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1. INTRODUCTION

Should we teach Bayesian statistics in a general introductory
course? I agree with Moore’s answer: the subjective approach
is best taught in later courses, after some probability has been
developed; the beginning course should focus on standard
frequentist techniques.

The subjective approach is elegant, powerful, and logically
water-tight. It provides a rich set of metaphors, and a host of
fascinating mathematical questions. However, there seem to
be serious difficulties in applying the methods to real
problems; see, for instance, LeCam (1977) or Freedman
(1996). Such foundational issues are background to the present
discussion of teaching.

At Berkeley, the introductory course does a lot on descriptive
statistics—histograms and scatter plots, the average and the
standard deviation, correlation and regression. Design issues
are central: for instance, comparisons between observational
studies and randomized controlled experiments. We emphasize
the role of “box models” in statistical inference, and the
advantages of probability samples over convenience samples.
These are important topics, perhaps more important than any
formal statistical calculations, and they are not easily
reconciled with the Bayesian approach.

Would a Bayesian course be simpler to teach? On this
score, Albert and Berry are too optimistic. For instance,
students—and others—have a lot of trouble distinguishing
P{A|B} from P{B|A}. Even the difference between P{A} and
P{A|B} is problematic. There is a real psychological conflict
between two facts about tossing a fair coin:

(i) the chance of 10 heads in a row is 1/1,024;

(ii) given that the first 9 tosses were heads, the chance of a
head on the 10th toss is 1/2.

One consequence is the “gambler’s fallacy”—a cognitive
illusion whose power is demonstrated by Cohen (1981).
Beginning students in our courses have a hard enough time
with fractions, never mind these probabilistic subtleties. Pre-
test results from U.C. Berkeley may be of interest (Freedman,
Pisani, Purves, 1997). Two items give the flavor: only half
the students get the first question right, and one in six gets the
second.

There are 100 million eligible voters in the United States. The
Gallup poll interviews 5,000 of them. This amounts to 1 eligi-
ble voter out of every _____.

In the United States, 1 person out of every 500 is in the army,
and 3 out of every 10,000 are army officers. What percentage
of army personnel are officers, or can this be determined from
the information given?

For many of these students, probability theory comes down
to one question, “When do I add and when do I multiply?” To
this audience, Bayes’ theorem will not be an illumination.

Of course, significance testing present difficulties of its own,
but students need to understandP-values becauseP < .05 has
become a talisman of science. A parallel issue is canvassed by
the three papers: To what extent are Bayesian methods used
in practice? Such methods have a considerable presence in
certain fields. In other areas, frequentist techniques dominate
but practitioners have the idea that probabilities quantify
uncertainty (includingP-values). On balance, Moore is close
to right: frequentist inference is the paradigm, and that is a
powerful argument for the frequentist introductory course.

Can frequentist ideas be taught to beginners? Moore’s
comment (p.15) is on target: students come away with a
reasonable grip on the ideas, if not the syntax. Test results
from courses with a frequentist orientation are reported in
Freedman, Pisani, and Purves (1997). These data span many
years and show that much can be done, even for students
whose technical skills are limited. For example, the average
score was about 9/10 on the following question (Statistics 2
final exam, Berkeley, fall 1996; n=185).

On October 20, 1993, theSan Francisco Chroniclereported a
survey of top high school students in the U. S. According to
the survey,

“Cheating is pervasive. Nearly 80 percent admitted some
dishonesty, such as copying someone’s homework or
cheating on an exam. The survey was sent last spring to
5,000 of the nearly 700,000 high achievers included in the
1993 edition ofWho’s Who Among American High School
Students. The results were based on the 1,957 completed
surveys that were returned. ‘The survey does not pretend to
be representative of all teenagers,’ saidWho’s Who
spokesman Andrew Weinstein. ‘Students are listed inWho’s
Who if they are nominated by their teachers or guidance
counselors. Ninety-eight percent of them go on to college.’”

Why isn’t the survey representative of all teenagers? Is the
survey representative of the nearly 700,000 high achievers
included in the 1993 edition ofWho’s Who Among American
High School Students?

2. IMPROPER PRIORS

Strictly speaking, Bayesian methods start with a proper prior.
Some statisticians now use improper priors, while others use
“priors” that are data-dependent. Such algorithms would be
hard to defend on the usual Bayesian grounds, and frequentist
operating characteristics need to be demonstrated. (Bayes’
theorem is among other things a powerful heuristic engine:
but few statistical algorithms are self-justifying, and even the
best heuristics may lead us far astray.) These considerations
are well beyond the scope of any conceivable introductory
course.



3. ARGUMENTS FOR THE SUBJECTIVIST POSITION

Albert and Berry are quite pragmatic; other writers often
suggest that frequentists are benighted. In the extreme, to be
non-Bayesian is to be “incoherent” if not “irrational”; the
introductory course should then be switched from an irrational
paradigm to the rational alternative. Life is not that simple,
and the subjectivist position is not compelling. For instance,
one of their arguments runs as follows. If a statistician has to
post odds on each of several events and cover bets on either
side at any stakes, a clever bettor can make money whatever
the state of nature may prove to be—unless a prior probability
is used to set the odds. (The events have to form an algebra.)
A “Dutch book” is a system of bets that makes money given
any state of nature; at least in this context, “incoherence” just
means the possibility of a Dutch book.

The theorem goes back to de Finetti; see Freedman and
Purves (1969) for an extension. The conditions of the
theorem, however, describe only a highly stylized version of
applied statistics—after all, who will cover as many bets as the
theorem requires? Therefore, the Dutch-book argument is too
far removed from practice to have much force.

Another line of argument cites Edwards, Lindeman, and
Savage (1963) to show that the prior does not really matter,
being eventually swamped by the data. That is so in smooth,
low-dimensional situations (and then frequentist methods will
give essentially the same answers too). On the other hand, if
the number of parameters is large, the situation is quite
different; the latter case may be the relevant one. For reviews,
see Diaconis and Freedman (1986, 1996).

Other arguments for axiomatics of the von Neumann-
Morganstern-Savage type are almost purely normative; see
Kreps (1988, p.4). These generally boil down to a truism:
you should obey the axioms if, after careful consideration, you
want to obey the axioms. Moreover, non-Bayesians turn out
to be irrational only by a little semantic trick: according to the
subjectivists’ definition, “rational” behavior just means
behavior that conforms to their axioms. On the descriptive
side, of course, rational people generally do not behave like
Bayesians—or frequentists, for that matter. See, for instance,
Tversky and Kahneman (1986).

4. CONCLUSION

In the abstract, the Bayesian approach is tidier, and students
are often impatient of practical detail. These are good
arguments for a Bayesian introductory course. However,
subjectivist ideas are inherently difficult, and the messy details
may be the ones that matter. After much soul-searching, I
opted long ago for a frequentist approach. I still think that was
the right decision. The present papers make thoughtful
contributions to an important issue, and they will stimulate
many valuable conversations.
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