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Abstract

We used data from moorings deployed in central California to examine the physical vari-
ables wind, PAR (photosynthetically available radiation) and temperature and the biologi-
cal variable fluorescence during coastal upwelling.  Variations of the multivariate tech-
niques of principal components analysis and canonical correlation were used to extract the
major modes of variability of these variables and to examine relationships among the vari-
ables.  Data from both 1993 and 1994 indicate a consistent pattern of relationships among
the physical variables, with NW winds and sunnier than average days leading lower than
average temperatures at the mooring by 2-3 days.  The relationship among the physical
and biological variables was stronger in 1993 than in 1994.  Higher than average fluores-
cence was found to lag lower than average temperatures, higher than average PAR and
wind from the NW by 4, 6 and 7 days, respectively.  The form of the relationship that
produced maximal correlation between fluorescence and temperature was that several
days of colder than average temperatures, followed by a trend to increased temperatures,
was correlated with higher than average fluorescence.  Higher than average fluorescence in
1993 showed maximal correlation with wind after several days of NW winds, followed by
lighter winds from the SE.  Relationships among physical variables and fluorescence are
not as strong in 1994 as in 1993, and we hypothesize these differences to be related to
differences in the strength and duration of upwelling in the two years.
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Introduction

Satellite images of sea surface temperature (SST) of the ocean off central and northern
California show a continuous band of cool water next to the coast after several days of
northwesterly winds during the spring.  This cool water is the product of coastal upwel-
ling, a process that drives deeper, colder, nutrient-rich water to the surface (see Barber
and Smith (1981) and references therein for a detailed description of the coastal upwelling
process and its biological and chemical consequences).  These cool, nutrient-rich waters
can support extensive phytoplankton populations (or blooms) that eventually lead to
large clupeid fisheries (Ryther, 1969; Barber and Chavez, 1983; Bakun, 1996).  A closer
look at the SST images reveals that the coldest waters are often centered around specific
coastal features, such as capes or points (Strub et al., 1991).  For example, in Monterey
Bay, the coldest water is often observed north of the Bay (Rosenfeld et al., 1994, Figure
1).  These colder upwelling ÒcentersÓ may be the source of the upwelled water found fur-
ther downstream, although it is likely that coastal upwelling occurs along the entire north-
ern and central California coast.  Freshly upwelled water is low in phytoplankton
biomass; additionally these upwelled phytoplankton populations may not be fully accli-
mated to their environment, resulting in a time lag between the introduction of the up-
welled water to the surface and subsequent phytoplankton blooms.  While the develop-
ment of springtime phytoplankton blooms has been previously documented for Mon-
terey Bay (Bolin and Abbott, 1963; Malone, 1971; Chavez, 1995 1996), a systematic
study of upwelling events and phytoplankton blooms has yet to be completed.  The lag
between events in the upwelling cycle in Monterey Bay, from initiation of upwelling
north of the Bay to the appearance of phytoplankton blooms in the Bay, has only re-
cently been examined (Sakamoto et al., 1997; Kudela et al., 1997) and has not been docu-
mented under a variety of conditions or on the appropriate time scales.

Since 1992, the Monterey Bay Aquarium Research Institute (MBARI) has maintained
two moorings in and offshore of the Bay that regularly measure a number of meteorologi-
cal, physical, chemical and biological variables (Chavez et al., 1997).  Data from these
moorings provide an ideal setting to continuously examine upwelling throughout a season,
rather than relying on discrete shipboard measurements.  Records over an entire season
encompass many types of upwelling events, and enable ready assessment of time-varying
and co-varying aspects of measured variables under different conditions.  In this contribu-
tion we use physical and biological data collected on the moorings during the upwelling
seasons of 1993 and 1994 to (1) describe the major modes of variability of these variables,
(2) assess their time-varying patterns, (3) examine their relationships, and (4) describe the
average timing of events for an upwelling cycle in Monterey Bay.  To accomplish these
four aims we used two complementary analysis techniques.  One is a method based on
Principal Component Analysis (PCA).  The second method is new to the field of ocean-
ography and is a penalized form of Canonical Correlation (PCC).  Modifications of these
classical multivariate techniques for the analysis of random curves, or profiles, has come
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to be known as Òfunctional data analysisÓ (Ramsey and Silverman, in press).  Part of our
interest was in ascertaining how well these techniques could be employed in a time series
setting to extract important information concerning the short-term (days) nature of cli-
mactic (wind) and biological (phytoplankton) coupling in a coastal upwelling system.

Data and Methods

Data

We used measurements of sea-surface temperature, fluorescence and photosynthetically
available radiation (PAR) from MBARIÕs M1 mooring in the mouth of Monterey Bay
(Figure 1, 36.7°N, 122.0°W).  PAR is a measure of light in the range important for photo-
synthesis, and fluorescence is an estimate of phytoplankton biomass (Kirk, 1994).  The
moorings themselves, and the various sensors deployed on them, are described in detail in
Chavez et al. (1997).  We used wind data from MBARIÕs offshore M2 mooring (Figure 1,
36.7°N, 122.4°W) so that the wind field would be less affected by heating and cooling of
land and therefore more representative of oceanic conditions.  Wind data were in vector
form, with one component representing wind strength in the east-west direction (u) and
one component representing wind strength in the north-south direction (v). Each of these
variables was measured every 10 minutes, making 144 measures for a 24 hour period.

Since the upwelling season in Monterey Bay typically begins in spring and lasts through
summer, we used data from Julian Days 61 - 244 (March through August) collected in
1993 and 1994.  While the sensors measure data every 10 minutes, there are gaps in the
record due to sensor or system malfunction, maintenance and calibration.  Our method of
analysis required that a complete dayÕs record (144 measurements) be available for each
of the 4 variables in order for data for that day to be used in the analysis.  When preparing
the data, if gaps in the record for any variable existed that were less than 2 hours long, the
gap was filled by linear interpolation.  If gaps of more than 2 hours existed for a given day
for any of the four variables (either in one gap or in several smaller gaps), that day was
considered missing.  After filling gaps less than 2 hours, there were 178 days of data with
a complete record for temperature, fluorescence, PAR and wind in 1993, and 173 such
days of data for 1994.  The data from 1993 were used to develop hypotheses and predic-
tions, which were then examined with the 1994 data.

Methods

Annual trends were first removed from each variable by fitting a constant, a cosinusoid of
period one year, and a cosinusoid of period one-half year by least squares and then sub-
tracting the result from the original data.  All subsequent analyses were performed on
these residual series.
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Principle components analysis (PCA) was used to extract the major modes of daily vari-
ability from each of the series. In standard PCA, the vector of length p of one dayÕs tem-
perature profile, Xt ,  for example is  decomposed into the sum of a  vector m, which is the

componentwise mean of T daily measurements, and scalar multiples Lkt  of eigenfunctions

Vk  of length p:

Xt = m + L tk
k=1

p

å Vk .

The eigenfunctions Vk  are the eigenvectors of the covariance matrix of the collection of  T

daily temperature profiles. That dayÕs score,Lkt , on the kth eigenvector is the dot product

of Xt  and Vk . The eigenvector Vk  has associated eigenvalue

l k =
1
T

Lkt
2

t=1

T

å .

In our application of PCA, p=144, and T=178 in 1993 and 173 in 1994.  In the case of the
wind variable, PCA was accomplished by stacking each dayÕs u and v measurements to
form a vector of length 2p. We employed a slight modification of this procedure in which
the eigenfunctions were approximated by cubic spline functions with breakpoints every
two hours. This reduced the size of the calculations and also produced smoother eigen-
functions. As will be demonstrated  in the next section, the first few eigenfunctions ac-
count for a large proportion of the total variability and represent smooth anomalies, or
deviations from the mean. The higher order eigenfunctions become increasingly oscillatory
and account for less of the variability. PCA has been used extensively in physical ocean-
ography, often under the name of empirical orthogonal functions. It has been applied to a
phytoplankton series by Cloern and Jassby (1995).

As well as examining cross-correlation functions of scores on the eigenfunctions, we used
a modified form of canonical correlation analysis to search more specifically for relation-
ships among major modes of variability. In standard canonical correlation analysis

(Mardia et al. 1979) one finds vectors a and b to maximize aT SXYb( )2
 subject to

aT SXXa = bT SYYb = 1 where the matrices S  are covariance and cross-covariance matrices as
indicated by their subscripts.  In contexts such as ours in which the vectors are quite
large, since the results are dominated by noise, smoothing is essential to obtain meaningful
results.  Leurgans, Moyeed, and Silverman (1993) proposed modifying the constraints by

adding a roughness penalty. In particular, they investigated maximizing aT SXYb( )2
 subject

to the constraints
aT SXXa + waT D4a = 1
bT SYYb + wbT D4b = 1

where D4  is a discretized version of a fourth derivative operator. This procedure penal-
izes solutions that have large second derivatives and thus pulls solutions toward smooth
low degree polynomials.  As w ® ¥ , the solutions of the penalized problem tend to lin-
ear functions.
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We modified this procedure by replacing the roughness measure aT D4a  by aT SXX
-1 a , for

example. This measure can be expressed in terms of the eigenvectors and eigenvalues of
SXX  as

aT SXX
-1 a =

(aTVk )2

l kk=1

n

å
and using it as a penalty thus pulls the solutions toward the eigenfunctions with large ei-
genvalues, that is towards smooth major modes of variability.

In the simplest application of this methodology, the canonical vectors, or functionals, a
and b correspond to deviations from the mean daily profiles of variables such as tempera-
ture and fluorescence, for example, and our penalized canonical correlation analysis (PCC)
is an attempt to find which such anomalies are strongly related to each other.  It is partly
because of this interpretation that a penalty that pulls solutions towards linear functions
is not entirely appropriate, since PAR anomalies, for example, do not look like low degree
polynomials because PAR is zero during the evening hours.

More generally, a and b need not be of the same length, and in the next section we will
allow a, for example, to represent a temperature anomaly over a several day period  and b
a fluorescence anomaly only over the last day of that period.  This allows us to look for
lagged relationships among the variables. As in the case of PCA, the score of a given pro-
file is its dot product with the corresponding canonical vector.

Here also we have found it computationally convenient to approximate the canonical
functionals by cubic splines, again using breakpoints every two hours.  Doing so also re-
sulted in smoother curves.  Also, in order for the same penalty parameter w  to be used
for both roughness measures we scaled the data so that the traces of both covariance ma-
trices were equal to one.

We chose to use large values of w, so that we were effectively maximizing ( )a S bT
XY

2

subject to a S a b S bT
XX

T
YY

- -= =1 1 1.  Cross validation, as described in Leurgans et al. (1993)

would have been another possibility.  The effects of these and other subjective choices
made during the analysis were controlled in the following way.  We first conducted exten-
sive analysis of the 1993 series before examining the 1994 series in any way.  On the ba-
sis of the 1993 analysis we formulated a number of explicit predictions for the 1994 se-
ries, regarding the major modes of variability of the different variables and the nature and
timing of relationships among variables. These predictions were then tested on the 1994
data.

Results and Discussion

The Raw Data
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Plots of the daily means of temperature, fluorescence, PAR and wind for 1993 and 1994
show predominate features of the upwelling season: (1) low surface temperatures, (2)
phytoplankton blooms, (3) seasonal increase in solar irradiance and (4) NW winds
(Figures 1-4).  Daily means are plotted in Figures 2-3 for simplicity, a full dayÕs profile
was used in analyses.  To illustrate the typical daily profiles of the four variables exam-
ined Julian day 155 in 1994 was plotted separately (Figure 4).  Julian day 155 was
mostly sunny, with light winds offshore during morning and evening, and onshore during
mid-day.  The sunny mid-day conditions resulted in warming of surface waters of over
one degree Celsius, with the light winds likely contributing to the magnitude of this sur-
face warming.  Fluorescence shows the typical mid-day decrease coincident with high
light conditions.  This diurnal variability in fluorescence is due to non-photochemical
quenching during daylight (Kiefer, 1973).

Major modes of variability of temperature, fluorescence, PAR and
wind

The first three eigenfunctions accounted for 98.5% of the total variability in temperature,
92.3% of the variability in fluorescence, 95.2% of the variability in PAR and 91.6% of the
variability in wind in 1993.  The forms of the first three eigenfunctions for the three scalar
variables temperature, fluorescence and PAR were remarkably similar (Figure 5).  In all of
these plots, magnitude of the eigenfunction is on the y axis and time of day is on the x
axis, with each eigenfunction being of dimension 1 by 144 (one weight given to each
measurement through the day). Weights for the first eigenfunction for temperature and
fluorescence were positive for all 144 times during the day and the range of magnitude of
the weights is very small.  The first eigenfunction of PAR also has all positive weights,
with the middle of the day most heavily weighted. For all three variables, a deviation pro-
portional to the first eigenfunction (and therefore the primary mode of variability)
amounts to a shift in overall level. In the case of PAR, of course, this shift only occurs
during the daylight hours, and there is some slight deviation from uniformity in the other
variables as well.  A positive deviation of temperature in the direction of the first eigen-
function would amount to slightly more warming during the late afternoon hours than
during the morning hours.

The second most important mode of variability for both temperature and fluorescence is
represented by an increasing trend through the day (Figure 5).  Since weights on the sec-
ond eigenfunction are negative in the first half of the day, and positive in the second half,
a positive deviation from the mean in the direction of the second eigenfunction would
amount to decreased magnitude in the morning hours and increased magnitude during the
later hours.  For PAR this second mode of variability is represented by a peak shift, with
peak sunlight shifted to earlier in the day, and the afternoon receiving negative weights.
This is essentially a decreasing trend in PAR through the day.
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The third most important mode of variability for temperature and fluorescence shifts the
dynamics of a daily profile by decreasing the value of the variable at mid-day and in-
creasing it in the early and late hours (Figure 5).  Because a typical daily profile of tem-
perature shows some mid-day warming of surface waters (Figure 4), this eigenfunction
serves to flatten the daily profile of temperature.  The typical daily profile of fluores-
cence, however, has a decrease at mid-day (Figure 4).  This eigenfunction, then, serves to
accentuate this mid-day decrease.  The third eigenfunction for PAR is similar, in that it
sharpens the mid-day peak of PAR.

Wind is a vector-valued variable, and therefore its eigenfunctions are of dimension 2 by
144.  The corresponding u and v components can also be represented as magnitude and
direction.   The major mode of variability in wind is represented by winds of constant
magnitude from the NW (Figure 5).  The second most important mode of variability in
wind is represented by a shift in wind direction from the SE before noon to the NW after
noon.  The third most important source of variability is represented by the classical daily
pattern of coastal wind fields, the wind being offshore in the morning and late after-
noon/evening, and onshore during the middle of the day (Figure 4).

We predicted that the eigenfunctions from the 1994 data would be similar to the 1993
data, and indeed they are nearly identical (data not shown).  In 1994, the first three eigen-
functions accounted for 92.5% of the variability in fluorescence, 95.7% of the variability
in PAR, 96.8% of the variability in temperature and 88.9% of the variability in wind.
These modes of variability, then, appear to be regular features during the upwelling pe-
riod.

In order to examine how the major modes of variability of each of these variables changes
through time, we calculated, for each day analyzed, the score for a given variable on a par-
ticular eigenfunction.  These scores can then be viewed as a time series, and autocorrela-
tions calculated.  Autocorrelations of the first eigenfunctions of temperature, fluorescence
and wind remained positive and above 0.20 for up to two days in 1993 (autocorrelations
at lag 2: temperature r=0.71, fluorescence r=0.42, wind r=0.30), whereas autocorrelations
for the first eigenfunction of PAR were 0.08 at two days.  These patterns were true for
1994 as well (autocorrelations at lag 2: temperature 0.63, fluorescence 0.56, PAR 0.16,
wind 0.21).  As the first eigenfunction represents overall level of a given variable, this
autocorrelation indicates, for example, that if fluorescence is higher than average it can be
expected to remain relatively so for several days.  The autocorrelation of temperature was
the longest of any of the variables examined. The autocorrelation of temperature was
above zero for up to 10 days in 1993 and 12 days in 1994. In 1993 the autocorrelation of
fluorescence was equal to zero after 3 days, however in 1994 this decorrelation scale was
much longer (14 days). These decorrelation scales in 1994 are longer than that found by
Abbott and Letelier (1997), using instrumented drifters. The second mode of variability
fluctuates more rapidly than the first, and this is borne out in the autocorrelation func-
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tions (not shown); the autocorrelations of the second eigenfunctions dropped quickly to
zero, and oscillated around this level with few identifiable peaks.

Cross-correlations between these scores measure the relationships among the major
modes of variability of each of the variables.  These relationships are examined in the next
section, along with the results of the PCC analysis.

Relationships among temperature, fluorescence, PAR and wind

We examined the cross-correlations between the scores from the PCA analysis among all
variables.  Since there were four variables (temperature, fluorescence, PAR and wind) and
3 eigenfunctions per variable, this resulted in 66 cross-correlation functions.  Only the lag
window of -10 to 10 days was examined. We examined only the highest-order eigenfunc-
tions in the PCC analysis, and the output from this analysis includes not only the eigen-
functions that describe the relationship, but a series of scores for each of the two variables
that indicate the strength of the relationship on a particular day.  As both analyses meas-
ure relationships between pairs of variables, results from both analyses are presented be-
low for each pairwise comparison.

Wind & PAR

The maximum correlation between the first eigenfunction of wind and the first eigenfunc-
tion of PAR was at 0 lag in both 1993 and 1994 (1993 r=0.49, 1994 r=0.55).  The form of
the relationship is that strong winds from the NW produce sunnier than average days.
The eigenfunctions from the PCC analysis show the same relationship in both 1993 and
1994 (Figure 6), with correlations of a similar magnitude (1993 r=0.51, 1994 r=0.52).
Time series plots of the scores from the PCC analyses show that the scores track one an-
other fairly well (Figure 7). The corresponding plot of PCA scores is very similar (data
not shown).  This general relationship holds when looking at other modes of variability
identified in the PCA analysis.  For example, the maximum correlation between the sec-
ond eigenfunction of wind and the first eigenfunction of PAR was at a lag of 1 day (1993
r=0.21, 1994 r=0.22).  In both years the form of the relationship was the same: the day
after winds switch from SE to NW, the weather is sunnier than average.  Upwelling-
favorable winds tend to be associated with sunny weather.  The relationships predicted
from the 1993 data were upheld with the 1994 data.

Wind & Temperature

The first eigenfunction of temperature and the first eigenfunction of wind were maximally
correlated at a lag of 2 days in 1993 (r=-0.52) and 3 days in 1994 (r=-0.46).  The negative
sign of the correlation indicates that NW winds are associated with lower than average
temperatures 2-3 days later.  Again, the form of the eigenfunctions from the PCC analysis
show similar results for both 1993 and 1994 (Figure 8).  Because we were interested in
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wind events preceding temperature events, we used in the PCC analysis the correlation
between a given day of temperature and three days (that same day and two days previ-
ous) of wind.  The PCC analysis defines the nature of the relationship more precisely
than does the PCA analysis, in that three days of strong winds from the NW is associated
with lower than average temperatures (Figure 8).  The correlations from the PCC analysis
were 0.58 for 1993, and 0.43 for 1994, and the time series plots of scores on the PCC
analyses follow each other well (Figure 9) except for most notably during the period Jul-
ian Day 130-160 of 1994.  During this period, winds were from a NW direction, however
three days later temperatures remained higher than average.

Examining the cross-correlations between other modes of variability identified in the PCA
analysis confirms the tight coupling between these variables.  The maximum correlation
between the first eigenfunction of wind and the second eigenfunction of temperature was
at 0 lag in both 1993 and 1994 (1993 r=-0.46, 1994 r=-0.28), indicating that if the wind
was blowing from the NW the surface temperatures at M1 were declining.  In fact, tem-
peratures at M1 have a decreasing trend on days that the wind switches from SE to NW
(1993 r=-0.24, 1994 r=0.17).  Predictions from the 1993 analyses were consistent with
1994 results.  In both years, the relationships between the first eigenfunctions of wind
and temperature would seem to indicate that it takes approximately 2-3 days for water
that is newly upwelled north of the Bay to reach the M1 buoy in the mouth of the Bay.
This is in agreement with previous drifter studies conducted in Monterey Bay (Chavez et
al. 1997).

PAR & Temperature

The results from the PCC analysis demonstrate that lower than average temperatures are
associated with having increasingly sunny weather in preceding days (Figure 10).  The
correlation between temperature and PAR on that day and 2 days previous (the relation-
ship pictured in Figure 10) was 0.25 in 1993 and 0.33 in 1994.  The correlations increase,
however, the further back in time that one examines PAR, up to r=0.50 in 1994 for the
correlation between temperature and PAR on that day and 7 days previous.

In 1993 the maximum correlation between the first eigenfunctions of PAR and tempera-
ture was with temperature lagging PAR 2 days (r=-0.21).  The correlation for this lag in
1994 was -0.27, however the correlation increased to -0.34 for a 9-day lag.  The  precise
timing of the maximum correlation from the PCA analysis in 1994, then, was not well
predicted by the analysis of the 1993 data.  A correlation between PAR and temperature
at a lag of 2-3 days would match well with the correlation between wind and PAR (0-lag)
and between wind and temperature (2-3 day lag).

The PCA analysis also demonstrated that the maximal correlation between the third eigen-
function of temperature and the first eigenfunction of PAR were maximally correlated at a
lag of 0 days.  The third eigenfunction of temperature represents a flattening of the daily
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profile of temperature.  As the correlation was negative (1993 r=-0.35, 1994 r=-0.32) this
amounts to the intuitive result that sunnier than average days result in mid-day warming
of surface waters.  While this may seem in contradiction to results stated previously
(with sunnier than average days associated with colder than average overall temperatures),
remember that the eigenfunctions are uncorrelated with one another and each of these
functions is highlighting a unique mode of variability in temperature.

Physical Variables & Fluorescence

While correlations among the physical variables were relatively large and consistent from
year to year, relationships involving the biological variable (fluorescence) were less strong.
In general, correlations involving fluorescence were higher in 1993 than in 1994.  In 1993
fluorescence was most strongly correlated with temperature.  The maximum correlation
between the first eigenfunctions of fluorescence and temperature was when fluorescence
lagged temperature by four days (r=-0.3929).  The negative sign of the correlation indi-
cates the inverse relationship between these two variables, with lower than average tem-
peratures being associated with higher than average levels of fluorescence four days later.

The PCC analysis refined the relationship between temperature and fluorescence some-
what, in that four days of lower than average temperatures, followed by a day with a
trend to increasing temperatures, were associated with higher than average levels of fluo-
rescence (Figure 11).  The corresponding correlation was 0.40.

The results for 1994 have similar relationships and timing (data not shown), however the
correlations decrease.  The correlation from the PCA result was only -0.12, (at a lag of
three days) and that from the PCC analysis was also 0.12 (with three days of colder than
average temperatures, followed by a warming trend associated with higher than average
levels of fluorescence).

Given that wind is maximally correlated with temperature at about a two day lag (as is
PAR), and temperature maximally correlated with fluorescence at approximately a four
day lag, one would expect the strongest relationships between wind and fluorescence (or
PAR and fluorescence) to be at about a six day lag.  In 1993 the maximum correlation be-
tween the first eigenfunction of wind and the first eigenfunction of fluorescence was 0.35
at a lag of seven days, and in 1994 this maximum correlation was 0.11 at six days.  In both
years the form of the relationship was the same - winds from the NW produce higher than
average levels of fluorescence 6-7 days later.  When examining the relationship between
the first eigenfunctions of PAR and fluorescence, the maximum correlation in 1993 was
0.23 at a lag of 6 days, in 1994 the maximum correlation was 0.18 at a lag of seven days.
The form of the relationship was the same in both years with sunnier than average days
being followed 6-7 days later by higher than average fluorescence levels.
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The relationship between wind and fluorescence is made more clear using the PCC analy-
sis, with data from 1993 presented as an example (Figure 11). Notice the close similarity
of the fluorescence anomalies most closely related to temperature and wind and that both
are essentially the first eigenfunction from the PCA analysis on fluorescence. When ex-
amining fluorescence and wind on that day and 5 days previous, one sees that higher than
average levels of fluorescence are associated with several days of strong winds from the
NW followed by lighter winds from the SE (Figure 11), however this pattern is not as
clear when examining 1994 results (data not shown).  Light or SE winds, following up-
welling favorable winds, are thought to be necessary before phytoplankton blooms are
observed at the M1 mooring site.

Correlations with the third eigenfunction of fluorescence, indicating the strength of the
diurnal signal, were high only with the first eigenfunction of PAR (1993 r=0.25, 1994
r=0.18). The strength of the fluorescence diurnal signal did not appear to be related to
temperature or wind.  Stramska and Dickey (1992a) also found short-term variations in
fluorescence to be primarily related to PAR and found little correlation between the diur-
nal cycle of fluorescence and temperature (1992b).
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Conclusions and Summary

Analysis of data collected in 1993 from moorings in central California indicate a consis-
tent pattern of relationships among physical and biological variables during the upwelling
period.  As winds in the Bay area change from SE to NW, skies begin clearing.  The fol-
lowing day, the wind is strong out of the NW, and skies remain clear.  Surface water tem-
peratures begin to decline, initiating Day 1 of upwelling.  By Day 3 the coldest water as-
sociated with the upwelling event has reached M1, and by Day 7 the fluorescence signal
from the phytoplankton has reached a peak.  This fluorescence peak was associated with
several days of NW winds, followed by winds from the SE.  Work in other upwelling
systems in California has also indicated a lag of approximately 6-10 days between initia-
tion of upwelling and peak phytoplankton blooms (Dugdale and Wilkerson, 1989).
Analysis of 1994 data indicated the same, consistent pattern among the physical vari-
ables; however the relationship between these variables and fluorescence were much
weaker.

What could be responsible for the year-to-year changes in the strengths of the relation-
ships between physical and biological variables?  The answer to this question may lie in
an analysis of phytoplankton growth in upwelling systems.  Upwelling centers are analo-
gous to a chemostat (Chavez, 1995), in that the freshly upwelled water acts as a continu-
ous ÒinflowÓ of fresh nutrients to the phytoplankton populations.  The NW upwelling
winds advect the ÒoutflowÓ of this chemostat downstream of the main upwelling center
(Rosenfeld et al., 1994).  During periods of intense upwelling, if the rate of inflow is
greater than the phytoplankton growth rate, the phytoplankton populations will not in-
crease at upwelling centers, while populations downstream (ÒoutflowÓ areas) will in-
crease.  Strong, sustained, upwelling increases the area affected by this outflow, and peak
phytoplankton populations will be located further from the upwelling centers.  Wind re-
versals change the advective patterns (Rosenfeld et al., 1994) and result in the advection
of these downstream phytoplankton populations back over the site of active upwelling.
The fluorescence record at the M1 mooring (located close to an upwelling center) is then a
function not only upwelling itself but also of the frequency and duration of wind rever-
sals.

If we examine temperature and wind data from the M1 and M2 moorings we find 1994 to
be, on average, a colder year than 1993, with stronger NW winds.  The average surface
water temperature at M1 during the upwelling period in 1993 was 13.15°C, while in 1994

it was 12.11°C.  In 1993, 25% of the days during the upwelling period had mean daily

surface water temperatures less than 12°C, whereas 46% of 1994 mean daily tempera-
tures were less than this level.  Winds during the upwelling period averaged 6.5 me-
ters·sec-1 in 1994 and 6.0 meters·sec-1 in 1993, and the percentage of days during the up-
welling period during which the daily mean wind speed was greater than 6.0 meters·sec-1

was 49% in 1993 and 59% in 1994. The increased strength of upwelling in 1994 pro-
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longed the time the M1 mooring measured freshly upwelled waters. This effect can be
seen in the plots of daily means, where during Julian days 150-200 in 1994 (Figure 3),
fluorescence shows a decrease, coincident with strong NW winds, few wind reversals and
low surface temperatures.  After Julian day 200 there is a cessation of NW upwelling
winds, and the southerly winds bring water with higher phytoplankton concentrations
past M1. The longer autocorrelation scales seen for temperature and fluorescence in 1994,
as compared to 1993, support the hypothesis that the M1 mooring measured freshly
upwelled waters for a longer period of time in 1994.

The use of PCA enabled dissection of the physical and biological time series into or-
thogonal components with interpretable meaning, and the PCC analysis resulted in detec-
tion of subtle aspects of relationships among the measured variables.  For example, PCA
revealed the maximum correlation between upwelling-favorable winds and high phyto-
plankton biomass (as measured by fluorescence) to be at a lag of six to seven days; how-
ever the PCC analysis from 1993 showed the actual form of this relationship to be several
days of strong NW winds followed by lighter SE winds.  The PCC results, then, empha-
size the importance of wind reversals to the detection of phytoplankton blooms at M1.

The comparison between 1993 and 1994 data illustrate that understanding the relation-
ship through time between physical and biological variables measured at a mooring re-
quires more than a cursory understanding of the spatial patterns associated with upwel-
ling. Teasing apart the influences of local vs advective effects can be difficult for data
measured on moored systems (see for example Dickey et al., 1991; 1993). In contrast,
when the same water mass is followed (as with a drifter) a more straightforward interpre-
tation of such relationships through time may be developed; however drifters provide far
less data, over a much shorter time scale, than do moorings.  Additionally, interpretation
of drifter data also requires careful analysis (Abbott et al., 1995).  The inference from
moored data systems can be increased through additional systems deployed at strategic
locations in the upwelling space-time continuum, and by integration with data measured
from ships and satellites (Dickey et al., 1993).  In upwelling systems with a well-
established spatial pattern, as in central California, additional moorings downstream from
an upwelling center may provide the spatial and temporal coverage necessary to better
understand the relationship between physical and biological variables.
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days previous was examined.  The x-axes for the wind eigenfunctions are negative to re-
flect wind events occurring in the two days prior to the temperature events.  For wind,
every other vector was plotted to increase clarity for viewing.
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Figure 10.  Eigenfunctions from the PCC analysis of temperature and PAR in 1993 and
1994.  The relationship between temperature on a given day with PAR on that day and 2
days previous was examined. The x-axes for the PAR eigenfunctions are negative to re-
flect PAR events occurring in the two days prior to the temperature events.
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Figure 11.  Eigenfunctions from the PCC analysis of fluorescence and temperature, and
fluorescence and wind in 1993.  The relationship between fluorescence on a given day and
temperature on that day and four days previous was examined.  The x-axis for tempera-
ture is negative to reflect temperature events occurring the four days prior to fluorescence
events.  In examining the relationship between fluorescence and wind, events in fluores-
cence on a given day were compared with wind events on that day and five days previ-
ously.  The x-axis for wind is negative to reflect wind events occurring the five days prior
to fluorescence events.  For wind, every 5th vector is plotted to increase clarity for view-
ing.


