlmann (1996). We establish here
the precise mathematical arguments and present some additional extensions: results
about the closure of autoregressive processes and natural sub-sets of moving-average
and autoregressive processes which are closed.
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1 Introduction

We consider the characterization of closures of sets of stationary stochastic processes
(Xt)t2ZZ; ZZ = f0;�1;�2; : : :g, in order to obtain interesting implications about test-
ing hypotheses, such as linearity of a process. A preliminary discussion of this issue has
been given in Bickel and B�uhlmann (1996), for additional motivation and interpretation
we refer to that article.

A linear process (Xt)t2ZZ is most often referred to

Xt =
1X
j=0

 j"t�j (t 2 ZZ); (1.1)

where ("t)t2ZZ is an i.i.d. sequence with IE["t] = 0; IEj"tj2 < 1 and
P1
j=0  

2
j < 1. Such

processes are also called moving-average (MA) processes. Here, we always assume exis-
tence of second moments. There is no loss of generality in assuming IE[Xt] = 0.
Under some circumstances, when the MA transfer function 	(z) =

P1
j=0  jz

j exists and
has no zeros in jzj � 1 (z 2 IC), then such an MA process can be inverted and is also
representable as an (invertible) autoregressive (AR) process

Xt =
1X
j=1

�jXt�j + "t (t 2 ZZ); (1.2)

where the coe�cients (�j)j2IN are given by 1=	(z) = 1�
P1
j=1 �jz

j (jzj � 1; z 2 IC), cf.
Hannan (1987).

We study here the closure of MA processes as given in (1.1) (MA closure) and of
AR processes as given in (1.2) (AR closure). The notion of a closed set requires the
speci�cation of a topology. We work here with the Mallows metric (Mallows, 1972),
also known as the Wasserstein metric, and with the variation metric. For details see
section 2. We always identify real-valued stochastic processes, indexed by ZZ, with their
corresponding probability distributions; we then prefer to state our results in terms of
stochastic processes.

Somewhat surprisingly, the set of MA processes as well as the set of invertible AR
processes is not closed. We will show that the MA and AR closures are exhausted by
three types of processes. The �rst type is the set of stationary Gaussian processes with
mean zero, i.e.,

S1 = f(Xt)t2ZZ; (Xt)t2ZZ stationary Gaussian process with IE[Xt] = 0g:

The second type is the set of genuine MA processes, i.e.,

S2 = f(Xt)t2ZZ;Xt as de�ned in (1.1)g:

The third type which arises is more surprising. We essentially can get Poisson sums of
independent and identically distributed copies of stationary processes in the following
sense. Denote by

(�t;1)t2ZZ; (�t;2)t2ZZ; : : :
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a sequence of independent, real-valued, stationary processes with mean zero and �nite
second moments IEj�t;1j2 = �2�;1; IEj�t;2j2 = �2�;2; : : : Moreover, we construct for every
i 2 IN = f1; 2; : : :g a sequence of independent copies of (�t;i)t2ZZ, namely

(�t;i;1)t2ZZ; (�t;i;2)t2ZZ; : : :

Thus we have constructed a sequence of processes

f(�t;i;j)t2ZZgi;j2IN independent processes over the index set i; j 2 IN;

(�t;i;1)t2ZZ; (�t;i;2)t2ZZ; : : : i.i.d.; IE[�t;i;j] = 0 for all j 2 IN: (1.3)

Let

N1; N2; : : : independent; Ni � Poisson(�i); �i � 0 for all i 2 IN: (1.4)

Then the third type is given by the following set of processes,

S3 = f (Xt)t2ZZ; Xt =
1X
i=1

NiX
j=1

�t;i;j; (�t;i;j)t2ZZ; Ni satisfying (1.3), (1.4)

and
1X
i=1

�i�
2
�;i <1g:

We make the convention that
P0
j=1 �t;i;j = 0. Elements of S3, are typically non-ergodic

processes whose �nite dimensional distributions are in�nitely divisible non-Gaussian.

The di�erent sets S1; S2; S3 are not disjoint and the representations are not unique.
Also, to exhaust the MA and AR closures we need sums of processes of the di�erent types.
We introduce an adding operation for processes and de�ne

(Xt)t2ZZ� (Yt)t2ZZ is the process (Xt + Yt)t2ZZ; where

the processes (Xt)t2ZZ and (Yt)t2ZZ are independent:

We then set

Si � Sj = f(Xt)t2ZZ� (Yt)t2ZZ; (Xt)t2ZZ 2 Si; (Yt)t2ZZ 2 Sjg; i; j 2 f1; 2; 3g;

and make the common convention that all Si (i = 1; 2; 3) also contain the null element
Xt � 0 for all t 2 ZZ.

We now summarize the discussion in Bickel and B�uhlmann (1996) and some new results
in a rather narrative way, without giving here the regularity assumptions we work with.
The precise formulations and proofs are given in sections 2 { 5.

Fact 1.1 The closure of the set of MA processes is characterized by

MA closure = fS1 � S2g [ fS1 � S3g:
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Details are given in Theorem 3.1 and Theorem 3.2.
The limiting operation of sequences of MA processes converging to processes in S3 is

constructive.

Example 1.1 Consider the sequence of �nite order MA processes,

X
(n)
t =

nX
j=1

�j;1Ut�j;nZt�j;n (t 2 ZZ);

with Ut i.i.d.; IP[Ut = 1] = 1� IP[Ut = 0] = �=n (� > 0), Zt i.i.d. � t5, Student's-t distri-
bution with 5 degrees of freedom, and coe�cients (�j;1)j2IN which are a �xed realization
of the Gaussian AR(1), �j;1 = 0:9�j�1;1 + �j , �j i.i.d. � N (0; 1).
For every n 2 IN, these are ergodic MA(n) processes. But for large n, they exhibit a
behavior which can be interpreted as non-ergodic and non-stationary and which seems far
from what one expects of a linear process. The reason is that they are then close to a
non-ergodic member in S3, see proof of Theorem 3.1 (ii), in particular formula (5.11).

We show in Figures 1.1 { 1.4 four long realizations of sample size 5000 of the process
in Example 1.1 with n = 5; 25; 50; 200, always with the same realization (�j;1)j2IN. For
small n, the realizations in Figures 1.1 and 1.2 look stationary. But for larger n, Figures
1.3 and 1.4 tell us that di�erent stretches of the sequences exhibit very di�erent behaviors,
indicating non-stationarity and non-ergodicity. This is the typical pattern for a time series
with innovation outliers, cf. Kleiner et al. (1979). Indeed, our model is an extreme case
with innovations being either zero with probability 1 � �=n or being a realization from
a long-tailed distribution with probability �=n. Note that outliers are with reference to
the Gaussian distribution; it is the non-normality of innovations which can lead to MA
processes being close to a process in S3.

Fact 1.2 Given any in�nitely long realization (�t)t2ZZ of a stationary process, there exists
a non-ergodic, stationary process (Xt)t2ZZ in the MA closure, being an element of S3,
having with positive probability exactly the same sample path as (�t)t2ZZ. More precisely,

IP[Xt = �t for all t 2 ZZj(�t)t2ZZ] > 0:36 almost surely:

Details are given in Theorem 3.3. This separation dilemma is evidently related to de
Finetti's Theorem about the impossibility of distinguishing exchangeable from i.i.d. se-
quences, cf. Hartigan (1983, Ch. 4.6).

Fact 1.2 can be restated as,

Fact 1.3 In testing the hypothesis H0 about MA representation against any �xed one-
point alternative HA about a nonlinear, stationary process, there is no test with asymptotic
signi�cance level � < 0:36 having limiting power one as the sample size tends to in�nity.

In some cases, there is a way out of the separation and testing dilemma.

Fact 1.4 There exists a closed subset of MA processes with nice densities with respect to
the Lebesgue measure for the innovations and with MA coe�cients ( j)j2IN0 decaying as
fast as

P1
j=0 j

� 2
j <1 for some � > 0.
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Figure 1.1: one long realization of Example 1.1 with n = 5; � = 5
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Figure 1.2: one long realization of Example 1.1 with n = 25; � = 5

5



0 200 400 600 800 1000

-4
0

0
20

40

1000 1200 1400 1600 1800 2000

-4
0

0
20

40

2000 2200 2400 2600 2800 3000

-4
0

0
20

40

3000 3200 3400 3600 3800 4000

-4
0

0
20

40

4000 4200 4400 4600 4800 5000

-4
0

0
20

40

Figure 1.3: one long realization of Example 1.1 with n = 50; � = 5
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Figure 1.4: one long realization of Example 1.1 with n = 200; � = 5
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Details are given in Theorem 3.4.
For the closure of autoregressive processes we obtain the following,

Fact 1.5 The closure of the set of invertible AR processes is described by

AR closure � fS1 � S2g [ fS1 � S3g:

Details are given in Theorem 4.1, Theorem 4.2 and Proposition 4.1. Similar to Fact 1.4
we have,

Fact 1.6 There exists a closed subset of invertible (causal) AR processes with nice den-
sities with respect to the Lebesgue measure for the innovations and with AR coe�cients
(�j)j2IN decaying as fast as

P1
j=1 j

�j�j j < 1 for some � > 1. In particular, all the
elements in such a closure are ergodic processes.

Details are given in Theorem 4.3.

2 Probability space, metric and closure

Our framework is the following. We consider real-valued, stationary processes (Xt)t2ZZ with
expectation zero and �nite variances. The expectation zero assumption is not restrictive.
Thus, an appropriate probability space is (IRZZ;B; P ), where B denotes the Borel �-�eld
on IRZZ and P a class of stationary probability measures on (IRZZ;B), such that for every
P 2 P ,

IEP [X ] =
Z
IR
xd(P � ��10 )(x) = 0; IEP jX j

2 =
Z
IR
x2d(P � ��10 )(x) <1;

where �t1;:::;tm : IRZZ ! IRm; (xt)t2ZZ 7! (xt1 ; : : : ; xtm), t1; : : : ; tm 2 ZZ.
We always identify a probability measure P 2 P with its corresponding real-valued
stochastic process.

The space P can be equipped with a metric d, examples will be given in sections 2.1 and
2.2. We also use the notation for the corresponding processes on IRZZ, d((Xt)t2ZZ; (Yt)t2ZZ) =
d(P;Q), where (Xt)t2ZZ � P , (Xt)t2ZZ � Q. Such a metric d induces then the closure of
sets in P in the usual topological sense.

De�nition 2.1 Let A be a set of real-valued, stationary processes, indexed by ZZ, with
corresponding probability measures in P. The d closure �A of A is de�ned as

�A = f (Xt)t2ZZ; 9 a sequence f(Xt;n)t2ZZgn2IN with (Xt;n)t2ZZ 2 A for all n 2 IN

such that d((Xt;n)t2ZZ; (Xt)t2ZZ)! 0 (n! 1)g:

We are particularly interested in the d closures of moving average (MA) and autoregressive
(AR) processes. Thus, we will consider sequences

MA processes: f(Xt;n =
1X
j=0

 j;n"t�j;n)t2ZZgn2IN; (2.1)

AR processes: f(Xt;n =
1X
j=1

�j;nXt�j;n + "t;n)t2ZZgn2IN: (2.2)
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We look here at MA and AR processes of in�nite order. All our results are also true for
sequences of �nite (generally unbounded) order MA and AR processes, which are more
common in statistical modeling. In the sequel we refer to the MA and AR closure with
respect to the d metric the closure of sequences of MA and AR processes respectively, as
given by De�nition 2.1.

2.1 Mallows metric

The Mallows metric d2 on P , related to non-uniform weak convergence for �nite dimen-
sional distributions, is de�ned by

d2(P1; P2) =
1X
m=1

d
(m)
2 (P1 � �

�1
1;:::;m; P2 � �

�1
1;:::;m)2

�m; P1; P2 2 P ;

where d
(m)
2 (P1 � �

�1
1;:::;m; P2 � �

�1
1;:::;m) = inff(IEkX � Y k2)1=2g when the in�mum is taken

over all jointly distributed (X; Y ) 2 IR2m having marginals P1 � �
�1
1;:::;m and P2 � �

�1
1;:::;m;

k:k denotes the Euclidean norm in IRm.
The following characterization is useful. Let Pn; P 2 P and denote by ) weak

convergence of probability measures. Then,

d2(Pn; P )! 0 (n!1)

is equivalent to the following two statements

Pn � �
�1
t1;:::;tm ) P � ��1t1;:::;tm (n! 1) for all t1; : : : ; tm 2 ZZ; m 2 IN;Z

IR
x2d(Pn � �

�1
0 )(x)!

Z
IR
x2d(P � ��10 )(x) (n! 1);

i.e., all �nite dimensional distributions at t1; : : : ; tm converge weakly and the variance of
the one-dimensional marginal converges, see Bickel and Freedman (1981).

2.2 Variation metric

The question about distinguishing perfectly between two stationary processes requires a
stronger metric than the Mallows d2. The variation metric allows a precise formulation.

As before, let P1; P2 2 P and de�ne the variation metric as

dV (P1; P2) =
1X
m=1

d
(m)
V (P1 � �

�1
1;:::;m; P2 � �

�1
1;:::;m)2

�m;

where d
(m)
V (P1 ��

�1
1;:::;m; P2 ��

�1
1;:::;m) = supfjP1 ��

�1
1;:::;m[A]�P2 ��

�1
1;:::;m[A]j; A 2 B(IRm)g,

B(IRm) the Borel �-�eld of IRm. This de�nition reects non-uniform convergence of �nite
dimensional distributions in the variation metric. Here we do not require convergence
of second moments. Distinguishing perfectly is characterized as follows. Let P1; P2 be
ergodic probability measures in P . Then

dV (P1; P2) > 0 if and only if

there exist test functions 'm : IRm ! IR; 0 � 'm � 1; such that

IEP1 ['m(X1; : : : ; Xm)] ! 0; IEP2 ['m(X1; : : : ; Xm)] ! 1 (m!1):
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Note that such a sharp separation is only possible with the variation metric dV but not
with the Mallows metric d2. Some of our results are in terms of the Mallows metric d2.
However, with regard to Facts 1.2 and 1.3 we will also use the stronger formulation in
terms of the variation metric dV .

3 Closure for MA processes

We consider �rst the Mallows d2 closure for MA processes, i.e., we consider sequences as
de�ned in (2.1). Without loss of generality we can scale the innovations and assume:

(A.MA): For every n 2 IN, ("t;n)t2ZZ is an i.i.d. sequence with

IE["t;n] = 0; IEj"t;nj
2 = 1:

Under the assumption (A.MA) and assuming that (Xt;n)t2ZZ converges in the d2 metric,
the behavior of the coe�cients ( j;n)j2IN0 is determined in the following way,

IEjXt;nj
2 =

1X
j=0

 2
j;n <1 and lim

n!1
IEjXt;nj

2 = lim
n!1

1X
j=0

 2
j;n <1: (3.1)

The following result describes the MA closure.

Theorem 3.1 The closure of MA processes with respect to the Mallows metric d2 is char-
acterized as follows.
(i) Consider a sequence of MA processes as de�ned in (2.1) converging in the d2 metric,
satisfying (A.MA) and one of the following:

(A1): limn!1 d
(1)
2 ("t;n; "t) = 0, where ("t)t2ZZ is an i.i.d. sequence with IE["t] = 0.

(A2): limn!1maxj�0 j j;nj = 0.

Then, the d2 limit of such a sequence is in fS1 � S2g [ fS1 � S3g.

(ii) Every element of fS1 � S2g [ fS1 � S3g can be obtained as a d2 limit of a sequence
of MA processes as de�ned in (2.1), satisfying (A.MA) and (A1) or (A2).

Remark 3.1: Assumptions (A1) and (A2) are not exclusive in that both of them can be
true.

The proof of Theorem 3.1 is given in section 5.1. It will reveal a more precise char-
acterization of the Mallows d2 limits. To give the detailed characterization we take as
a starting point the formula (3.1). We then know that for every j 2 IN0, the sequence
f j;ngn2IN0 is bounded. Thus, by the Theorem of Bolzano and Weierstrass, there exists a
subsequence fnk(j)gk(j)2IN � IN, possibly depending on j, such that

 j;nk(j) !  j (k !1);

for some  j .
Now by a `diagonal argument' we can �nd a `universal' subsequence fnkgk2IN � IN, not
depending on j, such that

 j;nk !  j (k!1); j 2 IN0:

9



In the sequel we assume without loss of generality that

 j;n !  j (n!1); j 2 IN0: (3.2)

By Fatou's Lemma we know that

lim
n!1

1X
j=0

 2
j;n �

1X
j=0

 2
j :

We will see that the characterization of the Mallows d2 limits will depend on whether one
has equality or not in the above expression and whether assumption (A1) and/or (A2)
hold in Theorem 3.1.

The next result describes the possible Mallows d2 limits, i.e., the processes (Xt)t2ZZ
which arise as a limit with respect to the d2 metric of sequences of MA processes as de�ned
in (2.1).

Theorem 3.2 Assume that the sequence of MA processes as de�ned in (2.1) converges
in the d2 metric and satis�es (A.MA) and (3.2). Denote by (A1) and (A2) the same
conditions as in Theorem 3.1.
Then:

(i) If (A1) holds and limn!1
P1
j=0  

2
j;n =

P1
j=0  

2
j , the Mallows d2 limit is in S2.

(ii) If (A1) holds and limn!1
P1
j=0  

2
j;n >

P1
j=0  

2
j , the Mallows d2 limit is in S1 � S2.

(iii) If (A2) holds, then the Mallows d2 limit is in S1 � S3.

(iv) If (A1) and (A2) hold, then the Mallows d2 limit is in S1.

Remark 3.2: For assertion (i) it is su�cient to assume only "t;n ) "t, where ("t)t2ZZ is an
i.i.d. sequence with IE["t] = 0, and limn!1

P1
j=0  

2
j;n =

P1
j=0  

2
j ; these two assumptions

imply that IEj"tj2 = 1. This can be seen in the proof of assertion (i) in section 5.1, which
yields under these assumptions the d2 limit Xt =

P1
j=0  j"t�j . Thus by formula (3.1) we

conclude that d
(1)
2 ("t;n; "t)! 0 (n!1).

Remark 3.3: It is impossible to get a Mallows d2 limit which is in S2 � S3.

The proof of Theorem 3.2 is given in section 5.1. Example 1.1 describes a sequence of
MA processes with a d2 limit in S3.

This example can also be modi�ed such that sequences of MA processes converge in
the variation metric to a dV limit in S3. This corresponds to the following Theorem,
describing that we can never distinguish perfectly between stationary processes and some
�nite moving average processes.

Theorem 3.3 The MA closure with respect to the variation metric dV has the following
features.

(i) Let (�t)t2ZZ be any stationary process. Assume that the distributions of (�1; : : : �m)
have densities with respect to the Lebesgue measure for all m 2 IN.
Then, there exists a process (Xt)t2ZZ 2 S3, which is a dV limit of a sequence of MA
processes satisfying (A.MA) and (A2), such that

IP[Xt = �t for all t 2 ZZj(�t)t2ZZ] � exp(�1) > 0:36 almost surely:
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(ii) There exist ergodic, stationary processes whose �nite dimensional distributions have
densities with respect to the Lebesgue measure and which are not representable as dV
limits of a sequence of MA processes, satisfying (A.MA).

The proof of Theorem 3.3 (i) is given in section 5.1. For proving assertion (ii) it is
su�cient to give an example.

Example 3.1 Consider the stationary binary Markov chain (Xt)t2ZZ, given IP[X1 = 0] =
IP[X1 = 1] = 1=2, IP[X1 = 0jX0 = 0] = IP[X1 = 0jX0 = 1] = �; 0 < � < 1=2. Then
(Xt)t2ZZ is ergodic. Moreover, the probability distribution of Xt is not decomposable, since
the convolution of two non-degenerate distributions would place mass on at least three
points, whereas Xt is only binary. Hence, (Xt)t2ZZ can not be approximated in the dV
metric by any MA process, saying that (Xt)t2ZZ can not be an element of the MA closure.

Example 3.2 Consider the Gaussian AR(1) process

Yt = �Yt�1 + "t (t 2 ZZ);

where 0 < j�j < 1 and ("t)t2ZZ an i.i.d sequence; "t � N (0; 1� �2). The process (Yt)t2ZZ
is stationary and strong-mixing, cf. Gorodetskii (1977).
Let F (x) = �(x)� x'(x) be the c.d.f. with density f(x) = x2'(x), where �(:) and '(:)
denote the c.d.f. and density of the standard normal distribution. This distribution is
indecomposable, cf. Linnik (1964, Ch. 5.2). Construct, the process

Xt = F�1 ��(Yt) (t 2 ZZ):

The one-dimensional marginal distribution is Xt � F , being indecomposable. Thus, as
in Example 3.1, (Xt)t2ZZ can not be approximated in the dV metric by any MA process.
Moreover, (Xt)t2ZZ is a stationary, strong-mixing, and hence ergodic process whose �nite
dimensional marginal distributions have densities with respect to the Lebesgue measure,
as required in Theorem 3.3 (ii).

There are probably many ergodic, stationary processes, which are not elements of the
MA closure. A possible candidate would be the bilinear process, given by

Xt = �0:4Xt�1 + 0:4Xt�1"t�1 + "t (t 2 ZZ);

where ("t)t2ZZ i.i.d � N (0; 1), cf. Subba Rao and Gabr (1984, Figure 3.10).
This process is stationary and ergodic, cf. Akamanam et al. (1986). It is also immediate
that the process is non-Gaussian. As argued in Subba Rao and Gabr (1984, Table 3.2
and Figure 3.3), this bilinear process is not representable as a moving average process.
However, the MA closure also contains the class S3 and it seems di�cult to prove rigorously
that the process is not an element of this class S3.

It is possible to �nd a sub-set of MA processes which is closed with respect to the d2
and to the dV metric. Let

SMA;g(:);h(:);K;�;C = f (Xt)t2ZZ;Xt =
1X
j=0

 j"t�j ; ("t)t2ZZ an i.i.d. sequence;

"t � f(x)dx; f 2 Fg(:);h(:);K and ( j)j2IN0 2 M�;Cg;

11



where

Fg(:);h(:);K = f f ; f � 0;

Z 1

�1
f(x)dx = 1;

Z 1

�1
xf(x)dx = 0;

Z 1

�1
x2f(x)dx � K;

Z 1

�1
jf(x)� f(x+ c)jdx < � for all jcj � g(�);

(
Z �A

�1
+
Z 1

A
)jf(x)jdx � � for all A � h(�) (� > 0)g;

with g : IR+ ! IR+; g %; g(0) = 0, h : IR+ ! IR+; h&; h(0) =1 and

M�;C = f( j)j2IN0 ;
1X
j=0

j� 2
j � Cg:

Theorem 3.4 Assume that � > 0, K < 1 and C < 1. Then the set SMA;g(:);h(:);K;�;C

is closed under the d2 and under the dV metric.

Remark 3.4: Under the additional assumption that � > 3 and
P1
j=0  jz

j 6= 0 for jzj � 1
for every ( j)j2IN0 2 M�;C, the processes in SMA;g(:);h(:);K;�;C are strong mixing and hence
ergodic. This follows from the result in Gorodetskii (1977).

The proof of Theorem 3.4 is given in section 5.1.

4 Closure for causal AR processes

We consider now sequences of stationary, causal AR processes, as de�ned in (2.2). We
always assume

(A.AR): For every n 2 IN, ("t;n)t2ZZ is an i.i.d. sequence with IE["t;n] = 0, IEj"t;nj2 <1.

Causal, or minimum phase, means that the autoregressive transfer function

�n(z) = 1�
1X
j=1

�j;nz
j 6= 0 for jzj � 1 (z 2 IC) and

1X
j=1

j�j;nj <1: (4.1)

The formula (4.1) implies that Xt;n can be expressed as a function of the present and past
of the innovation process "t;n; "t�1;n; : : :, namely

Xt;n =
1X
j=0

 j;n"t�j;n (t 2 ZZ); (4.2)

where the coe�cients ( j;n)
1
j=0 are given by the inverse of the AR polynomial, the so-called

MA transfer function

1=�n(z) = 	n(z) =
1X
j=0

 j;nz
j ; jzj � 1:

Thus by (4.2), we see that the stationary, causal AR processes given by (2.2), satisfying
(4.1) can always be represented as stationary MA processes.

We focus �rst on the Mallows d2 closure. The characterization of the d2 closure for such
AR processes can now be derived via the characterization of the MA closure. However,
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we cannot force the innovation variances to be equal to one by a simple standardization
as in the MA case. Moreover, as described below, for sequences of AR processes which
converge in the d2 metric, the innovations are also forced to converge in the d2 metric,
compare also with assumption (A1) in Theorem 3.1.

Lemma 4.1 Assume that the sequence of AR processes as de�ned in (2.2) satis�es (A.AR),
converges in the d2 metric and "t;n ) "t (n ! 1), where ("t)t2ZZ denotes an i.i.d. se-
quence with IE["t] = 0, IEj"tj

2 <1.
Then, also

IEj"t;nj
2 ! IEj"tj

2 (n!1);

i.e., d
(1)
2 ("t;n; "t)! 0 (n!1).

Proof: Denote by Ut;n =
P1
j=1 �j;nXt�j;n. By the weak convergence ofXt;n ) Xt (n!

1) and of "t;n ) "t (n ! 1) we know that Ut;n ) Ut = Xt � "t (n ! 1), where Ut is
independent from "t. Thus,

IEjXtj
2 = IEjUtj

2 + IEj"tj
2;

and therefore

IEjXtj
2 = lim inf

n!1
IEjXt;nj

2 � lim inf
n!1

IEjUt;nj
2 + lim inf

n!1
IEj"t;nj

2 � IEjUtj
2 + IEj"tj

2 = IEjXtj
2;

where the inequality cannot be strict. Hence equality holds in the above expression which
completes the proof. 2

The question of interest is then if the AR closure is smaller than the MA closure. The
answer is yes although type S3 can still arise, as described by the next theorem.

Theorem 4.1 Assume that the sequence of AR processes as de�ned in (2.2) converges in
the d2 metric, satis�es (A.AR), (4.1) and one of the following:

(A3): "t;n ) "t (n!1), where ("t)t2ZZ is an i.i.d. sequence with IE["t] = 0.

(A4): supn2IN supj�0 j j;nj <1; where
P1
j=0  j;nz

j = 1=�n(z) (jzj � 1).

Then, the d2 limit of such a sequence of AR processes is in fS1 � S2g [ fS1 � S3g:

The proof of Theorem 4.1 is given in section 5.2. Also, the precise characterization of
the Mallows d2 limits is similar to the one in Theorem 3.2. We know from Lemma 4.1 that
"t;n ) "t (n ! 1) implies �2n = IEj"t;nj

2 ! �2 = IEj"tj
2 < 1 (n ! 1). We distinguish

between two cases,
(I) 0 < �2 <1,
(II) �2 = 0, i.e., the degenerate case "t � 0 for all t 2 ZZ.
By assumption of Mallows d2 convergence we know that

IEjXt;nj
2 =

1X
j=0

 2
j;n�

2
n ! c2 (n!1); 0 < c2 <1:

13



(The case c2 = 0 is degenerate and uninteresting, the d2 limit Xt � 0 is in S2 with  j = 0
for all j).
Thus, we consider the two cases
(I) supn2IN

P1
j=0  

2
j;n <1,

(II) supn2IN
P1
j=0 

2
j;n =1.

In case (I), we then know that for every j 2 IN0, the sequence f j;ngn2IN is bounded.
Thus, by the same argument as for formula (3.2),

 j;n !  j (n!1); j 2 IN0:

And again by Fatou's Lemma we know that

lim
n!1

1X
j=0

 2
j;n �

1X
j=0

 2
j :

In case (II) the sum
P1
j=0  

2
j;n is unbounded and no direct analysis as in case (I) applies.

Theorem 4.2 Assume that the sequence of AR processes as de�ned in (2.2) converges in
the d2 metric, satis�es (A.AR) and (4.1). Denote by (A3) and (A4) the same conditions
as in Theorem 4.1.
Then:

(i) If (A3) holds, limn!1 IEj"t;nj2 = �2 > 0 and limn!1
P1
j=0  

2
j;n =

P1
j=0  

2
j , the

Mallows d2 limit is in S2.

(ii) If (A3) holds, limn!1 IEj"t;nj
2 = �2 > 0 and limn!1

P1
j=0  

2
j;n >

P1
j=0  

2
j , the

Mallows d2 limit is in S1 � S2.

(iii) If (A4) holds, "t;n = �nZt (t 2 ZZ) with (Zt)t2ZZ i.i.d., IE[Zt] = 0; EjZtj2 = 1 and
limn!1 �n = 0; �n � 0, the Mallows d2 limit is in S1.

(iv) If (A4) holds and limn!1 IEj"t;nj
2 = 0, the Mallows d2 limit is in S1 � S3.

The proof of Theorem 4.2 is given in section 5.2. To show that the statement (iv) does
include non-zero elements of S3 processes, we now give an example.

Example 4.1 Consider the sequence of AR(1) processes

Xt;n = �nXt�1;n + "t;n (t 2 ZZ);

where 0 < �n < 1; �n ! 1 (n ! 1) and ("t;n)t2ZZ i.i.d. with IP["t;n = 0] = �2n,
IP["t;n = �1] = (1� �2n)=2.

Proposition 4.1 In Example 4.1, (Xt;n)t2ZZ converges in the d2 metric to a process
(Xt)t2ZZ 2 S3 which has constant sample paths, i.e., Xt = Xs for all t; s 2 ZZ.

The proof of Proposition 4.1 is given in section 5.2. It is a di�cult task to construct
sequences of AR processes with d2 limits in S3 having non-constant sample paths. It is
an open question to us if more complicated S3 processes arise as d2 limits of AR processes
satisfying (A.AR) and (4.1).
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In case (I), the condition �2 > 0 can be interpreted that the innovation variance IEj"t;nj
2

is of the same order as the process variance IEjXt;nj2. Then, only assertions (i) and (ii) of
Theorem 4.2 apply and type S3 does not arise. In that respect the AR closure is smaller
and easier to understand than the MA closure.

Under additional assumptions we also can sharpen Theorem 4.1 for the case with
non-vanishing innovation variance as n!1. Denote by

SAR;g(:);h(:);K;�;C = f (Xt)t2ZZ;Xt =
1X
j=1

�jXt�j + "t; ("t)t2ZZ an i.i.d. sequence;

"t � f(x)dx; f 2 Fg(:);h(:);K and (�j)j2IN 2 A�;Cg;

where Fg(:);h(:);K is de�ned as for SMA;g(:);h(:);K;�;C in section 3 and

A�;C = f(�j)j2IN;
1X
j=1

j�j�j j � C and 1�
1X
j=1

�jz
j 6= 0 for jzj � 1g:

Theorem 4.3 Assume that � > 1, K <1 and C <1.
Then, the set SAR;g(:);h(:);K;�;C is closed under the d2 and under the dV metric. Moreover,
processes in SAR;g(:);h(:);K;�;C are strong-mixing and hence ergodic.

The proof of Theorem 4.3 is given in section 5.2.

One can also ask about the closure for ARMA processes. Most elegantly we represent
sequences of ARMA processes of order (1;1) by

�n(B)Xn = �n(B)"n;

where �n(z) = 1�
P1
j=1 �j;nz

j , �n(z) =
P1
j=0 �j;nz

j (jzj � 1), B the back-shift operator,
Xn = (Xt;n)t2ZZ and "n = ("t;n)t2ZZ an i.i.d. sequence with IE["t;n] = 0; IEj"t;nj2 <1.
If (4.1) holds for the autoregressive transfer function �n and

P1
j=0 j�j;nj < 1, we can

represent such ARMA processes as Xt;n =
P1
j=0  j;n"t�j;n, where 	n(z) =

P1
j=0  j;nz

j =
�n(z)=�n(z).
Then, under either the condition (A3) for the innovations f("t;n)t2ZZgn2IN, requiring addi-

tionally that limn!1 d
(1)
2 ("t;n; "t) = 0, or under condition (A4) for the variables ( j;n)j2IN0

as de�ned above, the d2 limits of such sequences of ARMA processes are in fS1 � S2g [
fS1 � S3g.

5 Proofs

Lemma 5.1 Let (�t)t2ZZ be a stationary process with IE[�t] = 0.

(i) There exists a sequence of stationary, ergodic processes f(�
(r)
t )t2ZZgr2IN with IE[�

(r)
t ] =

0 for every r 2 IN, such that

lim
r!1

d((�
(r)
t )t2ZZ; (�t)t2ZZ) = 0; d = d2 or dV :
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(ii) If the m-dimensional distributions of (�1; : : : ; �m) have densities with respect to the
Lebesgue measure for all m 2 IN, there exists a sequence of stationary, ergodic pro-

cesses f(�
(r)
t )t2ZZgr2IN with m-dimensional distributions of (�

(r)
1 ; : : : ; �

(r)
m ) having den-

sities with respect to the Lebesgue measure for all m 2 IN and IE[�
(r)
t ] = 0 for every

r 2 IN, such that

lim
r!1

d((�
(r)
t )t2ZZ; (�t)t2ZZ) = 0; d = d2 or dV :

(iii) If the process (�t)t2ZZ is Gaussian, there exists a sequence of stationary, ergodic

Gaussian processes f(�
(r)
t )t2ZZgr2IN, such that

lim
r!1

d((�
(r)
t )t2ZZ; (�t)t2ZZ) = 0; d = d2 or dV :

Proof: The statements (i) and (ii) follow by the technique of Durrett (1991, Ch. 6,
Ex. 1.9 and Ex. 2.10).

Statement (iii) is rather standard: the spectral measure F (:) of the Gaussian pro-
cess (�t)t2ZZ can be approximated by a sequence of spectral measures fF (r)(:)gr2IN (in
the sense of complete convergence), having continuous spectral densities ff (r)(:)gr2IN.
These densities f (r)(:) can be approximated by polynomials P (kr)(:) of order kr, corre-
sponding to Gaussian MA processes of order kr, being now the approximating sequences

f(�
(kr)
t )t2ZZgr2IN. For details, see Grenander and Szeg�o (1984, Ch. 1.9 and Ch. 1.12). 2

5.1 Proofs of results in section 3

Proof of Theorem 3.1 (ii)

Step 1: Proof that S1 � S2 is realizable with d2 limits of MA sequences.
Let (Wt � Yt)t2ZZ 2 S1 � S2 with (Wt)t2ZZ 2 S1, (Yt)t2ZZ 2 S2. By Lemma 5.1 (iii) there
exists a sequence of stationary, ergodic Gaussian processes f(Wt;r)t2ZZgr2IN, such that

lim
r!1

d2((Wt;r)t2ZZ; (Wt)t2ZZ) = 0: (5.1)

We show now that (Wt;r � Yt)t2ZZ can be approximated by a sequence of MA processes.
Assume that Yt =

P1
j=0  j"t�j with IEj"tj

2 = 1. Let Mn ! 1 (n!1) and de�ne

Xt;n;r =
MnX
j=0

 j"t�j +
1X

j=Mn+1

 j;n;r"t�j ; (5.2)

where  j;n;r =M
�1=2
n wj;r (Mn+1 � j � 2Mn) and  j;n;r = 0 (j � 2Mn+1), and (wt;r)t2ZZ

is a �xed realization of the process (Wt;r)t2ZZ.
Clearly, for � > 0 there exists an n1 = n1(�) such that

d2((
MnX
j=0

 j"t�j)t2ZZ; (Yt)t2ZZ) � � for all n � n1: (5.3)
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Moreover, for � > 0 there exists an n2;r = n2(r; �) such that

d2((
1X

j=Mn+c+1

 j;n;r"t�j)t2ZZ; (Wt;r)t2ZZ) � � for all n � n2;r (c 2 IN0): (5.4)

(The constant n2;r might depend also on c).
To show (5.4) we �rst verify the Lindeberg condition; we �rst argue for the one-dimensional
marginal distribution. Note that for  > 0 there exists an n3;r = n3(r; ) such that

max
j�Mn+1

j j;n;rj �  for all n � n3;r;

since (wt;r)t2ZZ is a realization of the stationary, ergodic Gaussian process (Wt;r)t2ZZ and

IP[maxMn+1�j�2Mn jWj;rj > M
1=4
n ] = o(1) (n!1), by the behavior of the Gaussian tail.

Hence, for � > 0, � > 0 there exists an n4;r = n4(r; �; �) such that

1X
j=Mn+1

 2
j;n;rIE["

2
t 1[j"tj>�=j j;n;r j]] < � for all n � n4;r: (5.5)

Here we used that
P1
j=Mn+1 

2
j;n;r is bounded, see argumentation for (5.6).

Next, we verify that for � > 0 there exists n5;r = n5(r; �) such that

j
1X

j=Mn+c+1

 j;n;r j+k;n;r � Cov(W0;r;Wk;r)j � � for all n � n5;r (k 2 IN0): (5.6)

(The constant n5;r might depend on c and k). This states the convergence to the proper
covariances.
Formula (5.6) follows immediately by the de�nition of  j;n;r and the ergodicity of (Wt;r)t2ZZ.
Thus, by (5.5) and (5.6) we have shown (5.4) for the one-dimensional marginals. The more
general statement in (5.4) follows analogously by the Cram�er-Wold device.
For any �nite dimensional set t1 < : : : < tm, m 2 IN, we choose c = tm � t1 such thatPMn

j=0  j"ti�j and
P1
j=Mn+tm�t1+1  j;n;r"tk�j are independent for all i; k 2 f1; : : : ; mg.

Moreover, V ar(
PMn+tm�t1
j=Mn+1  j;n;r"t�j) = oP (1) (n ! 1), where the oP -term depends on

r. By splitting up

Xt;n;r =
MnX
j=0

 j"t�j +
Mn+tm�t1X
j=Mn+1

 j;n;r"t�j +
1X

Mn+tm�t1+1

 j;n;r"t�j ; (5.7)

we see that the middle part
PMn+tm�t1
j=Mn+1

 j;n;r"t�j plays a negligible role as n ! 1 and
we can work with the remaining independent pieces. Using this independence and (5.3)
and (5.4) we have: for � > 0 there exists an n6;r = n6(r; �) such that

d2((Xt;n;r)t2ZZ; (Wt;r + Yt)t2ZZ) � � for all n � n6;r;

with (Wt;r)t2ZZ and (Yt)t2ZZ independent for every r 2 IN.
Restating,

lim
n!1

d2((Xt;n;r)t2ZZ; (Wt;r � Yt)t2ZZ) = 0 (r 2 IN): (5.8)
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Thus by (5.1) and (5.8), there exists a subsequence fnrgr2IN � IN such that

lim
n!1

d2((Xt;nr;r)t2ZZ; (Wt � Yt)t2ZZ) = 0:

Since (Xt;nr;r)t2ZZ is an MA process, satisfying (A.MA) and (A1) we complete the proof
of step 1.

Step 2: Proof that S1 � S3 is realizable with d2 limits of MA processes.
Let (Xt)t2ZZ = (Wt�Yt)t2ZZ 2 S1�S3 with (Wt)t2ZZ 2 S1 and (Yt =

P1
i=1

PNi

j=1 �t;i;j)t2ZZ 2
S3. Approximate (Wt)t2ZZ by (Wt;r)t2ZZ as in (5.1). Moreover, approximate (Yt)t2ZZ by

Yt;k;u =
kX
i=1

NiX
j=1

�
(u)
t;i;j; f(�

(u)
t;i;j)t2ZZgu2IN stationary, ergodic as in Lemma 5.1(i) (k; u 2 IN);

lim
u!1

d2((�
(u)
t;i;j)t2ZZ; (�t;i;j)t2ZZ) = 0 (i; j 2 IN):

Then, by using
P1
i=1 �i�

2
�;i <1 we get in a straightforward way,

lim
u!1

lim
k!1

d2((Yt;k;u)t2ZZ; (Yt)t2ZZ) = 0: (5.9)

Denote by (Xt;r;k;u)t2ZZ = (Wt;r + Yt;k;u)t2ZZ. Then, by (5.1) and (5.9),

lim
u!1

lim
k!1

lim
r!1

d2((Xt;r;k;u)t2ZZ; (Xt)t2ZZ) = 0: (5.10)

We show now that (Xt;r;k;u)t2ZZ can be approximated by

X
(n)
t;r;k;u =

nX
j=1

��j;r;k;uUt�j;n (t 2 ZZ; r; k; u 2 IN); (5.11)

where for every n 2 IN, (Ut;n)t2ZZ is an i.i.d. sequence, independent from (�
(u)
t;i;j)t2ZZ for

all i; j; u = 1; 2; : : : with IP[Ut;n = 1] = 1 � IP[Ut;n = 0] = �=n with � = 1 +
Pk
i=1 �i (if

(Wt;r)t2ZZ � 0, then � =
Pk
i=1 �i), and (��j;r;k;u)j2ZZ is a (�xed) realization of a process with

distribution F�� on (IR
ZZ;B), given by dF��(x) = ��1(dFWr(x)+

Pk
i=1 �idF

(u)
i (x)); x 2 IRZZ,

where FWr and F
(u)
i are the distributions of (Wt;r)t2ZZ and (�

(u)
t;i;1)t2ZZ, respectively.

Note that the random quantities in the de�nition of X
(n)
t;r;k;u are now only the Ut;n's.

Then,

(X
(n)
t1;r;k;u

; : : : ; X
(n)
tm;r;k;u)) (Xt1;r;k;u; : : : ; Xtm;r;k;u) (n!1);

for all t1 < : : : < tm 2 ZZ; for all m 2 IN: (5.12)

To show (5.12) we �rst argue for the case m = 1. Denote by 'U(s) = IE[exp(isU1;n)],
s 2 IR. Then, we obtain for any s 2 IR,

'(n)(s) = IE[exp(isX
(n)
t;r;k;u)] =

nY
j=1

'U (��j;r;k;us) =
nY
j=1

�
1 + �=n(exp(is��j;r;k;u)� 1)

�

! exp
�
�(IE[exp(is��1;r;k;u)]� 1)

�
= IE[exp(isXt;r;k;u)] (n!1):
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For the convergence to the limit with respect to n we use the ergodicity of (��j;r;k;u)j2ZZ
which implies n�1

Pn
j=1 exp(is

��j;r;k;u) ! IE[exp(is��1;r;k;u)] (n ! 1); note that ��1;r;k;u is
now again a random variable. Moreover, the de�nition of F�� has justi�ed the last equality
in the formula above. This proves (5.12) for m = 1.
For m > 1 one argues similarly, for example for m = 2:

(X
(n)
t1;r;k;u

; X
(n)
t2;r;k;u

)0 =
n�1X
j=1

(��j;r;k;u; ��j+t2�t1;r;k;u)
0Ut1�j;n + oP (1) (n!1) (t1 < t2);

and one uses now characteristic functions in IR2.
On the other hand,

IEjX
(n)
t;r;k;uj

2 = IEjU1;nj
2

nX
j=1

��2j;r;k;u = �n�1
nX
j=1

��2j;r;k;u

! �IEj��1;r;k;uj
2 = IEjXt;r;k;uj

2 (n! 1): (5.13)

Therefore, by (5.12) and (5.13),

lim
n!1

d2((X
(n)
t;r;k;u)t2ZZ; (Xt)t2ZZ) = 0: (5.14)

Note that IE[X
(n)
t;r;k;u] 6= 0, but the formula (5.14) also holds for the mean corrected process

~X
(n)
t;r;k;u =

Pn
j=1

��j;r;k;u(Ut�j;n � �=n). Then, ( ~X
(n)
t;r;k;u)t2ZZ is an MA process of order n,

satisfying (A.MA) and (A2), since IP[max1�j�n j��j;r;k;uj � n3=4]! 0 by the tail behavior,
i.e., second moments of ��j;r;k;u.
By (5.10) and (5.14),

lim
n!1

lim
u!1

lim
k!1

lim
r!1

d2(( ~X
(n)
t;r;k;u)t2ZZ; (Xt)t2ZZ) = 0:

Thus, there exist subsequences fnrgr2IN � IN, furgr2IN � IN, fkrgr2IN � IN such that

lim
r!1

d2(( ~X
(nr)
t;r;kr;ur

)t2ZZ; (Xt)t2ZZ) = 0:

Therefore, f( ~Xnr
t;r;kr;ur

)t2ZZgr2IN serves as an approximating sequence of MA processes,
which completes the proof for step 2.
By steps 1-2, the proof of Theorem 3.1 (ii) is complete.

Clearly, Theorem 3.2 implies Theorem 3.1 (i). 2

Proof of Theorem 3.2

Proof of assertion (i):
We �rst argue for the one dimensional marginal Xt;n =

P1
j=0  j;n"t�j;n for a �xed t 2 ZZ.

Let � > 0. Then there exists k = k(�) such that

1X
j=k+1

 2
j � �2: (5.15)
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By (3.2) and d
(1)
2 ("t;n; "t)! 0 (n!1), there exists an n1 = n1(�) such that

d2(
kX
j=0

 j;n"t�j;n;
kX
j=0

 j"t�j) � (IEj
kX
j=0

( j;n"t�j;n �  j"t�j)j
2)1=2

� (
kX
j=0

( j;n �  j)
2)1=2 + (

kX
j=0

 2
j )

1=2(IEj"t;n � "tj
2)1=2 � � for n � n1: (5.16)

(Here we have used the Minkowski and Cauchy-Schwarz inequality).
Furthermore, again by the Cauchy-Schwarz inequality,

d2(
kX
j=0

 j"t�j ;
1X
j=0

 j"t�j) � (
1X

j=k+1

 2
j )

1=2 � �;

d2(
kX
j=0

 j;n"t�j;n;
1X
j=0

 j;n"t�j;n) � (
1X

j=k+1

 2
j;n)

1=2

For the second inequality we bound in addition, by using
P1
j=0( 

2
j;n � 

2
j )! 0 (n!1):

there exists a n2 = n2(�) such that

1X
j=k+1

 2
j;n �

1X
j=k+1

 2
j + j

1X
j=k+1

( 2
j;n �  

2
j )j � (2�)2 for all n � n2:

Thus,

d2(
kX
j=0

 j;n"t�j;n;
1X
j=0

 j;n"t�j;n) � 2� for all n � n2:

By setting n0 = n0(�) = max(n1; n2) we therefore obtain with (5.16) and its subsequent
formulas,

d2(
1X
j=0

 j;n"t�j;n;
1X
j=0

 j"t�j) � 4� for all n � n0;

implying

lim
n!1

d
(1)
2 (Xt;n;

1X
j=0

 j"t�j) = 0 (t 2 ZZ):

This proves assertion (i) for the one dimensional marginal case. The multidimensional
case (Xt1;n; : : : ; Xtm;n) with m > 1 follows by the same argument and the Cram�er-Wold
device and hence

lim
n!1

d2((Xt;n)t2ZZ; (
1X
j=0

 j"t�j)t2ZZ) = 0:

Proof of assertion (ii):
We argue �rst for the one dimensional marginal case. Let f�mgm2IN be a monotonely
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decreasing sequence with limm!1 �m = 0. Let km = k(�m) be as in (5.15). Then, there
exists n1;m = n1(�m) and a constant Mm � km such that

max
j�Mm+1

j j;nj � �m for n � n1;m: (5.17)

To show formula (5.17) we assume the opposite. There exists �m > 0 such that for all
n1;m 2 IN and for all Mm � km = k(�m)

max
j�Mm+1

j j;nj > �m for some n � n1;m:

This implies that for some n � n1;m,

j j;nj > �m for in�nitely many j � km + 1:

But this implies
P1
j=0  

2
j;n = 1 for some n � n1;m (for all n1;m 2 IN), which is a contra-

diction to limn!1 IEjXt;nj
2 = limn!1

P1
j=0  

2
j;n <1.

As in (5.16) and its subsequent formula, there exists an n2;m = n2(Mm; �m) with

d2(
MmX
j=0

 j;n"t�j;n;
MmX
j=0

 j"t�j) � �m for all n � n2;m

d2(
MmX
j=0

 j"t�j ;
1X
j=0

 j"t�j) � �m:

Therefore,

d2(
MmX
j=0

 j;n"t�j;n;
1X
j=0

 j"t�j) � 2�m for all n � n2;m:

For all � > 0 there exists an m1 = m1(�) with �m1 � �=2 and hence

d2(
MmX
j=0

 j;n"t�j;n;
1X
j=0

 j"t�j) � �; for all m � m1; n � n2;m; (5.18)

Let us consider now the tail part
P1
j=Mm+1  j;n"t�j;n. Denote by (Wt)t2ZZ a stationary

Gaussian process with IE[Wt] = 0 and Cov(Wt;Wt+k) = limn!1
P1
j=Mm+1  j;n j+jkj;n (k 2

ZZ). Hence, for the d
(1)
2 convergence of

P1
j=Mm+1  j;n"t�j;n to Wt, it will be su�cient to

verify the Lindeberg condition.
For all � > 0, for all � > 0 there exists anm2 = m2(�; �) and there exists n3;m = n3(m; �; �)
such that

1X
j=Mm+1

 2
j;nIE["

2
t;n1[j"t;nj>�=j j;nj]] �

1X
j=Mm+1

 2
j;nIE["

2
t;n1[j"t;nj>�=maxj�Mm+1 j j;nj]]

�
1X

j=Mm+1

 2
j;nIE["

2
t;n1[j"t;nj>�=�m]] � � for all m � m2; n � n3;m;
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here we have used the bound in (5.17) and the fact that d
(1)
2 ("t;n; "t)! 0 (n!1). Thus

the Lindeberg condition holds. We now have: for all � > 0 there exists an m3 = m3(�)
and an n4;m = n4(m; �) such that

d2((
1X

j=Mm+1

 j;n"t�j;n)t2ZZ; (Wt)t2ZZ) � � for all m � m3; n � n4;m: (5.19)

Note that m1 and m3 in (5.18) and (5.19) are functions of � > 0. Thus, by de�ning
m0 = m0(�) = maxfm1; m3g and for n0 = n0(�) = maxfn2;m0 ; n4;m0g we get by (5.18)
and (5.19): for n � n0

d2(

Mm0X
j=0

 j;n"t�j;n;
1X
j=0

 j"t�j) � �;

d2(
1X

j=Mm0+1

 j;n"t�j;n;Wt) � �:

By independence (for �xed t) of
PMm0
j=0  j;n"t�j;n and

P1
j=Mm0+1

 j;n"t�j;n and hence ofP1
j=0  j"t�j and Wt we get

lim
n!1

d
(1)
2 (Xt;n;

1X
j=0

 j"t�j �Wt) = 0 (t 2 ZZ);

(here, the � operation is for real valued random variables).
This completes the proof of assertion (ii) for the one dimensional case.

Similarly as in (5.7) we can argue that the pieces (
PMm0
j=0  j;n"t�j;n)t2ZZ and

(
P1
j=Mm0+1

 j;n"t�j;n)t2ZZ become independent in the limit. By the same arguments as in
the one dimensional case and using the Cram�er-Wold device we then see that the Mallows
d2 limit of f(Xt;n)t2ZZgn2IN is in S1 � S2.

Proof of assertion (iii):
We �rst characterize the Mallows d2 limit (Xt)t2ZZ of the sequence f(Xt;n)t2ZZ;n 2 INg.
Consider any �nite dimensional vector

(Xt1;n; : : : ; Xtm;n)
0 =

1X
j=0

( j;n;  j+t2�t1;n; : : : ;  j+tm�t1;n)
0"t�j;n + oP (1):

This is essentially a vector sum of independent variables, which are by assumption (A2)
u.a.n. (uniformly asymptotically negligible). By Theorem 2 of Takano (1956) the charac-
teristic function 'X(:) of the limiting distribution of (Xt1;n; : : : ; Xtm;n)0 is thus character-
ized by the Khintchine-L�evy representation 'X(s) = exp( X(s)) (s 2 IRm) with

 X(s) = �s
0�s=2 +

Z
IRm

(exp(is0x)� 1� is0x)
1

kxk2
dK(x); s 2 IRm; (5.20)

where K is a measure with K(IRm) <1; K(f0g) = 0 and � a non-negative de�nite m�m
matrix.
The part �s0�s=2 in the  X(:) function corresponds to a Gaussian process (Wt)t2ZZ with
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IE[Wt] = 0 and which satis�es Cov(W (ti);W (tj)) = �i;j (i; j = 1; : : : ; m). Moreover, this
Gaussian part is independent from the rest, given by the measure K, since it is an additive
term in the  X(:) function.
We will show now that we can approximate the measure K, or the non-Gaussian partR
IRd(exp(is0x)� 1 � is0x) 1

kxk2dK(x), by a quantity corresponding to a process in S3. De-

compose the non-Gaussian part of  X(s) as

1X
r=1

Z
Ir
(exp(is0x)� 1� is0x)

1

kxk2
dK(x); s 2 IRd;

where I1 = IRm n [�1; 1]m, Ir = [�(r � 1)�1; (r � 1)�1]m n [�r�1; r�1]m; r = 2; 3; : : :.
Note that the sets I1; Is; : : : are disjoint which will yield the independence of the Poisson
variables N1; N2; : : : in the S3-representation.
Consider

(Yt)t2ZZ 2 S3; Yt =
1X
i=1

NiX
j=1

�t;i;j

where �t1;:::;tm;i;1 � Fi with �idFi(x) = dK(x)=kxk21[x2Ii]; i 2 IN and N1; N2; : : : indepen-
dent, Ni � Poisson(�i), �i =

R
Ii
dK(x)=kxk2.

Then a straightforward calculation for the characteristic function
'Y (s) = IE[exp(is0(Yt1 ; : : : ; Ytm)

0)] (s 2 IRm) yields,

'Y (s) =
1Y
i=1

exp(�i('i(s)� 1));

where 'r(s) = IE[exp(is0(�t1;r;1; : : : ; �tm;r;1)
0] (r 2 IN).

Thus, in the Khintchine-L�evy representation

 Y (s) = log('Y (s)) =
1X
r=1

�r

Z
Ir
(exp(is0x)� 1� is0x)dFr(x)

=
1X
r=1

Z
Ir
(exp(is0x)� 1� is0x)

1

kxk2
dK(x) =  X(s): (5.21)

Putting the pieces together, we consider the process

(Wt � Yt)t2ZZ 2 S1 � S3

as a representation of (Xt)t2ZZ.
Finally by (5.20),

lim
n!1

d2((Xt;n)t2ZZ; (Wt � Yt)t2ZZ) = 0:

This completes the proof for assertion (iii).
For assertion (iv), observe that by (A2),  j = 0 for all j 2 IN0. Thus, statement (iv)
follows from (ii) and (iii). 2

Proof of Theorem 3.3 (i)
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Consider the process (Xt)t2ZZ in S3, where

Xt =
NX
j=1

�t;j (t 2 ZZ);

and (�t;1)t2ZZ = (�t)t2ZZ; (�t;2)t2ZZ; : : : are independent copies of (�t)t2ZZ, N � Poisson(1).

By Lemma 5.1(ii), approximate (�t)t2ZZ by a sequence of ergodic processes f(�
(r)
t )t2ZZgr2IN,

with densities for all marginal distributions, such that

lim
r!1

dV ((�
(r)
t )t2ZZ; (�t)t2ZZ) = 0 (5.22)

and IE[�
(r)
t ] = 0 for every r 2 IN. Without loss of generality we assume IEj�

(r)
t j2 < 1; this

can be achieved by an additional truncation argument in the proof of Lemma 5.1(ii).
Then, consider the process

Xt;r =
NX
j=1

�
(r)
t;j (t 2 ZZ);

where (�
(r)
t;1 )t2ZZ; (�

(r)
t;2 )t2ZZ; : : : are independent copies of (�

(r)
t )t2ZZ (r 2 IN).

Then, by straightforward arguments and using (5.22),

lim
r!1

dV ((Xt;r)t2ZZ; (Xt)t2ZZ) = 0: (5.23)

Consider now the sequence of MA processes

X
(n)�
t;r =

nX
j=1

��
(r)
j U�

t�j;n;r (t 2 ZZ; r 2 IN);

where (��
(r)
j )j2ZZ is now a �xed realization of the stationary, ergodic, mean zero process

appearing in formula (5.22), and U�
t;n;r = Ut;n + Zt;n;r, (Ut;n)t2ZZ an i.i.d. sequence

with IP[Ut;n = 1] = 1 � IP[Ut;n = 0] = n�1 and (Zt;n;r)t2ZZ an i.i.d. sequence with
Zt;n;r � N (0; �2n;r), the processes being independent from (Xt;r)t2ZZ and from each other.
This is similar to the processes in Example 1.1. By choosing �2n;r ! 0 (n ! 1) appro-

priately, we will show that (X
(n)�
t;r )t2ZZ converges in the variation metric to (Xt;r)t2ZZ. We

will consider convergence for the one dimensional marginal distribution. Since �
(r)
t has a

density with respect to the Lebesgue measure (see Lemma 5.1(ii)), also Xt;r has a density
fr(:) for the corresponding c.d.f. Fr(:).
We write

X
(n)�
t;r = X

(n)
t;r +Wt;n;r;

X
(n)
t;r =

nX
j=1

��
(r)
j Ut�j;n; Wt;n;r =

nX
j=1

��
(r)
j Zt�j;n;r;

so that Wt;n;r � N (0; �2n;r); �
2
n;r = �2n;r

Pn
j=1(��

(r)
j )2 � �2n;rnIEj�

(r)
1 j2 (n!1).

Denoting the c.d.f. of X
(n)
t;r by Fn;r(:), X

(n)�
t;r has the continuous density

f�n;r(u) =

Z
IR
��1n;r'(

u� z

�n;r
)dFn;r(z):
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We can bound

dV (X
(n)�
t;r ; Xt;r) = 1=2kX

(n)�
t;r �Xt;rkV = 1=2

Z
IR
jf�n;r(u)� fr(u)jdu: (5.24)

Let ~f�n;r(u) =
R
IR �

�1
n;r'(

u�z
�n;r

)fr(z)dz. Clearly, as �
2
n;r ! 0 (n!1),

lim
n!1

j ~f�n;r(u)� fr(u)j = 0 (u 2 IR): (5.25)

Moreover, rewrite by partial integration and change of variables,

jf�n;r(u)� ~f�n;r(u)j = j
Z
IR
(Fn;r(u� v�n)� Fr(u� v�n;r))�

�1
n;r'

0(v)dvj

� kFn;r � Frk1�
�1
n;r

Z
IR
j'0(v)jdv:

The distribution Fn;r of X
(n)
t;r converges weakly to the distribution Fr of Xt;r, this follows

from the proof of formula (5.12). Since the distribution Fr is absolutely continuous, we
get by Polya's Theorem kFn;r�Frk1 ! 0 (n !1). By choosing �2n;r = kFn;r�Frk1=n
we get �2n;r ! 0; kFn;r � Frk1��1n;r ! 0 (n!1) and therefore

lim
n!1

jf�n;r(u)� ~f�n;r(u)j = 0 (u 2 IR): (5.26)

By (5.25), (5.26) and Sche��e's Theorem,

lim
n!1

Z
IR
jf�n;r(u)� fr(u)jdu = 0 (r 2 IN):

This, together with (5.24) yields d
(1)
V (X

(n)�
t;r ; Xt;r) ! 0 (n!1).

For the higher dimensional marginal distributions one can argue similarly. Therefore,

lim
n!1

dV ((X
(n)�
t;r )t2ZZ; (Xt;r)t2ZZ) = 0 (r 2 IN): (5.27)

Note that IE[X
(n)�
t;r ] 6= 0. But since n�1

Pn
j=1 �

(r)
j ! 0 a.s (n ! 1), the formula (5.27)

holds also for the mean corrected process ~X
(n)�
t;r =

Pn
j=1 �

(r)
j (U�

t�j;n;r � n�1). Also, the

sequence f( ~X
(n)�
t;r )t2ZZgn;r2IN satis�es (A.MA) and (A2). By (5.23) and (5.27), there exists

a subsequence fnrgr2IN � IN, such that

lim
r!1

dV ((X
(nr)�
t;r )t2ZZ; (Xt)t2ZZ) = 0:

Moreover,

IP[Xt = �t for all t 2 ZZj(�t)t2ZZ] � IP[N = 1] = exp(�1) > 0:36:

This completes the proof. 2

Proof of Theorem 3.4

With respect to the L1-norm, the set Fg(:);h(:);K is uniformly bounded (as a set of prob-
ability densities) and therefore conditionally compact, cf. Dunford and Schwartz (1957,
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Th. 20, Ch. IV.8). In metric spaces, this is equivalent to sequential compactness. We now
show that Fg(:);h(:);K is even closed in L1 and hence compact. Let ffngn2IN be a sequence
in Fg(:);h(:);K with L1 limit f , i.e., limn!1

R
IR jfn(x)�f(x)jdx = 0. By the L1 convergence,

we immediately get

f � 0;
Z
IR
f(x)dx = 1;

Z
IR
jf(x)� f(x+ c)jdx < � for all jcj � g(�);

(

Z �A

�1
+

Z 1

A
)jf(x)jdx � � for all A � h(�) (� > 0):

Moreover, by Fatou's Lemma,
Z
IR
x2f(x)dx � lim inf

n!1

Z
IR
x2fn(x)dx � K <1:

Finally, by uniform integrability, due to the bound K <1 for second moments,
Z
IR
xf(x)dx = 0:

This shows that f 2 Fg(:);h(:);K. Hence Fg(:);h(:);K is closed with respect to the L1 norm.
Consider a sequence f(Xt;n)t2ZZgn2IN,Xt;n =

P1
j=0  j;n"t�j;n, of processes in SMA;g(:);h(:);K;�;C

of which a suitable subsequence converges to a d2 (or dV ) limit (Xt)t2ZZ. The aim is to
show that (Xt)t2ZZ 2 SMA;g(:);h(:);K;�;C.
Denote by fn 2 Fg(:);h(:);K the innovation density, i.e., "t;n � fn(x)dx. Since Fg(:);h(:);K is
compact, the L1 limit f is again in Fg(:);h(:);K, where f is de�ned by

lim
n!1

Z
IR
jfn(x)� f(x)jdx = 0

(or take a suitable subsequence fnkgk2IN � IN).
This again implies that

lim
n!1

d
(1)
V ("t;n; "t) = 0 (t 2 ZZ); (5.28)

where ("t)t2ZZ is an i.i.d. sequence with "t � f(x)dx.
Without loss of generality we denote by  j = limn!1  j;n. Since ( j;n)j2IN0 2 M�;C (� >
0) for all n 2 IN, we get

lim
n!1

1X
j=0

 2
j;n =

1X
j=0

 2
j :

We know from Theorem 3.2, see also Remark 3.2, that f(Xt;n)t2ZZgn2IN has a d2 limit
(Xt)t2ZZ, where

Xt =
1X
j=0

 j"t�j (t 2 ZZ): (5.29)

Since supn2IN
P1
j=0 j

� 2
j;n � C, we get

P1
j=0 j

� 2
j � C and hence

( j)j2IN0 2M�;C :
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This together with (5.29) and the fact that "t � f(x)dx; f 2 Fg(:);h(:);K implies (Xt)t2ZZ 2
SMA;g(:);h(:);K;�;C.

From (5.28) and the fact that IEj"tj
2 � K < 1, it follows from the proof of Theorem

3.2, see also Remark 3.2, that (Xt)t2ZZ as de�ned in (5.29) is also the weak convergence
limit of f(Xt;n)t2ZZgn2IN. Hence, the closure of SMA;g(:);h(:);K;�;C with respect to weak
convergence on �nite dimensional distributions is a subset (not strict) of SMA;g(:);h(:);K;�;C.
Since the closure of a set with respect to the dV metric is always a subset (not strict)
of the closure of the same set with respect to weak convergence on �nite dimensional
distributions, we conclude that the dV closure of SMA;g(:);h(:);K;�;C is a subset (not strict)
of SMA;g(:);h(:);K;�;C. 2

5.2 Proofs of results in section 4

Theorem 4.1 follows by Theorem 4.2.

Proof of Theorem 4.2

The proof follows in large parts the proofs in section 5.1. The key is to represent (Xt;n)t2ZZ
as an MA process, see formula (4.2). Then assertions (i) and (ii) follow as in the proof of
Theorem 3.2. The cases in assertions (iii) and (iv) have in common that �2n = IEj"t;nj

2 ! 0
and hence supn2IN

P1
j=0  

2
j;n = 1. However, by (A4) the sequence of variables  j;n"t�j;n

is still u.a.n., i.e.,

max
j�0

�nj j;nj ! 0 (n!1):

Now, assertion (iv) follows as in the proof of Theorem 3.2, assertion (iii) is a special
case, where Lindeberg's condition holds, and therefore formula (5.20) consists only of the
Gaussian part �s0�s=2. This completes the proof of Theorem 4.2. 2

Proof of Proposition 4.1

The AR(1) process (Xt;n)t2ZZ can be represented as

Xt;n =
1X
j=0

�jn"t�j;n (t 2 ZZ):

Moreover, IEj"t;nj2 = 1� �2n so that IEjXt;nj2 = 1 for all n 2 IN. Next we will show that for
�xed t,

Xt;n ) Xt (n!1); with  (s) = log(IE[exp(isXt)]) given by

 (s) =
Z
IR
(exp(isx)� 1� isx)=x2dK(x); dK(x) = x1[�1<x�1]dx: (5.30)

Note that Xt cannot be Gaussian since the Khintchine-L�evy measure K(:) does not jump
at zero. Moreover, formula (5.30) does imply d2 convergence since IEjXtj2 =

R
IR dK(x) = 1,

which equals limn!1 IEjXt;nj
2.

To show (5.30) it is su�cient to prove

Kn converges weakly to K; Kn(y) =
1X
j=0

Z y

�1
x2dFj;n(x); (5.31)
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where Fj;n is the distribution of �jn"t�j;n.
We consider

1X
j=0

Z 1

�
dFj;n(x) = (1� �2n)=2

1X
j=0

1
[�<�

j
n�1]

(0 < � < 1):

Since �jn > � is equivalent to j < log(�)=log(�n) and �2log(�n) � 1��2n (n!1), we get

1X
j=0

Z 1

�
dFj;n(x) = (1� �2n)=2[log(�)=log(�n)]! �log(�) (n!1):

By symmetry, the same is true for �1 < � < 0. By the Radon-Nikodym Theorem we then
arrive at

1X
j=0

x2dFj;n(x)! x2x�11[�1<x�1]dx = x1[�1<x�1]dx (n!1):

Therefore (5.31) follows and hence (5.30) holds.
Finally, since �n ! 1 and "t;n = oP (1) we have Xt;n � Xt�1;n = oP (1) and therefore
Xt = Xt�1 for all t 2 ZZ. 2

Proof of Theorem 4.3

Consider a sequence f(Xt;n)t2ZZgn2IN,Xt;n =
P1
j=1 �j;nXt�j;n+"t;n, of processes in SAR;g(:);h(:);K;�;C

of which a suitable subsequence converges to a d2 (or dV ) limit (Xt)t2ZZ. The aim is to
show that (Xt)t2ZZ 2 SAR;g(:);h(:);K;�;C.

We use the representation (4.2) and then get with the formula  j;n =
Pj�1
k=0  k;n�j�k;n ,

cf. Markushevich (1977, Vol. 1, p.438),

sup
n2IN

1X
j=0

j��1j j;nj <1: (5.32)

Without loss of generality, we denote by  j = limn!1  j;n. Note that now limn!1
P1
j=0  

2
j;n =P1

j=0  
2
j , since by (5.32), the tail sum supn2IN

P1
j=M+1 j j;nj � const:M��+1 ! 0 (M !

1). Formula (5.32) also implies

1X
j=0

j j j <1: (5.33)

Furthermore, since supn2IN
P1
j=1 j�j;nj <1, we have

inf
n2IN; jzj�1

j	n(z)j > 0: (5.34)

Since  j;n !  j (n ! 1) and by using (5.32)-(5.34) one can show in a straightforward
way

lim
n!1

	n(z) = 	(z) and 	(z) =
1X
j=0

 jz
j 6= 0 for jzj � 1: (5.35)
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By (5.33) and (5.35) we can invert and write 1=	(z) = �(z) = 1 �
P1
j=1 �jz

j 6= 0 for
jzj � 1.
Since 	n(z) ! 	(z) for jzj � 1 and by the invertibility of 	n(:) and 	(:), we also have
�n(z) ! �(z) for jzj � 1. By assumption, supn2IN

P1
j=1 j

�j�j;nj � C < 1 and thereforeP1
j=1 j

�j�j j � C. Thus, (�j)j2IN 2 A�;C .
We know from the proof of Theorem 3.2 that (Xt;n)t2ZZ has a d2 limit Xt =

P1
j=0  j"t�j ,

which can be represented by inversion asXt =
P1
j=1 �jXt�j+"t. By the proof of Theorem

3.4 in section 5.1, "t � f(x)dx with f 2 Fg(:);h(:);K and IEj"tj2 < 1. Moreover, since
(�j)j2IN 2 A�;C , the process (Xt)t2ZZ is in SAR;g(:);h(:);K;�;C.

As in the proof of Theorem 3.4 in section 5.1, the dV closure of SAR;g(:);h(:);K;�;C is a
subset (not strict) of SAR;g(:);h(:);K;�;C.

Finally, the processes in SAR;g(:);h(:);K;�;C are strong-mixing, since their MA represen-
tations satisfy the conditions in Gorodetskii (1977). 2

Acknowledgments: We thank David Freedman and David Aldous for helpful con-
versations.
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