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Abstract

In an information theoretical set-up, Rissanen (1983) has proposed the algorithm
`context' for data compression. Using his idea we introduce a new sub-class of sta-
tionary, possibly sparse, Markov chains (context models), whose dimension is allowed
to grow with increasing sample size. Asymptotically, this new class covers in�nite
dimensional models.

Proposing a modi�cation of Rissanen's algorithm (context algorithm), we show
how such context models can be selected and �tted in a data-driven way. From this
we gain several grounds: an excellent exploratory tool, a novel universal resampling
procedure for categorical time series (context bootstrap) and a nonparametric predic-
tion machine.

We prove a novel consistency result for our data-driven context algorithm in an
asymptotically in�nite dimensional setting and also show the asymptotic validity of
the context bootstrap for a broad range of situations.

The computations can be done recursively and are very fast. A simulation study
for the context bootstrap completes our exposition.
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1 Introduction

One of the most nonparametric models for a stationary process fXtgt2ZZ assuming no
particular underlying mechanistic system is maybe a full Markov chain of �nite order. The
only implicit assumption made is about the �nite memory of the process. Probabilistically
a nice model, such full Markov chains can become very hard to estimate. Even when the
process fXtgt2ZZ takes only values in a �nite space, these models run very soon into the
curse of dimensionality. This corresponds to an explosion in the number of parameters
yielding highly variable estimates.

Trying to avoid the curse of dimensionality and still achieving a substantial reduction
of the complexity in the data, we make use of an existing method in computer science and
information theory. The algorithm `context', proposed by Rissanen (1983) and further
developed by Weinberger et al. (1995) has been designed for compression of (dependent)
�nite state sequences. The idea in a Markovian set-up is to lump irrelevant states together,
resulting in a sometimes huge reduction of the number of parameters.

We �rst rede�ne here what we call the context model as some sort of �nite state, possi-
bly sparse Markov chain. Then, we consider families of such context models which change
with sample size. We allow a growth in the model dimension as sample size increases, thus
extending to the class of in�nite dimensional models. The range of applications of such
models is very broad, as examples we mention genetics with DNA sequencing, cf. Prum
et al. (1995), seismology with Mercalli intensities, cf. Brillinger (1994), and �nance with
modeling extreme events, cf. B�uhlmann (1996).

Given data, we propose to �t a context model by lumping irrelevant states together
in a fully adaptive way. We modify Rissanen's algorithm `context' which is related to
some kind of hierarchical backward model selection. Fitted context models can be used
as an excellent exploratory tool for the dynamics of a categorical time series. Finite state
Markov chains can be represented by trees, where every branch corresponds to a history
of times t� 1; : : : attached with the probabilities for moving on to time t. Sparse Markov
chains are then represented by unbalanced trees and a �tted context model yields the
structure of such a tree.

We give an entirely new consistency result, showing that our modi�ed context algo-
rithm is consistent for estimating the true underlying model whose dimension also grows
with sample size. This is in some sense an analog of a convergence rate result. As an
important consequence, our result implies a balance between over- and under-estimation
of the true model, the e�ect of these miss-estimations becoming eventually negligible. This
corresponds to the well known bias-variance tradeo�.

We also make use of the general consistency result described above to propose a novel
resampling scheme, the context bootstrap. We prove asymptotic validity of the context
bootstrap for a whole class of estimators and argue why such a scheme works under very
general conditions. The context bootstrap is tailored for categorical time series and o�ers
an alternative to the blockwise bootstrap, which has been proposed by K�unsch (1989) for
the case of general stationary observations. In particular, the context bootstrap has a nice
probabilistic interpretation and enjoys the advantage of being applicable as a simple plug-
in rule. Based on results from our simulation study we have with the context bootstrap
a new universally well working resampling tool for categorical time series which usually
outperforms the blockwise bootstrap.

2



The paper is organized as follows. In section 2 we give the de�nition of a context model.
In section 3 we describe the process of �tting such models and state the general consistency
result of �nding the true underlying model. In section 4 we describe the context bootstrap,
state results about asymptotic validity thereof and present results from a simulation study.
In particular, a comparison with the blockwise bootstrap is included. In section 5 we give
the proofs.

2 Context models as variable length Markov chains

In the sequel, we denote by xji = xj ; xj�1; : : : ; xi (i < j; i; j 2 ZZ [ f�1;1g) a string
written in reverse `time'. We usually denote by capital letters X random variables and by
small letters x �xed deterministic values. We follow here the ideas of Weinberger et al.
(1995) and de�ne what we call the context model. As a starting point, consider (Xt)t2ZZ,
being a stationary Markov chain of �nite order k with values in a �nite space X . Thus,

IP[X1 = x1jX0
�1 = x0�1] = IP[X1 = x1jX0

�k+1 = x0�k+1]; for all x
1
�1: (2.1)

Such full Markov chains are very hard to estimate since they involve jX jk(jX j � 1) free
parameters. For example, if jX j = 5 and k = 5, the number of free parameters is 12500,
which is prohibitive! To get less complex models, the idea is to lump irrelevant states in
the history X0

�k+1 in formula (2.1) together, resulting in a sparse Markov chain.

For a time point t 2 ZZ, typically only some values from the in�nite history X t�1
�1 of

the variable Xt are relevant. This relevant history can be thought as a context for the
actual variable Xt. To achieve a 
exible model class, ranging from some type of sparse to
full Markov chains, we let the length of a context depend on the actual values X t�1

�1. In
other words, we might have for the variable Xt a context of length 1 and for Xt0 a context
of length 5. We can formalize this as follows.

De�nition 2.1 Let (Xt)t2ZZ be a stationary process with values Xt 2 X , jX j <1. Denote
by c : X1 ! X1 a (projection) function which maps

c : x0�1 7! x0�`+1; where ` is de�ned by

` = minfk; IP[X1 = x1jX0
�1 = x0�1] = IP[X1 = x1jX0

�k+1 = x0�k+1] for all x1 2 Xg
(` = 0 corresponds to independence):

Then, c(:) is called a context function and for any t 2 ZZ, c(xt�1�1) is called the context for
the variable xt.

The name context refers to the portion of the past that in
uences the next outcome.
By the projection structure of the context function c(:), the context-length `(:) = jc(:)j

determines c(:) and vice-versa; here j:j denotes the cardinality of a tuple. The de�nition
of ` implicitly re
ects the fact that the context-length of a variable xt is ` = jc(xt�1�1)j =
`(xt�1�1), depending on the history xt�1�1.

De�nition 2.2 Let (Xt)t2ZZ be a stationary process with values Xt 2 X , jX j < 1 and
corresponding context function c(:) as given in De�nition 2.1. Let 0 � k � 1 be the
smallest integer such that

jc(x0�1)j = `(x0�1) � k for all x0�1 2 X1:
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Then c(:) is called a context function of order k, and (Xt)t2ZZ is called a stationary context
model of order k.

Clearly, a context model of order k is a Markov chain of order k, now having a memory of
variable length `. By requiring stationarity, a context model is thus completely speci�ed
by its transition probabilities,

p(x1jc(x0�1)) = IP[X1 = x1jc(X0
�1) = c(x0�1)]; x

1
�1 2 X1:

Our framework, given below in section 2.1, will be such that the order k = kn of a context
model is allowed to grow with sample size n. In retrospect, we could de�ne a context
function c(:) : X k ! X k , since there is no functional dependence of the function c(x0�1)
on a variable x�k+1�m (m > 0). We sometimes use the de�nition on X1 and sometimes
on X k. The context function projects the k-th (or in�nite) order history x0�k+1 into X k .
Often the range space of the context function c(:) is not the full space X k, but also not the
empty space. If the context function c(:) of order k is the full projection x0�k+1 7! x0�k+1
for all x0�k+1, the context model is a full Markov chain of order k. The class of context
functions of length k is rich enough to obtain a broad class of Markov chains, including
special sparse types given by the notion of a short context. In particular, some context
functions c(:) would yield a substantial reduction in the number of parameters compared
to a full Markov chain of the same order as the context function.

2.1 Family of context models

Sometimes it is appropriate to assume an underlying probability distribution (model)
Pn on X1 which changes with sample size n. This means, we have a �nite realization
X1;n; : : : ; Xn;n from Pn, where Pn is the distribution of a stationary context model of
�nite order kn as given in De�nition 2.2. Such a model is also called `moving truth'. We
allow kn ! 1 (n ! 1), the rate of increase not being too fast. This then incorporates
models of unbounded dimensions and in�nite dimensional models in the limit. The precise
description is as follows.

Let P be a class of probability distributions on X1, corresponding to stationary con-
text models of �nite order,

P = fP ; (Xt)t2ZZ � P; (Xt)t2ZZ de�ned as in De�nition 2.2 with order k <1g: (2.2)

The `moving truth' model then reads,

X1;n; : : :Xn;n a �nite realization of Pn;

Pn 2 P ; P as in (2.2); n 2 IN: (2.3)

In order to learn consistently about Pn fromX1;n; : : : ; Xn;n, we need additional restrictions
for the sequence (Pn)n2IN, see assumptions (A1)-(A3) in section 3.2. But we do not
necessarily assume a `limiting truth' limn!1 Pn = P (where the limit would have to be
de�ned �rst). Consistent estimation of a sequence (Pn)n2IN 2 P (or consistent learning)
in a `moving truth' model is de�ned as follows. Let d(:; :) be a metric on P . An estimate
P̂n, based on a realization X1;n; : : : ; Xn;n from Pn, is called d-consistent for Pn, if for any
" > 0, there exists an n0 = n0("), such that

IP[d(P̂n; Pn) < "] > 1� " for all n � n0:
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2.2 Representation as context trees

In order to explain our procedure for adaptively selecting and �tting a context model, it
is most convenient to represent a context function, and hence the set of relevant histories
of a context model, as a tree.

We consider trees with a root node on top, from which the branches are growing
downwards, so that every internal node has at most jX j o�springs. Then, each value of a
context function c(:) : X k ! X k can be represented as a branch (or �nal node) of such a
tree. The context w = c(x0�k+1) is represented by a branch, whose sub-branch on the top
is determined by x0, the next sub-branch by x�1 and so on, and the �nal sub-branch by
x�`(x0;:::;x�k+1)+1.

Example 2.1 jX j = 2, k = 3.
The function

c(x0; x�1; x�2) =

8>><
>>:

0; if x0 = 0
1; 0; 0; if x0 = 1; x�1 = 0; x�2 = 0
1; 0; 1; if x0 = 1; x�1 = 0; x�2 = 1
1; 1; if x0 = 1; x�1 = 1

can be represented by the tree �c(:),

A `growing to the left' sub-branch represents the symbol 0 and vice versa for the symbol 1.

Note that context trees do not have to be complete, i.e., every internal does not need to
have exactly jX j o�springs (when jX j > 2).

De�nition 2.3 Let c(:) be a context function of a stationary context model of order k.
The (jX j-ary) context tree � and �nal node context tree �f are de�ned as

� = �c = fw;w = c(x0�k+1); x
0
�k+1 2 X kg;

�f = �fc = fw;w 2 �c and wu =2 �c for all u 2 Xg:

De�nition 2.3 says that only �nal nodes in the tree representation � are considered as
elements of the �nal node context tree �f . Clearly, we can reconstruct the context function
c(:) from �c or �

f
c . An internal node with b < jX j o�springs can be implicitly thought

to be complete by adding one complementary o�spring, lumping the jX j � b non-present
nodes together.
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3 Context algorithm and its consistency

Given data X1;n; : : : ; Xn;n as in (2.3), the aim is to �nd the underlying context function
cn(:) and an estimate of Pn. We will attack and solve this problem in a purely non-
parametric way, incorporating ideas from data compression as given by Weinberger et al.
(1995). It is exactly this nonparametric character which makes our data driven algorithm
an excellent exploratory tool and attractive for resampling, see section 4.

3.1 Context algorithm

We describe now the algorithm for the aim mentioned above. In the sequel we always
make the convention that quantities involving time indices =2 f1; : : : ; ng equal zero (or are
irrelevant). Let

N(w) =
nX
t=1

1
[Xt+jwj�1

t =w]
; w 2 X1; (3.1)

denote the number of occurrences of the string w in the sequence Xn
1 . Moreover, let

p̂(w) = N(w)=n; p̂(ujw) = N(uw)

N(w)
; w; u 2 X1; uw = (: : : ; u2; u1; : : : ; w2; w1): (3.2)

The algorithm below constructs the estimated context tree �̂ to be the biggest context
tree such that

�wu =
X
x2X

p̂(xjwu) log( p̂(xjwu)
p̂(xjw) )N(wu) � K log(n) for all wu 2 �̂f (3.3)

with K > 2jX j+ 3.

Step 1 Given data X1; : : : ; Xn taking values in a �nite space X , �t a maximal jX j-ary
context tree, i.e., search for the context function cmax(:) with �nal node context tree
representation �fmax, where �

f
max is the biggest tree such that every element (�nal

node) in �fmax has been observed at least twice in the data. This can be formalized
as follows:

w 2 �fmax implies N(w) � 2;

�fmax � �f ; where w 2 �f implies N(w) � 2:

(�1 � �2 means: w 2 �1 ) wu 2 �2 for some u 2 [1m=0Xm (X 0 = ;)). Set

�f(0) = �fmax.

Step 2 Examine every element (�nal node) of �f(0) as follows (the order of examining is

irrelevant, see Remark 3.2). Let c(:) be the corresponding context function to �f(0)
and let

wu = X0
�`+1 = c(X0

�1); u = X�`+1; w = X0
�`+2;
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be an element (�nal node) of � (0), which we compare with its pruned version w =
X0
�`+2 (if ` = 1, the pruned version is the empty branch, i.e., the root node).

Replace the context wu = X0
�`+1 by w = X0

�`+2 if

�wu =
X
x2X

p̂(xjwu) log( p̂(xjwu)
p̂(xjw) )N(wu) < K log(n);

with K > 2jX j + 3 and p̂(:) and p̂(:j:) as de�ned in (3.2). Decision about pruning

for every �nal node in �f(0) yields a (possibly) smaller tree �(1) � �f(0). Let

�
f
(1) = fw; w 2 �(1) and wu =2 �(1) for all u 2 Xg:

Step 3 Repeat Step 2 with �(i); �
f
(i) instead of �(i�1); �

f
(i�1) (i = 1; 2; : : :) until no more

pruning is possible. Denote this maximal pruned context tree (not necessarily of
�nal node type) by �̂ and its corresponding context function by ĉ(:).

Step 4 If interested in probability sources, estimate p(x1jc(x0�1)) = IP[X1 = x1jc(X0
�1) =

c(x0�1)] by p̂(x1jĉ(x0�1)), where p̂(:j:) is de�ned as in (3.1).

Remark 3.1. The pruning in the context algorithm can be viewed as some sort of
hierarchical backward selection. Dependence on some values further back in the history
should be weaker, so that deep nodes in the tree are considered, in a hierarchical way, to
be less relevant. This hierarchic structure is a clear distinction to the CART algorithm
(Breiman et al., 1984), where the tree architecture has no built in time structure.

Remark 3.2. It does not matter which �nal node wu in Step 2 is examined �rst, second
and so on. This relates to the orthogonal decomposition in analysis of variance, where the
order to test various e�ects does not matter. Here, for every tree �(i) the order of testing
the �nal nodes is irrelevant, constituting a semi-orthogonality.

Remark 3.3. The pruning decision in Step 2 can be related to the Kullback-Leibler
distance and to the likelihood ratio test. By de�nition,

�wu =
X
x2X

p̂(xjwu) log( p̂(xjwu)
p̂(xjw) )N(wu)

= D(p̂(:jwu)jjp̂(:jw)N(wu); (3.4)

whereN(wu) is de�ned in (3.1) andD(P jjQ) =Px2X P (x) log(P (x)=Q(x)) is the Kullback-
Leibler distance between two probability measures P and Q on X .
Denote the estimated likelihood function, based on context function c(:) by

ÎPc(X
n
1 ) =

nY
t=1

p̂(Xtjc(X t�1
�1)); (3.5)

where p̂(Xtjc(X t�1
�1)) is de�ned in (3.2).

Denote by c(:) the context function of a non-pruned context tree and by c0(:) the context
function of the sub{tree, pruned at one �nal node wu = x0�`+1 to its parent node w =
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x0�`+2. By the multiplicative structure in (3.5), many terms cancel in the likelihood ratio
statistic and only the term remains at the node considered for pruning. One gets

�wu = log(
ÎPc(X

n
1 )

ÎPc0(X
n
1 )
): (3.6)

Formula (3.6) says that our pruning criterion is nothing else than a likelihood ratio test,
but now with a large acceptance region [0; K log(n)] for the pruned (sub{)tree. The large
acceptance region takes care about the multiple test problem, our algorithm can be viewed
as doing very many likelihood ratio tests.

Remark 3.4. The cut-o� value K log(n) in Step 2 for the pruning decision is chosen
by an asymptotic consideration. Clearly, by the interpretation as likelihood ratio tests,
small cut-o� values will result in larger context trees and over�tting occurs. It is an open
question which cut-o� yields a procedure, being optimal in some (still to be de�ned) sense.
Since the likelihood ratio statistic in (3.6) satis�es

2 log(
ÎPc(X

n
1 )

ÎPc0(Xn
1 )
)

d�! �2d�1 (n!1);

the cut-o� value can be interpreted as a (stepwise) 1 � � quantile divided by 2 of the
appropriate �2 distribution �2d�1;1��=2. The level � would typically be chosen to be
small. For an automatic selection of the cut-o� value one could try to minimize a measure
for model complexity such as AIC,

�2 log(ÎPĉ(X
n
1 )) + 2(number of parameters);

where log(ÎPĉ(Xn
1 )) is the log-likelihood of the data with respect to an estimated context

model with context function ĉ.

3.2 Consistency

We give two results, the �rst one dealing with consistency for �nding the structure of a
context model, the second one yielding d-consistency as de�ned in section 2.1.

We consider a sequence of context models (Pn)n2IN, Pn 2 P as de�ned in (2.2). Every
context model Pn is speci�ed by its context function cn(:) or equivalently its context tree �n
and the transition probabilities fpn(:jw);w 2 �ng. With a slight abuse of notation, we write
for any v = (vm; : : : ; v1) 2 Xm, Pn(v) instead of Pn ���11;:::;m(v) with � being the coordinate
function, see (3.7). We also denote by Pn(xjv) = Pn(xv)=Pn(v) for x; v 2 X1. Under the
assumption (A1) below, the transition probabilities fpn(:jw);w 2 �ng generate the unique
stationary probability measure Pn on X1. Thus, for a context w 2 �n, Pn(:jw) = pn(:jw).
We make the following assumptions.

(A1) (Pn)n2IN satis�es,

sup
n2IN

sup
v;w;w0

jp(r)Zn
(v; w)� p

(r)
Zn
(v; w0)j < 1� 2�; for some � > 0;

where p
(r)
Zn
(v; w) = IP[Zr;n = vjZ0;n = w] denotes the r-step transition kernel of the

state process Zt;n = c(X t;n
0;nx

1
0 ); x10 = x0; x0; : : : (t 2 IN0) with (Xt;n)t2ZZ � Pn.
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The de�nition of Zt;n re
ects our implicit assumption here that the initial state
is padded with elements x0 2 X , i.e., Z0;n = w means Z0;n = wx10 so that the
next states Zt;n (t > 0) are uniquely determined by the transition probabilities
fpn(:jw); w 2 �ng.

(A2) Let bn = minw2�n Pn(w) and �n = minwu2�n;u2X kPn(:jwu) � Pn(:jw)k1. Then, for
some � > 0,

bn � log(n)3+�=n;

�n � 4(
2K log(n)

nbn
)1=2:

(A3) The minimal transition probabilities satisfy

1

minx2X ;w2�n pn(xjw)
= O(n) (n!1):

Remark 3.5. The assumption about transition kernels in (A1) is related to the ergod-
icity coe�cient for stationary Markov processes, cf. Iosifescu and Theodorescu (1969) and
Rajarshi (1990).

Remark 3.6. By remark 3.5, the stationary probabilities are �n(w) = Pn(w); w 2 �n.
Thus, assumption (A2) about the minimum stationary probability bounds the size of the
context tree as j�nj � b�1n � n= log(n)2+�, which is the order of the number of parameters
in the model.

Remark 3.7. For distinguishing a context wu form its parent node w in the context tree,
assumption (A2) also guarantees a minimal L1 distance between the relevant conditional
distributions.

Theorem 3.1 Consider data X1;n; : : : ; Xn;n as in (2.3), where cn(:) denotes the context
function of model Pn, satisfying (A1)-(A3). Let p̂(:j:) be de�ned as in (3.2) and ĉ(:) the
estimate in Step 2 of the context algorithm. Then,

(i) limn!1 IP[ĉ(:) = cn(:)] = 1; or equivalently limn!1 IP[�̂ = �n] = 1,

(ii) supx1�12X1 jp̂(x1jĉ(x0�1))� Pn(x1jcn(x0�1))j = oP (1) (n!1).

A proof of Theorem 3.1 is given in section 5. For d-consistency, we use the metric for
probability measures P;Q on X1,

d(P;Q) =
1X

m=1

2�mdm(P � ��11;:::;m; Q � ��11;:::;m);

dm(P � ��11;:::;m; Q � ��11;:::;m) = sup
xm1 2X

m

jP (xm1 )� Q(xm1 )j; (3.7)

where �1;:::;m : x 7! x1; : : : ; xm; x 2 X1.

Theorem 3.2 Consider data X1;n; : : : ; Xn;n as in (2.3) with Pn satisfying (A1)-(A3).
Then,
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(i) for p̂(:j:) as in (3.2) and ĉ(:) the estimate in Step 2 of the context algorithm,

lim
n!1

IP[ the set fp̂(:jĉ(x0�1)); x0�1 2 X1g
generates a unique stationary probability measure P̂n 2 P ] = 1;

(ii) for P̂n in (i) and d(:; :) as in (3.7), d(P̂n; Pn) = oP (1) (n!1).

Remark 3.8. The measure P̂n is with high probability geometrically �-mixing, see
Lemma 5.5. This, together with the d-consistency allows to reconstruct the probability
law of a broad class of measurable functions of the true moving Pn, see Theorem 4.1.

Although De�nition 2.2 only includes �nite spaces with jX j < 1, our theoretical
framework is 
exible enough to allow also spaces Xn with jXnj ! 1 as n ! 1. We
do not need to specify or bound the speed at which jXnj ! 1, note that assumptions
(A1)-(A3) are getting more restrictive when jX j is getting larger. Theorems 3.1 and 3.2
remain true for such generalizations. The growing alphabet case jXnj ! 1 (n ! 1)
is interesting when �tting context models to real valued stationary time series: �rst, the
data would be quantized and then, a context model would be �tted on the quantized data.
Obviously, the quantization should depend on the sample size n, getting �ner as n!1.

4 The context bootstrap

Theorem 3.2 indicates, that the estimate P̂n of Pn can be used for resampling. Given
observations X1;n; : : : ; Xn;n which take values in a �nite space X , we �t a context model
as described in section 3.1 and simulate from it to obtain X�

1 ; : : : ; X
�
n, now being the

bootstrap sample of interest. In this case, our proposal will be a bootstrap for categorical
time series which has a wide range of applications.

Since the context algorithm is nonparametric, our context bootstrap for categorical
time series inherits the nonparametric property and o�ers an attractive and often more
accurate alternative to the model free blockwise bootstrap, which has been proposed by
K�unsch (1989). We proceed as follows.

Step 1 Fit a context model as described in section 3.1, yielding a stationary probability
measure P̂n on X1, see Theorem 3.2.

Step 2 Draw a �nite realization

X�
1 ; : : : ; X

�
n � P̂n � ��11;:::;n:

The variables X�
1 ; : : : ; X

�
n are called the context bootstrap sample, they are nothing else

than one random sample from the �tted context model. In practice, one would choose some
starting values, generate a longer random sample via the estimated transition probabilities
p̂(x1jĉ(x0�1)) in Theorem 3.1 and then use the last n elements of such a longer sample
as our bootstrap sample. By doing this, we avoid nonstationarity of a simulated Markov
chain, due to starting values. Of course, one could also draw bootstrap samples of size
m 6= n, cf. Bickel et al. (1994), but such generalizations are not the scope of this paper.

Given an estimator Tn = Tn(X1;n; : : : ; Xn;n), which is a measurable function ofX1;n; : : : ; Xn;n,
the bootstrapped estimator is de�ned by the plug-in rule T �n = Tn(X

�
1 ; : : : ; X

�
n). Quantities

induced by the resampling in Step 2 are denoted by an asterisk *.
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4.1 Consistency of the context bootstrap

We present here an asymptotic result which justi�es the use of the context bootstrap as
de�ned in section 4. Such an asymptotic justi�cation can only be given for a certain
class of estimators Tn, our goal is to establish a consistency result for smooth functions
of means. We will also discuss informally why the context bootstrap should work in the
more general context of empirical processes, without giving the exact arguments.

We assume that we have observations X1;n; : : : ; Xn;n 2 X from a family of context
models as given in (2.3). Consider the class of estimators, being smooth functions of
means,

Tn = gf(n�m+ 1)�1
n�m+1X
t=1

f(X t+m�1;n
t;n )g; 1 � m <1;

f = (f1; : : : ; fv)
0 : Xm ! IRv ; g = (g1; : : : ; gw)

0 : IRv ! IRw smooth: (4.1)

Examples of such estimators include estimation of transition probabilities in �nite state
Markov chains of order m�1 or other functions of frequencies of tuples up to size m, such
as the Z scores used in genetics, cf. Prum et al. (1995). We usually make the following
assumption.

(B1) Tn is given by (4.1) with g having continuous partial derivatives in a neighborhood of
�n = IE[f(X1;n; : : : ; Xm;n)]. Also, there exists an n0 2 IN, such that for every n � n0,

[
n�1X

k=�n+1

Cov(fi(X
m�1;n
0;n ); fj(X

k+m�1;n
k;n ))]vi;j=1 is positive de�nite:

Remark 4.1. The assumption about positive de�niteness of covariance matrices simpli-
�es when assuming a limiting model P , where limn!1 d(Pn; P ) = 0 for the metric d(:; :)
de�ned in (3.7). Generally, P is not a context model anymore. It is then su�cient to
assume

j
1X

k=�1

Cov(fi(X
m�1
0 ); fj(X

k+m�1
k ))j <1; i; j 2 f1; : : : ; vg;

[
1X

k=�1

Cov(fi(X
m�1
0 ); fj(X

k+m�1
k ))]vi;j=1 is positive de�nite;

where (Xt)t2ZZ � P .

Remark 4.2. The function f is bounded, since jX j <1.
The following Theorem justi�es the context bootstrap for smooth functions of means.

Theorem 4.1 LetX1;n; : : : ; Xn;n be as in (2.3) with Pn satisfying (A1) and (A2). Assume
also that (B1) holds. Let the context bootstrap be de�ned as in section 4 and denote by
��n = IE�[f((X�)m1 )]. Then,

sup
x2IRw

jIP�[n1=2(T �n � g(��n)) � x]� IP[n1=2(Tn � g(�n)) � x]j = oP (1) (n!1):

The proof of Theorem 4.1 is given in section 5.
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4.1.1 General empirical processes

We point out that our results can probably be generalized to consistency of the context
bootstrap for general empirical processes. As we will see in section 5, Lemma 5.5, the
context bootstrap for categorical time series will satisfy a �-mixing property with expo-
nentially decaying mixing coe�cients. This key result could then be used to show the
consistency of the context bootstrap for general empirical processes indexed by Vapnik-
Cervonenkis subgraph classes or by bracketing function classes with a weak condition on
the bracketing number. Such results should be consequences of the general results about
empirical processes in Arcones and Yu (1994) and Andrews and Pollard (1994). A route
for general results for some bootstrap in time series, satisfying a mixing condition, has
been given in Bickel and B�uhlmann (1995). We do not give the precise arguments for such
straightforward extensions.

These extensions are useful for studying the consistency of estimators

Tn = T (�n); (4.2)

being a smooth functional of a general empirical measure �n. The class of estimators in
(4.2) is considerably larger than the class in (4.1). It includes as examples the maximum
likelihood estimators in generalized linear models of autoregressive type with quite general
link functions, cf. Fahrmeir and Tutz (1994).

Consistency in empirical process theory would then imply that the context bootstrap
works for the probabilistic core part of statistical procedures as given in (4.2). A su�cient
technical condition for consistency in this class (4.2) would be compact di�erentiability of
the functional T at the true underlying distribution, cf. Gill (1989).

4.2 Simulations

We study here the context bootstrap for variance estimation in various cases by simulation.
We represent the models by context trees and equip �nal nodes with tuples, describing

the transition probabilities. A tuple (i0; : : : ; ijX j�1) corresponds to p(jjw) = ij=
PjX j�1

j=0 ij ,
j 2 f0; : : : ; jX j � 1g (without loss of generality we let X = f0; : : : ; jX j � 1g).

We consider the following models:

(M1) Full binary Markov chain of order 3.

12



(M2) Full 4-ary Markov chain of order 2.

(M3) Semi-sparse binary context model of order 5.

(M4) Semi-sparse 4-ary context model of order 3.

13



(M5) Sparse binary context model of order 8.

(M6) Sparse 4-ary context model of order 4.

As sample sizes, we choose n = 1000 and n = 2000. We consider one statistic for the
binary models (M1), (M3), (M5) and one for the 4-ary models (M2), (M4), (M6).

(S1) Tn = p̂n(1j0) = Nn(1; 0)=Nn(0) for binary models,

(S2) Tn = Nn(1; 3; 3), the frequency of the word (x3; x2; x1) = (1; 3; 3), for 4-ary models.

The variance estimates are

�̂2n = nV ar�(p̂�n(1j0)) for nV ar(p̂n(1j0));
�̂2n = V ar�(N�

n(1; 3; 3)) for V ar(Nn(1; 3; 3));

based on the context bootstrap with 500 resamples (note the di�erent standardizations).
Our moment estimates are based on 200 simulations over the di�erent models, the

results are given in Table 4.1 and 4.2. The true value of nV ar(Tn) (for (S1)) and of
V ar(Tn) (for (S2)) is denoted by �2n, computed over 1000 simulations. The relative mean
square error is given by RMSE(�̂2n) = IEj�̂2n � �2nj2=�4n and an estimated standard error
thereof is given in parentheses. Instead of using cut-o� values K log(n) in Step 2 of
the context algorithm, we tried di�erent cut-o� values according to the �2=2-quantiles,
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�2n IE[�̂2n]� �2n V ar(�̂2n) RMSE(�̂2n)

(M1,S1) 95% 0.8093 -0.0353 0.0203 0.0328 (0.0035)
(M1,S1) 98% 0.8093 -0.1038 0.0242 0.0534 (0.0040)
(M1,S1) 99.9% 0.8093 -0.2593 0.0158 0.1268 (0.0038)
(M3,S1) 95% 0.6688 -0.0222 0.0132 0.0306 (0.0029)
(M3,S1) 98% 0.6688 -0.0477 0.0138 0.0359 (0.0030)
(M3,S1) 99.9% 0.6688 -0.1702 0.0057 0.0776 (0.0027)
(M5,S1) 95% 0.5277 0.0072 0.0058 0.0210 (0.0027)
(M5,S1) 98% 0.5277 -0.0046 0.0020 0.0072 (0.0006)
(M5,S1) 99.9% 0.5277 0.0034 0.0015 0.0054 (0.0005)
(M2,S2) 95% 14.450 -0.5131 9.145 0.0451 (0.0051)
(M2,S2) 98% 14.450 0.1237 5.772 0.0277 (0.0027)
(M2,S2) 99.9% 14.450 -0.0321 3.785 0.0181 (0.0019)
(M4,S2) 95% 14.101 -0.2880 6.353 0.0324 (0.0044)
(M4,S2) 98% 14.101 -0.4388 5.543 0.0288 (0.0042)
(M4,S2) 99.9% 14.101 -0.4692 2.849 0.0154 (0.0014)
(M6,S2) 95% 11.201 -0.0179 4.756 0.0379 (0.0043)
(M6,S2) 98% 11.201 -0.0737 3.129 0.0250 (0.0029)
(M6,S2) 99.9% 11.201 -0.2893 2.008 0.0167 (0.0026)

Table 4.1: Context bootstrap variance estimates, sample size n = 1000.

�2n IE[�̂2n]� �2n V ar(�̂2n) RMSE(�̂2n)

(M1,S1) 95% 0.8205 -0.0113 0.0146 0.0219 (0.0021)
(M1,S1) 98% 0.8205 -0.0248 0.0103 0.0162 (0.0018)
(M1,S1) 99.9% 0.8205 -0.1412 0.0241 0.0654 (0.0048)
(M3,S1) 95% 0.6670 -0.0048 0.0061 0.0138 (0.0013)
(M3,S1) 98% 0.6670 -0.0330 0.0066 0.0173 (0.0016)
(M3,S1) 99.9% 0.6670 -0.0876 0.0109 0.0418 (0.0033)
(M5,S1) 95% 0.5183 0.0065 0.0028 0.0108 (0.0012)
(M5,S1) 98% 0.5183 0.0024 0.0018 0.0070 (0.0008)
(M5,S1) 99.9% 0.5183 0.0086 0.0012 0.0048 (0.0004)
(M2,S2) 95% 12.854 0.1541 4.907 0.0257 (0.0026)
(M2,S2) 98% 12.854 0.4105 4.430 0.0240 (0.0026)
(M2,S2) 99.9% 12.854 0.8552 3.169 0.0203 (0.0025)
(M4,S2) 95% 14.653 -0.6567 4.252 0.0218 (0.0022)
(M4,S2) 98% 14.653 -0.6301 2.643 0.0142 (0.0013)
(M4,S2) 99.9% 14.653 -0.9512 1.691 0.0121 (0.0011)
(M6,S2) 95% 11.506 -0.0814 3.980 0.0301 (0.0036)
(M6,S2) 98% 11.506 -0.2734 1.854 0.0146 (0.0015)
(M6,S2) 99.9% 11.506 -0.4738 1.374 0.0121 (0.0016)

Table 4.2: Context bootstrap variance estimates, sample size n = 2000.
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�2n IE[�̂2n]� �2n V ar(�̂2n) RMSE(�̂2n)

(M5,S1) ` = 10 0.5277 0.1075 0.0065 0.0650 (0.0053)
(M5,S1) ` = 20 0.5277 0.0578 0.0102 0.0486 (0.0066)
(M5,S1) ` = 30 0.5277 0.0296 0.0141 0.0537 (0.0065)

Table 4.3: Blockwise bootstrap variance estimates, sample size n = 1000.

0.
4

0.
6

0.
8

1.
0

95% 98% 99.9% l=10 l=20 l=30

Figure 4.1: Boxplots of bootstrap variance estimates for case (M5,S1). Context bootstrap
estimates are denoted with their �21=2-quantiles as cut-o� values, blockwise bootstrap
estimates are denoted with their blocklengths `, the line denotes the true variance.
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see Remark 3.4. For the binary models (M1), (M3), (M5) we used the cut-o�s �21;�=2,
denoted in short by �100%; for the 4-ary models (M2), (M4), (M6) we used the cut-o�s
�23;�=2, denoted in short by �100%.

The results are promising in that the relative mean square error is most often smaller
than 5%. Though there are some exceptions, we found that often the performance is better
for sparse models. This indicates that the algorithm adapts to sparseness; it is exactly in
these cases, where other methods are more likely to fail.

For comparison, we also tried the blockwise bootstrap (K�unsch, 1989) in the case
(M5,S1) for sample size n = 1000 with di�erent blocklengths b, see Table 4.3. A graphical
representation of this comparison is given in Figure 4.2. The blockwise bootstrap exhibits
a serious bias and a large variability, both in accordance with the asymptotic behavior for
di�erent blocksizes b: the bias decreases, whereas the variance increases with growing b.
The context bootstrap is far better for this sparse context model (M5).

5 Proofs

We �rst recall and introduce some useful notation. We usually denote by w; u; v 2 X1

(possibly �nite) sequences, written in reverse time: w = (: : : ; w2; w1). Sometimes we
look at the (�nite) sequence wu = (: : : ; u2; u1; : : : ; w2; w1) 2 X1 (w; u 2 X1). Tran-
sition probabilities (outcome distributions) in a context tree � are indexed by w 2 � :
pw(:) = p(:jw). We also denote by Pw(x) = P (xw)=P (w) for general w 2 X1, x 2 X (w
not necessarily a context in �) and P a stationary probability measure on X1. In the
new notation, a context model is completely speci�ed by the context tree � and the set
fpw(:);w 2 �g. Estimated transition probabilities are denoted by p̂w(x) = N(xw)=N(w),
N(:) as de�ned in (3.1). We recall that for any context w = w0u (u 2 X ) we have de�ned
�w = D(p̂w0ujjp̂w0)N(w). When looking at a sequence (Pn)n2IN of context models, we
sometimes drop the index n.

Proof of Theorem 3.1.

We de�ne �rst the events of under- and overestimation for sample size n,

Un = fthere exists w 2 �̂ with wu 2 �n and wu =2 �̂f (u 2 X1)g
On = fthere exists wu 2 �̂ (u 2 X1) with w 2 �fn and wu =2 �fng;

where �f denotes the �nal node context tree corresponding to � , see De�nition 2.3. Note
that by formula (3.3) we can also characterize Un and On in terms of the pruning criterion
�wu < K log(n). The error event is

En = f�̂ 6= �ng = Un [On:

Theorem 5.1 Assume that (A1) and (A2) with � > 0 hold. Then for any 0 < r < 1=3,

IP[Un] = O(n� log(n)r�) (n!1):

Proof: We partition the underestimation event Un using the the event

Dn = ffor every w 2 �n; N(w) � �ng;
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where �n is a constant to be chosen later. Thus IP[Un] � IP[Un \Dn] + IP[Dc
n]. We will

pursue a bound on IP[Un] by bounding both IP[Un \Dn] and IP[Dc
n]. First,

IP[Un \Dn] �
X

wu2�n;u2X

IP[�wu < K log(n); N(wu)� �n]

=
X

wu2�n;u2X

nX
k=�n

nX
j=k

IP[D(p̂wujjp̂w) < K log(n)

k
;N(wu) = k;N(w) = j]: (5.1)

It is well known, c.f. Cover and Thomas (1991), that the divergence can be lower bounded
by the the L1 distance, D(p̂wujjp̂w) � 1

2 jjp̂wu � p̂wjj21 and that jjp̂wu � p̂wjj21 = 2(p̂wu(A)�
p̂w(A))2, where A = fx 2 X : p̂wu(x) > p̂w(x)g. Therefore,

IP[D(p̂wujjp̂w) < K log(n)

k
;N(wu) = k;N(w) = j]

� IP[(p̂wu(A)� p̂w(A))
2 <

K log(n)

k
;N(wu) = k;N(w) = j]: (5.2)

Now because of assumption (A2), it must be that either p̂wu(A) or p̂w(A) is far from Pwu(A)

or Pw(A), respectively. We formalize this by letting 
2n(k) =
K log(n)

k and p̂wu(x) = a,
p̂w(x) = b, pwu(x) = r and pw(x) = s, where x 2 X . Our goal is to establish that if ja� bj
is small then either jr�aj is large or js�bj is large. First assume, without loss of generality,
that r > s. We have by (A2) that r � s > �n. Now if b < s, then ja� bj < 
n(k) implies
that ja� rj > �n � 
n(k): Furthermore, if b > r, then it must be that js� bj > �n. Now if
s � b � r then either s � b < s+ r�s

2 , in which case jr�aj > �n
2 �
n(k) or r� r�s

2 � b � r,
in which case js�bj > �n

2 . Taken together we have proved that if jp̂wu(x)� p̂w(x)j < 
n(k),
then either jp̂wu(x)� pwu(x)j > �n

2 � 
n(k) or jp̂w(x)� pw(x)j > �n
2 � 
n(k). Thus, when

applied to (5.2), we have proved that for

an(k) = (
�n
2
� 
n(k))

2; (5.3)

it must be that

IP[D(P̂wujjP̂w) < K log(n)

k
;N(wu) = k;N(w) = j]

� IP[
X
x2A

jp̂wu(x)� pwu(x)j � an(k)
1=2; N(wu) = k]

+ IP[
X
x2A

jp̂w(x)� pw(x)j � an(k)
1=2; N(w) = j]

� jX jmax
x2X

IP[jp̂wu(x)� pwu(x)j � an(k)
1=2; N(wu) = k]

+ jX jmax
x2X

IP[jp̂w(x)� pw(x)j � an(k)
1=2; N(w) = j]: (5.4)

Since k � �n, is must be that 
n(k)2 � K log(n)
�n

. Thus it follows that for �n � 4
q

K log(n)
�n

,

min
k��n

an(k) = min
k��n

(
�n
2
� 
n(k))

2 � K log(n)

�n
:

Also, we will now choose �n = bnn=2 � log(n)3+�=2 and note that kan(k) � K log(n) for
k � �n.
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We treat the two cases on the RHS of (5.4) simultaneously by denoting v = wu or
v = w, respectively. Let p = Pv(x) and let p̂ = p̂v(x). We would like to �nd an upper
bound for the probability of the event fjp � p̂j2 > an(k); N(v) = kg. Since there are a
random number of terms in the denominator of p̂ we cannot apply any large deviations
bound directly. Instead we consider the extension of Xn

1 to the in�nite sequence X1
�1.

De�ne,

Ii = fthe time of the ithoccurrence of v in X1
�1g:

Then let

Zi = XIi+1, the symbol that occurs after the i
th occurrence of v:

The sequence Z11 is a stationary �-mixing sequence with mixing coe�cients bounded by
the same bound as the original sequence X1

�1. The marginal probability distribution of
Z1 on X is equal to Pv . Let Yi = 1[Zi=x]. Now observe that

fj
N(v)X
i=1

Yi
N(v)

� pj2 > an(k); N(v) = kg � fj
kX
i=1

Yi
k
� pj2 > an(k)g:

Thus, we have established the upper bound,

IP[jp̂� pj2 > an(k); N(v) = k] � IP[j
kX
i=1

Yi
k
� pj2 > an(k)]: (5.5)

At this point we are readily able to apply an exponential inequality.

Lemma 5.1 Let Y1
1 with E[Y1] = p be de�ned as above and an(k) as in (5.3). Assume

the conditions (A1) and (A2) with � > 0. Then, for k � �n = bnn=2,

sup
0<p<1

IP[j
kX
i=1

Yi
k
� pj2 > an(k)] � 2exp(3

p
e)exp(�D log(n)1+�=3);

D > 0 a constant depending on the mixing rate:

Proof: By assumption (A1), the process (Xt)t2ZZ has mixing coe�cients �(j) � (1 �
2�)j , and the same bound applies also for the mixing coe�cients of the process (Yi)i2IN.
Thus, by applying Proposition 2 from Doukhan (1994, Ch.1.4.2) with �2 = 8BM log(k)p
K log(n)=

p
k, M � �1= log(1� 2�) and B�1 = 8(1 + 4

P1
j=1(1� 2�)j), we get

IP[j
kX
i=1

Yi
k
� pj2 > an(k)] � 2exp(3

p
e)exp(�const:(log(n)k)

1=2

log(k)
):

Now using that k � �n � log(n)3+�=2, the result follows. 2

Denote by Mn = 2exp(3
p
e)exp(�D log(n)1+�=3). A straightforward application of

Lemma 5.1 to equation (5.5) proves that for k; j � �n,

max
x2X

IP[(p̂wu(x)� pwu(x))
2 � an(k); N(wu) = k] �Mn;

max
x2X

IP[(p̂w(x)� pw(x))
2 � an(k); N(w) = jg �Mn:
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Thus, together with (5.1), (5.2) and (5.4),

IP[Un \Dn] � jX j
X

wu2�n

nX
k=�n

nX
j=k

[Mn +Mn]: (5.6)

By Remark 6.1, (5.6) and assumption (A2),

IP[Un \Dn] � const:j�njn2Mn

� const:b�1n n2exp(�const: log(n)1+�=3) � const:n� log(n)r�; 0 < r < 1=3: (5.7)

To complete the proof of Theorem 5.1, we need to bound IP[Dc
n]. Using the union bound

we get,

IP[Dc
n] �

X
w2�n

IP[N(w) < �n] =
X
w2�n

IP[N(w)� n�n(w) < �n � n�n(w)]

�
X
w2�n

IP[N(w)� n�n(w) < �bnn=2] �
X
w2�n

IP[jN(w)�E[N(w)]j> bnn=2]:

We bound this quantity by the following exponential inequality.

Lemma 5.2 Assume that (A1) and (A2) with � > 0 hold. Then, for any 0 < r < 1,

max
w2�n

IP[jN(w)� IE[N(w)]j � bnn=2] � n� log(n)(1+r�)(1 + o(1)):

Proof: Since w 2 �n we can write

N(w) =
nX
t=1

1[Zt;n=w]; Zt;n = c(X
t;n
�1;n):

By assumption (A1), (Zt;n)t2ZZ is �-mixing with mixing coe�cients bounded by supn2IN �n(j) �
(1� 2�)j , cf. Rajarshi (1990). Thus, we can apply Proposition 2 in Doukhan (1994, Ch.
1.4.2) with �2 = 8BM log(n)bnn=(2n), M � �1= log(1� 2�) and B�1 = 8(1+ 4

P1
j=1(1�

2�)j). This then yields

max
w2�n

IP[jN(w)� IE[N(w)]j � bnn=2] � 2exp(3e1=2)exp(�const: bnn

log(n)
):

By using assumption (A2) about bn we complete the proof. 2

By Lemma 5.2

IP[Dc
n] = O(b�1n n� log(n)(1+r�)) = O(n� log(n)):

where the last estimate follows from (A2). Together with (5.7) we complete the proof of
Theorem 5.1. 2

We now consider the overestimation event On = fthere exists w = w0u 2 �̂ (u 2
X1) with w0 2 �n and w =2 �fng. For a sequence w to be an element of �̂ , it is necessary
that N(w) > 1 and �w � K log(n). Now Weinberger et. al. (1995) establish for any
w = w0u (w0 2 �n; u 2 X1),

IP[�w � K log(n+ 1)] � (n+ 1)2a(n+ 1)�K :
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Here, a = jX j. In their algorithm, an overestimation event can only occur at any string w

if jwj � log(n)
log(a) . Thus they establish that

IP[On] �
X

jwj�
log(n)
log(a)

(n+ 1)�K+2a � n�K+2a+1:

The last inequality follows since, for any m there are no more than am distinct sequences
w with length jwj = m.

It is possible to prove a stronger result, eliminating the need for a length restriction.
We just give an outline of such a proof.

Lemma 5.3 Let swv be any possible string with s 2 �n; w 2 X1 [ ; and v 2 X . Let
On(swv) = f�swv � K log(n); N(swv) > 1g. Denote by pmin(n) = minx2X ;w2�n pw(x)
and by �̂max the maximal context tree in Step 1 of the context algorithm. Then, under the
assumptions (A1)-(A2),

IP[On(swv)] � 1

pmin(n)
IP[sw 2 �̂max]n

�K+2a:

A proof is given below.

Theorem 5.2 Under the assumptions (A1)-(A3),

1X
n=1

IP[On] log(n) <1:

Proof: We apply Lemma 5.3 for swv,

IP[On] �
X
swv

IP[On(swv)] = O(n�K+2a+1)
X
swv

IP[sw 2 �̂max];

where the last estimate follows from (A3).
Let L be the number of sequences which occur at least twice in the data Xn

1 . Then,

X
swv

IP[sw 2 �̂max] � jX jIE[
X
sw

1[sw occurs at least twice in Xn
1 ]
] � jX jIE[L] � jX jn2:

Therefore, since K > 2a+ 3 we complete the proof. 2

When de�ning the pruning criterion in Step 2 of the context algorithm in terms of the
L1 distance, we can sharpen Theorem 5.2. Let ~�wu = kp̂w(:)� p̂wu(:)jj21 and de�ne ~On =
fthere exists w = w0u ( w0 2 �fn ; u 2 X1); such that ~�w � K log(n) and N(w) > 1g.

Theorem 5.3 Under the assumptions (A1)-(A2),

1X
n=1

IP[ ~On] log(n) <1
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Proof: The main step in establishing the overestimation bound is practically identical
to the underestimation step in the proof of Theorem 5.1. 2

Proof of Lemma 5.3. Let s 2 �n be a context and su = swv with w 2 X1 [ ; and
v 2 X . Our aim is to bound the probability of overestimation at su. We begin by recalling
several inequalities and de�nitions fromWeinberger et. al. (1995). First, we �x a sequence
xn1 , being a realization from Pn. We can determine a probability law given by Qsu(y

n
1 jxn1)

(on the set of sequences of length n), de�ned as follows:

log(Qsu(y
n
1 jxn1)) = Rsw(y

n
1 jSs) +

X
x2X

X
b6=v

Nyn1
(xjswb) log(P̂xn1 (xjsw))

+
X
x2X

Nyn1
(xjsu) log(P̂xn1 (xjsu)):

where Rsw(yn1 jSs), de�ned formally in Weinberger et al. (1995), is the sum of the log
probability of all the symbols that occur in any context other than sw. An important
observation is that for any sequence yn1 with Nyn1

(sw) = 0 the Qsu probability of yn1 is the
same as the Pn probability.

Now, for each xn1 de�ne �xn1 to be the set of all sequences y
n
1 withNyn1

(xsw) = Nxn1
(xsw)

and Nyn1
(xswv) = Nxn1

(xswv) for all x 2 X . If �xn1
(swv) > K log(n), it follows from (A9)

in Weinberger et. al. (1995), that

Pn(�xn1 ) � Qsu(�xn1 jxn1)n�K : (5.8)

At this point we need to introduce a new probability distribution given by Q0 on the set of
sequences of length n, closely related to Qsu. To that end, for every sequence yt1 let x0 be
the symbol that occurs after the �rst occurrence of sw . Let b0 be the symbol immediately
preceding the �rst occurrence of sw. Thus x0 occurs in the (extended) context swb0. If
b0 6= v, we de�ne

log(Q0(yn1 jxn1)) = log(Qsu(y
t
1jxn1)) + log(Pn(x0jsw))� log(P̂xn1 (x0jsw)):

If b0 = v then we de�ne

log(Q0(yn1 jxn1)) = log(Qsu(y
t
1jxn1)) + log(Pn(x0jsw))� log(P̂xn1 (x0jswv)):

Thus, if Nyn1
(sw) < 2 it must be that Pn(y

n
1 ) = Q0(yn1 jxn1). It also follows from the

de�nition of Q0 that

Qsu(y
n
1 jxn1) �

1

pmin(n)
Q0(yn1 jxn1):

Therefore, together with (5.8) we have the bound,

Pn(�xn1 ) � Q0(�xn1 )
1

pmin(n)
n�K :

The construction of �xn1 and the fact that Nxn1
(sw) > 1 implies that

Q0(�xn1 jxn1) � Q0(yn1 ;Nyn1
(sw) > 1jxn1) = Pn(y

n
1 ;Nxn1

> 1) = Pn(sw 2 �̂max):
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Furthermore, since there are at most n2a distinct classes �xn1 it follows that

IP[On(swv)] = Pn(y
n
1 ; �yn1

(swv) > K log(n))
1

pmin(n)
� Pn(sw 2 �̂max)n

�K+2a:

2

Theorem 5.1 and 5.2 imply the assertion in Theorem 3.1 (i). The assertion in Theorem
3.1 (ii) follows from Theorem 3.1 (i) and along the lines of the proof of Theorem 3.1 (i):
partition with the set Dn and use Lemma 5.1 and 5.2. 2

Theorem 3.2 (i) follows from the more general formula (5.16) and Theorem 3.2 (ii) is
an immediate consequence of Theorem 3.1 (ii). 2

Proof of Theorem 4.1.

We usually suppress the index n when writing Xt instead of Xt;n. Consider

Un = (n�m+ 1)�1
n�m+1X
t=1

f(X t+m�1
t );

and denote by �n = Cov[Un] the covariance matrix of Un.

Lemma 5.4 Assume (B1) with (Xt;n)t2ZZ � Pn satisfying (A1). Then,

(i) there exists n0 2 IN such that n�n is positive de�nite for all n � n0.

(ii) for Z � Nv(0; I),

sup
x2IRv

jIP[��1=2n (Un � �n) � x]� IP[Z � x]j = o(1) (n!1):

Proof: For every n 2 IN, the process (Xt;n)t2ZZ is �n-mixing with mixing coe�cient

�n(k) = supfIP[A]� IP[A \ B]=IP[B]; A 2 F0;n
�1;n; B 2 F1;n

k;n ; IP[B] 6= 0g;

where the �-�elds are F b;n
a;n = �(fXb;n

a;ng); a < b.
By assumption (A1), the mixing coe�cients are bounded by

sup
n2IN

�n(k) � (1� 2�)k; (5.9)

cf. Rajarshi (1990, Lem. 2.1).
Bounding covariances in terms of mixing coe�cients, cf. Doukhan (1994), and using the
bound in (5.9) implies for i; j 2 f1; : : : ; vg,

(n�m+ 1)(�n)i;j =
n�1X

k=�n+1

Cov(fi(X
m�1
0 ); fj(X

k+m�1
k )) +O(n�1): (5.10)

Hence, assertion (i) follows from the assumption in (B1).

Assertion (i), assumption (B1) and (5.10) allow us to write

��1=2n = n1=2�n; sup
n2IN

max
1�i;j�v

j(�n)i;j j <1: (5.11)
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Now write

��1=2n (Un � �n) = n�1=2
n�m+1X
t=1

~fn(X
t+m�1
t )(1 + o(1));

where ~fn(X
t+m�1
t ) = �n(f(X

t+m�1
t )� �n).

By construction and (5.11),

IE[ ~fn(X
t+m�1
t )] = 0; t 2 ZZ;

V ar(n�1=2
n�m+1X
t=1

~fn(X
t+m�1
t ))! 1 (n!1);

sup
n2IN

IEj ~fn(X t+m�1
t )j2 <1; t 2 ZZ: (5.12)

We can then apply Theorem 2.1 in Withers (1981) to n�1=2
Pn�m+1

t=1
~fn(X

t+m�1
t ). The

conditions (version (A) or (B), note also the corrigendum in Vol. 63) are easily veri�ed
by invoking the mixing bound in (5.9) and (5.12). Thus,

n�1=2
n�m+1X
t=1

~fn(X
t+m�1
t )) Nv(0; I);

and assertion (ii) follows by Polya's Theorem. 2.

By the smoothness assumption about g we use a �rst order Taylor expansion,

n1=2(Tn � g(�n)) = n1=2Dg(~�n)(Un � �n); (5.13)

where Dg(�) = [@gi(u)@uj
]i;j; (1 � i � w; 1 � j � v) and k~�n � �nk � kUn � �nk.

By (5.11) and Lemma 5.4 (ii), Un � �n = oP (1), so that

[Dg(~�n)�Dg(�n)]i;j = oP (1); 1 � i � w; 1 � j � v:

This, together with (5.13), the boundedness of n1=2�
1=2
n (use (5.10)) and Lemma 5.4 (ii)

implies

sup
x2IRw

jIP[n1=2(Tn � g(�n)) � x]� IP[n1=2�1=2
n Dg(�n)Z � x]j = o(1) (n!1); (5.14)

where Z � Nv(0; I).

We are going now to show the bootstrap analog of (5.14). We �rst establish a mixing
property for the bootstrap process (X�

t )t2ZZ. Note that the distribution of (X
�
t )t2ZZ depends

again on the sample size n. We de�ne

��n(k) = supfjIP�[A]� IP�[A \B]=IP�[B]j;A 2 F�
�1;0; B 2 F�

k;1; IP
�[B] 6= 0g;

where F�
a;b = �(f(X�)bag); a < b.

The next result establishes the mixing property for the bootstrap process (X�
t )t2ZZ.
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Lemma 5.5 Consider data X1;n; : : : ; Xn;n from Pn 2 P as in (2.3), satisfying (A1) and
the context bootstrap is de�ned as in section 4. Then,

IP[��n(k) � (1� �)k for all k 2 IN0]! 1 (n!1):

In particular, the bound for the mixing coe�cients ��n(k) is non-random and the same for
all n 2 IN.

Proof: The r-step transition kernel p
(r)
Z (v; w) = IP[Zr = vjZ0 = w] (r � 1) for the state

process Zt = c(X t
0x
1
0 ) (t > 0) of a context model (Xt)t2ZZ can be characterized by p(:j:)

and c(:), i.e.,

T (vjw; r; p(:j:); c(:)) = p
(r)
Z (v; w) =

X

xr�1
1 2X r�1; c(xr:::x1wx10 )=v

r�1Y
i=0

p(xr�ijc(xr�i�11 wx10 )):(5.15)

For every n 2 IN, the bootstrap process (X�
t )t2ZZ is a context model. We consider its

r-step transition kernel for the states P �(r)(v; w) = IP�[Z�r = vjZ�0 = w] (r � 1), where
Z�t = ĉ((X�)t0x

1
0 ) (t 2 IN0) is the bootstrap state process. This transition is characterized

by

T (vjw; r; p̂(:j:); ĉ(:)) = P �(r)(v; w) (r � 1):

We now obtain an analogon of (A1) for the bootstrap. We have,

jT (vjw; r; p̂(:j:); ĉ(:))� T (vjw0; r; p̂(:j:); ĉ(:))j
� jT (vjw; r; p(:j:); c(:))� T (vjw0; r; p(:j:); c(:))j+ jT (vjw; r; p̂(:j:); c(:))� T (vjw; r; p(:j:); c(:))j
+ jT (vjw0; r; p̂(:j:); c(:))� T (vjw0; r; p(:j:); c(:))j+ 21[ĉ(y) 6=c(y) for some y2X1]:

We now invoke (A1) for T (:j:; r; p(:j:); c(:)) about the true underlying process. For the
other terms we use the �niteness of r and X , together with (5.15) and Theorem 3.1. We
then obtain,

sup
v;w;w0

jP �(r)(v; w)� P �(r)(v; w0)j = sup
v;w;w0

jT (vjw; r; p̂(:j:); ĉ(:))� T (vjw0; r; p̂(:j:); ĉ(:))j

� 1� 2�+ oP (1);

so that

sup
v;w;w0

jP �(r)(v; w)� P �(r)(v; w0)j < 1� � in probability: (5.16)

Thus, we can restrict ourselves to sets An = f!; sup jP �(v; w) � P �(v; w0)j(!) < 1 �
� and ĉ(:;!) = c(:)g, where the sup is over the set as in (5.16) and ! is an element of
the underlying probability space. By construction of (X�

t )t2ZZ we conclude that (X�
t )t2ZZ

is �-mixing on An with mixing coe�cients bounded by

��n(k) � (1� �)k for all k 2 IN0 on the set An;

cf. Rajarshi (1990, Lem. 2.1).
But by (5.16), IP[An]! 1 as n!1, which completes the proof. 2

Denote by U�
n = (n�m + 1)�1

Pn�m+1
t=1 f((X�)t+m�1t ) and let ��n = Cov�[U�

n] be the
covariance matrix of U�

n with respect to the bootstrap distribution.
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Lemma 5.6 Assume the conditions of Theorem 4.1. Then,

(i) n(��n � �n)i;j = oP (1) (n!1); i; j = 1; : : : ; v.

(ii) limn!1 IP[n��n is positive de�nite] = 1.

(iii) for Z � Nv(0; I),

sup
x2IRv

jIP�[(��n)�1=2(U�
n � ��n) � x]� IP[Z � x]j = oP (1) (n!1):

Proof: For any i; j 2 f1; : : : ; vg,

n(��n)i;j =
n�mX

k=�n+m

Cov�(fi((X
�)m�10 ); fj((X

�)k+m�1k ))(1� jkj
n�m+ 1

)

=
MX

k=�M

Cov�(fi((X
�)m�10 ); fj((X

�)k+m�1k ))(1� jkj
n�m+ 1

) +�n;M ; (5.17)

where M is a �nite constant.
By well known bounds of covariances in terms of mixing coe�cients, cf. Doukhan (1994),

j�n;M j � 2const:
1X

k=M+1

��n(k):

Therefore by Lemma 5.5,

IP[ lim
M!1

j�n;M j = 0]! 1 (n!1): (5.18)

By Theorem 3.2 (ii),

max
xd12X

d
jIP�[(X�)d1 = xd1]� IP[Xd

1 = xd1]j = oP (1) (d 2 IN): (5.19)

This, the boundedness of f and the �niteness of M imply,

j
MX

k=�M

Cov�(fi((X
�)m�10 ); fj((X

�)k+m�1k ))�
MX

k=�M

Cov(fi(X
m�1
0 ); fj(X

k+m�1
k ))j

= oP (1) (n!1): (5.20)

By the geometric �-mixing property of (Xt)t2ZZ, see (5.9), and the boundedness of f ,

j
MX

k=�M

Cov(fi(X
m�1
0 ); fj(X

k+m�1
k ))�

1X
k=�1

Cov(fi(X
m�1
0 ); fj(X

k+m�1
k ))j

= o(1) (M !1): (5.21)

Thus, by (5.17)-(5.21) we have shown assertion (i).

Assertion (ii) follows by (i) and Lemma 5.4 (i).
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Assertion (iii) can be proved as Lemma 5.4 (ii); we now invoke the mixing bound in
Lemma 5.5 and use (i). 2

By (5.19) and the �niteness of jX j we have,

�� � �n =
X

xm1 2X
m

f(xm1 )(IP
�[(X�)m1 = xm1 ]� IP[Xm

1 = xm1 ]) = oP (1); (5.22)

and hence by the continuous di�erentiability of g,

[Dg(~��n)�Dg(�n)]i;j = oP (1) for k~��n � ��k � kU�
n � ��k; (1 � i � w; 1 � j � v): (5.23)

A �rst order Taylor expansion, (5.23), Lemma 5.6 (iii) and the boundedness of n��n =
OP (1) imply

sup
x2IRw

jIP�[n1=2(T �n � g(��n)) � x]� IP[n1=2�1=2
n Dg(�n)Z � x]j = oP (1) (n!1); (5.24)

where Z � Nv(0; I).
By (5.14) and (5.24) we complete the proof of Theorem 4.1. 2

Acknowledgments. We thank Itai Zukerman for carrying out the computations.

References

[1] Andrews, D.W.K. and Pollard, D. (1994). An introduction to functional central limit
theorems for dependent stochastic processes. Internat. Statist. Rev. 62 119-132.

[2] Arcones, M.A. and Yu, B. (1994). Central limit theorems for empirical and U-
processes of stationary mixing sequences. J. Theoret. Probab. 7 47-71.

[3] Bickel, P.J. and B�uhlmann, P. (1995). Mixing property for some sieve bootstrap
in time series and functional central limit theorems. Tech Rep. 447, Dept. Statist.,
University of California, Berkeley.

[4] Bickel, P.J., G�otze, F. and van Zwet, W.R. (1994). To appear in Statistica Sinica.

[5] Breiman, L., Friedman, J.H., Olshen, R.A. and Stone. C.J. (1984). Classi�cation and
Regression Trees. Wadsworth, Belmont.

[6] Brillinger, D.R. (1994). Examples of scienti�c problems and data analyses in demog-
raphy, neurophysiology, and seismology. J. Comp. and Graph. Statistics 3 1-22.

[7] B�uhlmann, P. (1996). Extreme events from return{volume process: a discretization
approach for complexity reduction. To appear in Applied Financial Economics.

[8] Cover, T.M. and Thomas, J.A. (1991). Elements of Information Theory. Wiley, New
York.

[9] Doukhan, P. (1994). Mixing. Properties and Examples. Lect. Notes in Stat. 85.
Springer, New York.

27



[10] Fahrmeir, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based in Gen-
eralized Linear Models. Springer, New York.

[11] Gill, R.D. (1989). Non- and semi-parametric maximum likelihood estimators and the
von Mises method (Part 1). Scand. J. Statist. 16 97-128.

[12] Iosifescu, M. and Theodorescu, R. (1969). Random Processes and Learning. Springer,
New York.

[13] K�unsch, H.R. (1989). The jackknife and the bootstrap for general stationary obser-
vations. Ann. Statist. 17 1217-1241.

[14] Prum, B., Rodolphe, F. and deTurckheim, E. (1995). Finding words with unexpected
frequencies in deoxyribonucleic acid sequences. J. Roy. Statist. Soc B 57 205-220.

[15] Rajarshi, M.B. (1990). Bootstrap in Markov-sequences based on estimates of transi-
tion density. Ann. Inst. Statist. Math. 42 253-268.

[16] Rissanen, J.J. (1983). A universal data compression system. IEEE Trans. Inform.
Theory IT-29 656-664.

[17] Weinberger, M.J., Rissanen, J.J. and Feder, M. (1995). A universal �nite memory
source. IEEE Trans. Inform. Theory IT-41 643-652.

[18] Withers, C.S. (1981). Central limit theorems for dependent variables I. Z. Wahrsch.
verw. Gebiete 57 509-534 (Corr: 63 p555).

Department of Statistics
University of California
367 Evans Hall #3860
Berkeley, CA 94720-3860

28


