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Abstract

An identity in distribution due to F. Knight for Brownian motion

is extended in two di�erent ways: �rstly by replacing the supremum of

a re
ecting Brownian motion by the range of an unre
ected Brownian

motion, and secondly by replacing the re
ecting Brownian motion by

a recurrent Bessel process. Both extensions are explained in terms of

random Brownian scaling transformations and Brownian excursions.

The �rst extension is related to two di�erent constructions of Itô's

law of Brownian excursions, due to D. Williams and J.-M. Bismut,

each involving back-to-back splicing of fragments of two independent

three-dimensional Bessel processes. Generalizations of both splicing

constructions are described which involve Bessel processes and Bessel

bridges of arbitrary positive real dimension.
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1 Introduction

Let B := (Bt; t � 0) := (B(t); t � 0) be a standard one-dimensional Brown-
ian motion started at 0, and let Mt := sup0�s�t jBsj. Let (Lt; t � 0) be the
usual local time process at 0 for B, and set � = infft : Lt = 1g. For � > 0 let

R(�) be a BES(�)0 process, that is a Bessel process of dimension � started at
0, which can be constructed for positive integer � as the square root of the
sum of squares of � independent copies of B. For x > 0 let T (�)

x denote the
hitting time of x by R(�). As observed by Biane [2], a result of Knight [14,
Theorem 3] can be re-expressed as follows:

�

M2
�

d
= T

(3)
2 (1)

where
d
= denotes equality in distribution. Biane [2] and Vallois [29] explained

Knight's identity (1) by decomposing the path of the randomly rescaled pro-
cess

(B(uM2
� )=M� ; 0 � u � �=M2

� )

into various fragments, and rearranging these fragments to make a path with
the same distribution as (R(3)

u ; 0 � u � T
(3)
2 ). Here we use similar techniques

to obtain some extensions of Knight's identity which were announced with-
out proof in [21]. We also relate these identities in distribution to splicing
constructions involving Bessel processes and their bridges for arbitrary pos-
itive real dimension �. See Section 2 for a brief review of the de�nition of
these processes.

Let
St := sup

0�s�t
Bs; It := � inf

0�s�t
Bs (2)

and let At := St + It, called the amplitude or range of the Brownian path B
up to time t.

Theorem 1 There is the identity in distribution

�

A2
�

d
= T

(3)
1 + T̂

(3)
1 (3)

where T̂
(3)
1 is an independent copy of T

(3)
1 . Moreover, �=A2

� is independent of
the random variable I�=A� , which has uniform distribution on [0; 1].
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Theorem 1 constitutes an extension of Knight's identity (1), because

�

M2
�

=
�

A2
�

�
max

�
I�
A�

; 1� I�
A�

���2
(4)

and (1) follows from Theorem 1 and (4) by a routine Laplace transform cal-
culation. A pathwise explanation of Theorem 1 is provided by the following
theorem, which is proved in Section 3.

For t > 0 and a continuous function f whose domain contains the interval
[0; t], let T f;t

inf be the least s such that f(s) = inf0�u�t f(u), and let T f;t
sup the

least s such that f(s) = sup0�u�t f(u).

Theorem 2 Let � := TB;�
inf , so B� = �I� . De�ne

B#(t) := B�+t (mod�) �B�; 0 � t � �;

and let � := TB#;�
sup , so B#(�) = A� . Then the two processes

R := (A�1� B#(uA2
�); 0 � u � �=A2

�)

and bR := (A�1� B#((� � u)A2
�); 0 � u � (� � �)=A2

� )

are independent copies of (R(3)
u ; 0 � u � T

(3)
1 ). Moreover, the pair of pro-

cesses (R; R̂) is independent of the random variable I�=A� whose distribution
is uniform on [0; 1].

See also [9, 10, 30] for other decompositions of the Brownian path in-
volving the range process and BES(3) pieces. These results are all closely
related to Williams' [34] construction of Itô's law of Brownian excursions via
back-to-back splicing of two independent BES(3) fragments R and bR as in
Theorem 2. To describe some more general splicing results, we consider the
following construction:

Construction 3 Given two continuous path processes with random �nite
lifetimes and �nal value 1, say R := (R(t); 0 � t � �) and ( bR := ( bR(t); 0 �
t � b�) with R(�) = bR(b�) = 1, construct a random element r := (r(u); 0 �
u � 1) of C[0; 1] by �rst pasting R and bR back to back and then transforming
the resulting path by Brownian scaling to have lifetime 1; that is

r(u) :=

(
��1=2R(u�) if 0 � u � V

��1=2 bR((1 � u)�) if V � u � 1
(5)

where � := � + b� and V := �=�.
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Observe that R and bR can be recovered from (r; V ) via the formulae

� = 1=r2(V )

(R(t); 0 � t � �) = (r(t=�)=r(V ); 0 � t � V �)

( bR(t); 0 � t � b�) = (r(1 � t=�)=r(V ); 0 � t � (1 � V )�):

So any joint distribution of (R; bR) determines a unique joint distribution of
(r; V ) with rV > 0 a.s., and vice versa.

Our proof of Theorem 2 is based on case � = 3 of the following result of
[21, 22]. Let r(�) be a standard BES(�) bridge, starting at 0 at time 0 and
ending at 0 at time 1.

Theorem 4 [21][22, Thm. 3.1] For each real � > 0 the following conditions
(i) and (ii) are equivalent:

(i) R and bR are two independent BES
(�)
0 processes, each run until its �rst

hit of 1;
(ii) The law of r is determined by the formula

P (r 2 dw) = 21�
�
2�( �

2)
�1( sup

0�u�1
wu )

��2P (r(�) 2 dw); w 2 C[0; 1] (6)

and V = T r;1
sup.

Formula (6) is meant to indicate the following absolute continuity relation
between the laws of r and r(�) on C[0; 1]: for every non-negative Borel mea-
surable function F de�ned on C[0; 1],

P [F (r)] = P [D(r(�))F (r(�))]

where the density factorD(w) at path w isD(w) = 21�
�
2�( �

2
)�1(sup0�u�1 wu)��2.

Here P stands for the probability measure and expectation operator on some
background probability space where processes under consideration are de-
�ned. Throughout the paper, similar notation will be used to describe ab-
solute continuity relationships between the laws of various processes. See
also [37] regarding other absolute continuity relationships related to random
Brownian scaling operations.
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For � = 2 the density factor in (6) reduces to 1, so condition (ii) of
Theorem 4 reduces to

r
d
= r(2) and V = T r;1

sup:

For � = 3, the standard BES(3) bridge r(3) has the same distribution as a stan-
dard Brownian excursion [32]. See [4, 35, 38] regarding the close connection
between this case of Theorem 4 and the functional equation for Riemann's
zeta function. In Section 4 we establish the following analog of Theorem 4
for splicing of two Bessel processes at their last hits of 1 instead of their �rst
hits of 1.

Theorem 5 For each � > 2 the following conditions (i) and (ii) are equiva-
lent:

(i) R and bR are two independent BES
(�)
0 processes, each run until its last

hit of 1.
(ii) the joint law of r and V is determined by the formula

P (r 2 dw; V 2 dv) = c� w
��4
v P (r(�) 2 dw) dv (7)

where w 2 C[0; 1], v 2 (0; 1), and

c� =
(� � 2)2

�( �2)
2�

�
2 =

�

�(�)
21�� with � = (� � 2)=2. (8)

In this result the density factor in (7) reduces to 1 only if � = 4. Then
condition (ii) simpli�es to:

r
d
= r(4) and V is independent of r with uniform distribution on (0; 1).

Theorems 4 and 5 are probabilistic equivalents of the following two the-
orems which express identities between �-�nite measures on appropriate
spaces.

Theorem 6 [34, 19, 4, 22] For each � > 0, on the space 
ex of continuous
non-negative paths with a �nite lifetime, starting and ending at 0, the same
�-�nite measure �� is determined by either of the following two descriptions:
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Description I: Conditioning on the lifetime t: First pick t accord-
ing to the �-�nite density 2�

�
2�( �

2
)�1t�

�
2dt on (0;1); then given

t, pick ! according to the distribution of a BES(�) bridge from 0
to 0 over time t.

Description II: Conditioning on the maximum m: First pick m
according to the �-�nite density m1��dm on (0;1); then given

m, construct ! by joining back to back two independent BES(�)0

processes, each run till it �rst hits m.

For each � 2 (0; 2) and C > 0, when the local time process of BES
(�)
0 is

normalized as occupation density relative to the speed measure 2Cx��1dx on
(0;1), Itô's law for excursions of BES(�)0 away from 0 is (2 � �)2C�4��.

In particular, for � = 3 the measure �3 is Itô's law for excursions of jBj away
from zero for the local time process de�ned by occupation density of B at 0
relative to Lebesgue measure. Theorem 6 in this case was indicated by D.
Williams [34, xII.67]. The extension to other dimensions � was obtained in
[19, 4, 22]. The last sentence of the theorem was indicated without atten-
tion to normalization constants in [19], and with an incorrect normalization
constant (4 instead of 2) in [4, formula (3h)]. For � 2 (0; 2] [ [4;1) the
measure �� is not an excursion law in the sense of Itô [11]. Nonetheless these
measures have some interesting properties [19, 22]. Due to the Ray-Knight
description of Brownian local times, the measure 4�4 is is the distribution of
the square root of the total local time process of a path governed by the Brow-
nian excursion law �3. Consequently, �4 appears also in the L�evy-Khintchine
representation of the in�nitely divisible family of squares of Bessel processes
and Bessel bridges [19, 18]. As will be seen in Section 4, the simple form of
Theorem 5 for � = 4 is also closely connected to the Ray-Knight description
of Brownian local times.

The next theorem gives an alternative characterization of the measures
�� for all � > 2 by generalizing a result of Bismut [5] for � = 3. The constant
c� involved is the same as in (8).

Theorem 7 For each � > 2 the same �-�nite measure M� on 
ex � (0;1)
is determined by each of the following two ways of picking a point (!; a) from

ex � (0;1).
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Description I': Conditioning on the lifetime t of !: First pick
t according to the �-�nite density c�t

� �
2
+1dt on (0;1); given t,

pick ! from the distribution of a BES(�) bridge from 0 to 0 over
time t, pick u from the uniform probability distribution on (0; t),
independently of !, and let a = !(u).

Description II': Conditioning on the level a: First pick a according
to the �-�nite density 2a3��da on (0;1); then given a, construct

! by joining back to back two independent BES(�)0 processes, each
run till it last hits a.

The marginal distribution of ! induced by M� has density t(!) relative to
(� � 2)2��, where t(!) is the lifetime of the path !.

For � 2 (2; 4), Theorem 7 can be read from Theorem 6 by application
to BES(4��) of a generalization of Bismut's result to an arbitrary recurrent
strong Markov process, given in [17, xII]. In Section 4, Theorem 7 is deduced
for all � > 2 by application of Theorem 5.

The rest of this paper is organized as follows. In Section 2 we brie
y
review the de�nition and basic properties of Bessel processes which underlie
our study. Section 3 presents the proof of Theorem 2 followed by some
variations of Knight's identity for one-dimensional Brownian motion. The
splicing results of Theorems 5 and 7 are established in Section 4, followed in
Section 5 by some corollaries for Bessel bridges. Section 6 presents another
extension of Knight's identity, in which the re
ecting Brownian motion jBj
is replaced by a recurrent BES(�) process with dimension � 2 (0; 2). For yet
another extension of Knight's identity, involving the process (jBtj � �Lt; t �
0) for � > 0, see [36, Chapter 9] and [6].

2 Preliminaries on Bessel Processes.

The construction of BES(�)0 as the radial part of a �-dimensional Brownian
motion for � = 1; 2; 3 : : : makes evident the Pythagorean property of Bessel
processes: for positive integers � and ", the sum of squares of independent
BES(�) and BES(") processes is the square of a BES(�+") process. As shown
by Shiga-Watanabe [28], the family of BES(�) processes for all real � � 0 can
be constructed by extension of this Pythagorean property to all non-negative
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real � and ". See [19, 26, 22] for further background. Typical properties of
Bessel processes are consequences of the Brownian representation for positive
integer � which have natural extensions to all � > 0. In particular, for each
real � > 0 the BES(�)0 process R(�) inherits the familiar Brownian scaling
property from integer dimensions which underlies all the results of this paper:
for every c > 0

(c�1=2R
(�)
ct ; t � 0)

d
= (R

(�)
t ; t � 0):

A standard BES(�) bridge, denoted r(�), is a process

(r(�)u ; 0 � u � 1)
d
= (R(�)

u ; 0 � u � 1jR(�)
1 = 0):

where R(�) is a BES
(�)
0 . Such a process is conveniently constructed as

r(�)u := (1� u)R(�)
u=(1�u); 0 � u < 1: (9)

For an account of the basic properties of bridges derived from a nice Markov
process such as BES(�), see [7].

3 Results for one-dimensional Brownian mo-

tion

For a suitable real-valued path with either �nite or in�nite lifetime �, say
w = (wt; 0 � t � �), and a random time T = T (w) � �, let (LT (w; x); x 2 R)
denote the process of local times of w at time T parameterized by the space
variable x, as determined for all x 2 R almost surely by the occupation
density formula Z T

0
f(ws)ds =

Z 1

�1
f(x)LT (w; x)dx

for all non-negative Borel functions f , and continuity in x. It is well known
[26] that such a local time process exists for arbitrary T (w) � � and almost all
w with respect to the laws of various processes under consideration here, such
as fragments of Brownian motion, Brownian bridges, and Bessel processes.
To illustrate the notation, for B a Brownian motion, the local time process
of B at 0 is (Lt; t � 0) de�ned by Lt := Lt(B; 0).
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3.1 Proof of Theorem 2.

Starting from the basic Brownian motion B and its inverse local time � ,
it is easily checked that the pair of processes (R; R̂) de�ned in Theorem 2
corresponds by Construction 3 to (r; V ), where r is constructed from B via
an intermediate process X, as in the statements of next two lemmas, and
V = T r;1

sup. Also, I�=A� = I1(X)=A1(X) as in Lemma 9. Theorem 2 then
follows immediately by combination of the lemmas and the case � = 3 of
Theorem 4.

Lemma 8 [3] Let X(u) := Bu�=
p
� ; 0 � u � 1. Then

P (X 2 d!) =

s
2

�

1

L1(!; 0)
P (Bbr 2 d!); ! 2 C[0; 1] (10)

where Bbr is a standard Brownian bridge.

For ! 2 C[0; 1] let

S1(!) := sup
0�u�1

!u; I1(!) = � inf
0�u�1

!u; A1(!) = S1(!) + I1(!)

Lemma 9 For a random element X of C[0; 1] let U := TX;1
inf , and de�ne

another random element r of C[0; 1] by

rt := XU+t(mod1) �XU ; 0 � t � 1:

If X has the distribution (10) on C[0; 1] then I1(X)=A1(X) and r are inde-
pendent; the distribution of I1(X)=A1(X) is uniform on [0; 1], while

P (r 2 d!) =
q
2=�S1(!)P (r

(3) 2 d!); ! 2 C[0; 1]: (11)

Proof. Note �rst from the construction of U and r that for any X with
X0 = X1 = 0 there are the identities

I1(X) = r1�U ; A1(X) = S1(r); L1(X; 0) = L1(r; r1�U): (12)

Let P govern X with distribution (10), and let P br govern X as a standard
Brownian bridge. As shown by Vervaat [31] and Biane [1], under P br the
random elements U and r are independent, with U uniform on [0; 1], and
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r a standard BES(3) bridge. Let c =
q
2=�. Then for w 2 C[0; 1] and

0 � x � S1(w) we can use (12) to compute as follows:

P (I1(X) 2 dx; r 2 dw) = cP br(1=L1(X; 0); I1(X) 2 dx; r 2 dw))

= cP br(1=L1(w; x); r1�U 2 dx; r 2 dw)

= c(1=L1(w; x))L1(w; x) dxP
br(r 2 dw)

where the last equality uses the fact that under P br the variable 1 � U has
uniform distribution and is independent of r. It follows that for x � 0 and
w 2 C[0; 1]

P (I1(X) 2 dx; r 2 dw) = c1(0 < x < S1(w)) dxP
br(r 2 dw)

and the conclusions of the lemma are evident. 2

3.2 Some variations of Knight's identity.

Recall the well known formulae

P exp

 
��

2

2
T (1)
x

!
=

1

cosh(x�)
; P exp

 
��

2

2
T (3)
x

!
=

x�

sinh(x�)
(13)

which are the particular cases � = 1 and � = 3 of the general formula for the
Laplace transform of T (�)

x which appears later in equation (24). In view of
the second formula in (13), Knight's identity (1) amounts to the formula

P exp

 
��

2

2

�

M2
�

!
=

2�

sinh(2�)
(� > 0): (14)

Use sinh(2�) = 2(cosh �)(sinh �) and (13) to see that Knight's identity can
be rewritten

�

M2
�

d
= T

(1)
1 + T

(3)
1 (15)

where T (1)
1 and T (3)

1 are assumed independent. The fact that T (3)
2

d
= T

(1)
1 +T (3)

1

can be understood as follows:

T
(3)
2 = (T (3)

2 � T
(3)
1 ) + T

(3)
1
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where T (3)
2 � T

(3)
1 and T

(3)
1 are independent by the strong Markov property

of BES
(3)
0 at time T

(3)
1 ; that T

(3)
2 � T

(3)
1

d
= T

(1)
1 is implicit in the description

of BES(3) as a conditioned one-dimensional Brownian motion [15, 33].
Straightforward calculations based on Theorem 1 yield also the following

variation of (15) and (3):

�

S2
�

=
�

A2
�

�
1 � I�

A�

��2
d
= T

(3)
1 + � (16)

where T
(3)
1 is assumed independent of � , and � has the same stable(1/2)

distribution as both B�2
1 and the hitting time of 1 by B. Similarly, we �nd

that
�

(min(S� ; I�))2
d
= 4(T

(3)
1 + � ): (17)

The identities in law (1), (3), (16), and (17) exhibit some interesting fea-
tures of the 4-dimensional random variable (�+; S� ; �

�; I�), where �� =R �
0 ds1(Bs 2 R�). We shall not attempt here the systematic description
of this joint law, but see [26, p. 484, Ex. (4.24)] for some further results
involving it. See also [22, 25, 23, 24] for the study of related laws of both
heights and lengths of excursions of Brownian motion and Bessel processes.

4 Splicing of Bessel Bridges

The following lemma records a variation of the Ray-Knight description of the
local time process of B in the space variable at the inverse local time � :

Lemma 10 The processes

(L� (B;S� � v); 0 � v � S� ) and (L� (B;�I� + v); 0 � v � I�)

are independent copies of the square of (R(4)
v ; 0 � v � �(4)) where �(4) :=

supft : R(4)
t = 1g.

Proof. According to one of the Ray-Knight theorems, the processes

(L� (B;x); x � 0) and (L�(B;�x); x � 0)
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are two independent squares of Bessel processes of dimension 0, each started
at 1, whose hitting times of 0 are S� and �I� respectively. The conclusion
now follows by application of Williams' time-reversal theorem [33, 19]. 2

On the other hand, we obtain the following corollary of Theorem 2. See
also [19] for closely related appearances of the square of the standard BES(4)

bridge.

Corollary 11 The process (A�1� L� (B;�I� + uA�); 0 � u � 1) is the square
of a standard BES(4) bridge; moreover this process is independent of the uni-
formly distributed random variable I�=A� .

Proof. LetB# be as constructed in Theorem 2, and letB�(v) := A�1� B#(vA2
�)

for 0 � v � �=A2
� . Then it is easily seen that for 0 � u � 1

A�1� L� (B;�I� + uA�) = A�1� L� (B
#; uA�) = L(B�; �=A2

� ; u) (18)

where on the right side, and in some following equations, we write L(!; t; x)
instead of Lt(!; x). According to Theorem 2, the process B� can be con-

structed by pasting back-to-back two independent copies of (R(3)
t ; 0 � t �

T
(3)
1 ), and B� is independent of I�=A� . It is implicit in Williams' path de-

compositions [32, 33] that the process (L(R(3); T
(3)
1 ; u); 0 � u � 1) is the

square of a standard BES(2) bridge. Since the sum of squares of two inde-
pendent standard BES(2) bridges is the square of a standard BES(4) bridge,
the conclusion follows. 2

The simplest case of Theorem 5, when � = 4, is now evident by compar-
ison of the results of Lemma 10 and Corollary 11. The proof of Theorem 5
for general � > 2 is based on the known results stated in the following two
lemmas.

For � > 0 let �� denote a random variable with the gamma(�) density
�(�)�1x��1e�x for x > 0.

Lemma 12 For � > 0 let �(�) := supft : R(�)
t = 1g.

(i) [8] �(�)
d
= 1=(2�� ) where � = (� � 2)=2.

(ii) [7] Conditionally given �(�) = v the process (R(�)
t ; 0 � t � v) is a

BES(�) bridge from (0; 0) to (1; v).

12



By the identity r(�)v
d
=
q
2v(1� v)��=2 which follows from (9), for z > 0

P (r(�)v 2 dz) = p�(v; z)dz

where

p�(v; z) :=
z2�+1v���1(1 � v)���1

�(� + 1)2�
exp

 
� z2

2v(1 � v)

!
and � = (� � 2)=2. The next lemma is an instance of Proposition 4 of [7]:

Lemma 13 [7] Fix � > 0. For a process r := (rv; 0 � v � 1) with continuous
paths and a random time V with values in (0; 1) the following conditions (i)
and (ii) are equivalent:
(i) For 0 < v < 1 and z > 0

P (V 2 dv; rV 2 dz) = �(v; z) dvdz

for some joint probability density function �(v; z), and conditionally given
(V = v; rV = z) the two processes (ru; 0 � u � v) and (r1�u; 0 � u � 1 � v)
are independent, with the �rst a BES(�) bridge from (0; 0) to (v; z) and the
second a BES(�) bridge from (0; 0) to (1 � v; z).
(ii) the joint law of r and V is given by the formula

P (r 2 dw; V 2 dv) = f(v;wv)P (r
(�) 2 dw) dv (19)

where w 2 C[0; 1], v 2 (0; 1), for some non-negative measurable function
f(v; z).

When these conditions hold, f and � are related by the formula

f(v; z) = �(v; z)p�(v; z); dv dz almost everywhere:

Proof of Theorem 5. Because the transformation involved is a bijection,
it su�ces to show that (i) implies (ii). Suppose (i) holds. According to
Lemma 12, conditionally on their lifetimes � and b� the processes R and bR
are independent Bessel bridges from 0 to 1 with the given lengths. After the
scaling operation to construct r the images of these processes are bridges of
lengths �=� and b�=� from 0 to 1=

p
�. Lemma 13 now yields the conclusion
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with f�(v; rv) instead of c�r��4v where f�(v; z) = ��(v; z)=p�(v; z) with ��(v; z)
the joint density at (v; z) of

 
�

� + b� ; 1p
� + b�

!
=

0@ b��

�� + b��

;

 
1

2��
+

1

2b��

!�1=21A
for �� and b�� independent gamma(�) variables with � = (� � 2)=2. But
elementary calculations show that f�(v; z) = c�z

��4, and (ii) follows. 2
Proof of Theorem 7. In Description II', given a denote by �a and b�a
the last hitting times of a by the two independent BES(�)0 processes. So by
construction a = !v where v := �a, and the lifetime t of ! is t = �a + b�a.
Let ! be the path ! standardized by Brownian scaling to have length 1.
Note that !v = a=

p
t, and that (!; a) is a measurable function of (a; !; v).

Description II' speci�es the �-�nite marginal distribution 2a3��da for a, and
given a a conditional probability distribution for (!; v). By Brownian scaling
and Theorem 5, this conditional probability distribution of (!; v) given a does
not depend on a, and is identical to the distribution of (r; V ) described by
formula (7). It follows from Fubini's theorem that for every non-negative
measurable function � = �(a; !; v), the integral of � with respect to the
�-�nite joint distribution of (a; !; v) determined by Description II' equals

P (�)
Z 1

0
da 2a3�� c�r

��4
U �(a; r; U) (20)

where P (�) denotes expectation with respect to a probability distribution
which governs r as a standard BES(�) bridge and U as an independent random
variable with uniform distribution on (0; 1). The lifetime t = t(!) is recovered
from (a; !; v) as t = a2=!2

v. Apply (20) with �(a; !; v) = 	(a2=!2
v; !; v), and

make the change of variable t = a2=r2U in the integral, to deduce that for
every non-negative measurable function 	 = 	(t; !; v), the integral of 	 with
respect to the distribution of (t; !; v) induced by that of (a; !; v) determined
by Description II' equals

P (�)
Z 1

0
dt c� t

1� �
2 	(t; r; U): (21)

But this is precisely the integral of 	(t; !; v) with respect to the joint distri-
bution of (t; !; v) speci�ed by Description I'. 2
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We now discuss further the correspondence between probability laws for
(R; bR) and for (r; V ) induced by Construction 3. Instead of considering the
distribution of (r; V ) corresponding to R and bR which are independent copies

of a BES
(�)
0 run until its last hit of 1, we ask the following question: assuming

that bR is an independent copy of R, how must R be distributed so that r is a
standard BES(�) bridge and V is independent of r? This question is answered
by the following variation of Theorem 5, which coincides with that theorem
for � = 4, but which is valid for all dimensions � > 0 rather than just � > 2.

Theorem 14 For each � > 0 there is a unique distribution F� on (0; 1),
and a unique distribution Q� for a process with �nite lifetime, such that the
following two conditions are equivalent:

(i) r is a standard BES(�) bridge and V is independent of r with distribu-
tion F�;

(ii) R and bR are independent with common distribution Q�.
The distribution F� is beta(�=4; �=4); when R has distribution Q� the life-

time T of R is distributed like (2��=4)
�1, and given T the process R is dis-

tributed like a BES(�) bridge starting at (0; 0) and ending at (T; 1).

For the proof of this theorem, we introduce the following notation. For
two random variables W and Y with W > 0 and Y � 0, call a process

(Xt; 0 � t � T ) a BES
(�)
0 (W;Y ) bridge if (T;XT )

d
= (W;Y ) and given (T;XT )

the process X is distributed like a BES(�) bridge starting at (0; 0) and ending
at (T;XT ): that is, for all v; y > 0

(Xt; 0 � t � T jT = v;XT = y)
d
= (R(�)

t ; 0 � t � v jR(�)
v = y)

For � > 2 let Q0
� be the law of an unconditioned BES(�)0 process R� stopped

at its last hit of 1. According to Lemma 12,

Q0
� is the law of a BES(�)0 ((2�(��2)=2)

�1; 1) bridge.

The distribution Q�, de�ned in Theorem 14 for all � > 0 rather than just
� > 2, is the law of a BES(�)0 ((2��=4)

�1; 1) bridge. These distributions Q0
� and

Q� are mutually absolutely continuous for each � > 2. But they are identical
only if (� � 2)=2 = �=4, that is � = 4. The following variation of Lemma 13
simpli�es the proof of Theorem 14:

15



Lemma 15 Fix � > 0. Suppose that r is a standard BES(�) bridge and that
V 2 (0; 1) is independent of r. Then

R is a BES
(�)
0 (V=r2V ; 1) bridge,

bR is a BES
(�)
0 ((1� V )=r2V ; 1) bridge,

and these two processes are conditionally independent given (V; rV ).

Proof. This follows easily from the inhomogeneous Markov property of r,
according to which for each �xed time u 2 (0; 1), and y � 0, the two processes
(rt; 0 � t � u) and (r1�t; 0 � t � 1� u) are conditionally independent given

ru = y, with the �rst process a BES(�)0 (u; y) bridge and the second process a

BES(�)0 (1 � u; y) bridge. See [7]. 2
Proof of Theorem 14. For r and V as in Lemma 15, that lemma shows
that R and bR are i.i.d.(independent and identically distributed), if and only
if r2V =V and r2V =(1 � V ) are i.i.d.. But from the representation (9),

(V; r2V )
d
= (V; 2V (1 � V )��=2)

where ��=2 is assumed independent of V . So r2V =V and r2V =(1 � V ) are i.i.d.
i� (1� V )��=2 and V ��=2 are i.i.d.. It is well known and easily veri�ed that
this condition holds i� the distribution of V is beta(�=4; �=4); then

r2V =V
d
= r2V =(1 � V )

d
= 2V ��=2

d
= 2��=4

and the theorem follows. 2
As a �nal variation on this theme, we record the following extension of

Theorems 5 and 14.

Theorem 16 Let r(�) be a standard BES(�) bridge. For � > 0 and a; b 2
(0; �=2), the following conditions (i) and (ii) are equivalent:

(i) R and bR are independent, with R a BES
(�)
0 ((2� �

2
�a)

�1; 1) bridge andbR a BES
(�)
0 ((2� �

2
�b)

�1; 1) bridge;

(ii) the joint law of r and V is determined by the formula

P (r 2 dw; V 2 dv) = c�;a;b v
a�1(1� v)b�1w��2a�2b

v P (r(�) 2 dw) dv (22)

where w 2 C[0; 1], v 2 (0; 1), and

c�;a;b = 2a+b�
�
2

�(a)�(b)�( �2)

�( �2 � a)�( �2 � b)�(a+ b)
:

16



Proof. This is obtained by the same method used to derive Theorem 5.
Details are left to the reader. 2

As a check on this theorem, for � > 2 and a = b = 1, in view of Lemma
12 we recover Theorem 5, while for � > 0 and a = b = �=4 we recover most
of Theorem 14. See also [36, Section 3.7] for some related results.

5 Some identities in law for Bessel bridges

We indicate in this section some consequences for Bessel bridges of the splic-
ing constructions considered in the previous section. Observe �rst, in the
setting of Theorem 2, with notation from the proof of Corollary 11, that the
lifetime �=A2

� of the process (B
�(v); 0 � v � �=A2

� ) can be written as

�

A2
�

=
Z 1

0
L(B�; �=A2

� ; u)du:

But from (18)

L(B�; �=A2
� ; I�=A� ) = L(B; 0; � )=A� = 1=A� :

Thus � can be recovered from the squared BES(4) bridge in (18) and the
independent uniform random variable I�=A� as

� =
1

(L(B�; �=A2
� ; I�=A� ))2

Z 1

0
L(B�; �=A2

� ; u)du:

Similar considerations apply to the amounts of time �+ and �� that B spends
in the intervals (0;1) and (�1; 0] respectively up to time � . On the other
hand, in the notation of Construction 3, we have

I� :=
1

r4(V )

Z V

0
r2(u)du =

Z �

0
R2(t)dt

I+ :=
1

r4(V )

Z 1

V
r2(u)du =

Z b�
0

bR2(t)dt

I :=
1

r4(V )

Z 1

0
r2(u)du = I� + I+

17



Thus we deduce from Lemma 10 and Corollary 11 that for (r; V ) and (R; bR)
as in Theorem 5 for � = 4, the random variables I� and I+ are independent
with the same stable(1=2) distribution shared by ��, �+, �=4 and 1=(8�1=2),
while I has the same distribution as � and 1=(2�1=2). This is the case p = 2
of the following result:

Theorem 17 Let r be a standard BES(4) bridge, and V an independent ran-
dom variable with uniform distribution on (0; 1). For p > 0 let

J�(p) :=
Z V

0
r2p�2s ds; J+(p) :=

Z 1

V
r2p�2s ds; J(p) :=

Z 1

0
r2p�2s ds

Then
(i) the random variables p2J�(p)=r

2p
V and p2J+(p)=r

2p
V are independent

with the same distribution as 1=(2�1=p);
(ii) J�(p)=J(p) has a beta(1=p; 1=p) distribution, and is independent of

the random variable
r2pV J(p)

2p2J�(p)J+(p)

which has a gamma(2=p) distribution.

This result is obtained by combination of Theorem 5 with the following
lemma:

Lemma 18 [26, p. 427, Prop. (1.11)] Let (R�(t); t � 0) be a BES(�). For
all � > 0 and p > 0

Rp
�(t) = �R��

�
p2
Z t

0
dsR2p�2

� (s)
�
; t � 0

where �� = 2 + (� � 2)=p and �R�� is a BES(
��).

Proof of Theorem 17. In terms of R and bR, two independent BES(�)

processes, with � and b� are their respective last hits of 1, from Theorem 5
for � = 4, Lemma 18 and Lemma 12, we �nd 
p2J�(p)

r2pV
;
p2J+(p)

r2pV

!
d
=

 
p2
Z �

0
dtR2p�2

t ; p2
Z b�
0
dt bR2p�2

t ;

!
d
=

 
1

2�1=p
;

1

2b�1=p

!
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where �1=p and b�1=p are two independent gamma(1=p) variables. This is
(i), and (ii) follows by the elementary relations between beta and gamma
variables. 2

The simplicity of this result should be compared with the complexity of
the law of J(p). See [12] and references therein for an approach to the law
of J(p) via Sturm-Liouville equations.

The following further corollary, whose proof is left to the reader, is a
consequence of Theorem 5 and Lemma 18. In two particular cases, if � = 4
or " = 4 we recover some instances of [26, p. 444, Theorem (3.5)].

Proposition 19 Let P (�) be an expectation operator governing r as a stan-
dard BES(�) bridge, and let c� be as de�ned by (8). Suppose � > 2; p > 0,
and let " := 2 + (� � 2)=p. Then for every non-negative measurable function
f there is the equality

c�P
(�)
�
f
�Z 1

0
dur2p�2u

��Z 1

0
dur��4u

��

= c"P
(")

"
f

 �Z 1

0
du(pru)

2
p
�2
��p!�Z 1

0
dur"�4u

�#
:

6 An analog of Knight's identity for a recur-

rent Bessel process

Another generalization of Knight's identity is obtained by replacing jBj by
a BES

(�)
0 process R := R(�), for some � 2 (0; 2), when 0 is a recurrent point

for R. Let Mt := sup0�s�tRs, let (Lt; t � 0) be a local time process at 0 for
R, and for s � 0 set �s = infft : Lt > sg. Note that while the de�nition
of these processes (Lt) and (�s) in terms of R involves �, this dependence is
suppressed in the notation. It is known [16] that (�s) is a stable subordinator
of index � := 1 � �

2
, that is

P (�) exp(���s) = exp(�Ks��) (� > 0) (23)

where P (�) is an expectation operator governing R as a BES
(�)
0 , and K is

a constant depending on the normalization of the local time process. By
scaling, the law of �s=M2

�s depends neither on s, nor on the choice of nor-
malization of local time. So we now write simply � instead of �s for some
arbitrary �xed � and s.
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Theorem 20 For � 2 (0; 2) the distribution of �=M2
� for a BES(�)0 process is

identical to that of T (�)
1 + T

(4��)
1 where T (�)

1 and T (4��)
1 are independent.

For all � > 0 there is the formula [13]

P (�) exp(�1
2
�2T (�)

x ) =
(x�)�

2��(� + 1)I�(x�)
where � := (� � 2)=2 (24)

and I� is the modi�ed Bessel function of index �. So Theorem 20 amounts
to the formula

P (�) exp

 
��

2

2

�

M2
�

!
=

sin(��)

��

1

I�(�)I��(�)
for � := (2� �)=2 2 (0; 1):

(25)
We o�er the following pathwise explanation of Theorem 20, in the same spirit
as Theorem 2. See also [20, Sec. 6] for a similar construction. Let ~� := �=M2

�

and
~Rt :=

1

M�

R(tM2
� ); 0 � t � ~� ; (26)

so the process ( ~Rt; 0 � t � ~�) begins and ends at 0, and has maximum value
1 at time ~� := �=M2

� where � is the a.s. unique time u in (0; � ) at which
Ru = M� . Now de�ne a rearrangement R# of the path of ~R, as follows:
delete the excursion of ~R straddling time ~�, close up the gap, and replace the
deleted excursion at the end. Let

~D := (�rst zero of ~R after time ~�) = D�=M
2
� (27)

where D� is the �rst zero of R after time �.

Theorem 21 For R a BES(�)0 with � 2 (0; 2) the two processes

(R#(t); 0 � t � ~� � ( ~D � ~�)) and (R#(~� � v); 0 � t � ~D � ~�)

are independent; the �rst is distributed as a BES
(�)
0 up to its hitting time of

1, and the second is distributed as a BES(4��)0 up to its hitting time of 1.

As a consequence of Theorem 21, for (�;M� ) derived from a BES(�)0 process,
the decomposition

�

M2
�

=
� � (D� � �)

M2
�

+
(D� � �)

M2
�
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expresses �=M2
� as the sum of two independent random variables, distributed

like T (�)
1 and T

(4��)
1 respectively. Thus Theorem 20 is a consequence of The-

orem 21. In the Brownian case (� = 1), this derivation of Knight's identity
in the form (15) simpli�es the closely related approaches of Vallois [29] and
Biane[2].
Proof of Theorem 21. The following observations 1)-4) are consequences
of Itô's excursion theory [11, 27] which are valid for any recurrent di�usion

process R starting at 0 instead of a BES(�)0 process R, with � := infft : Lt >
1g where L is a local time process of R at 0, with M the past maximum
process of R, and � 2 (0; � ) de�ned by M� = R�. The excursion interval of
R containing � is denoted (G�;D�).

1) For each x > 0, conditionally given M� = x, the excursion of R over
(G�;D�) is distributed according to Itô's excursion law given an excur-
sion of maximum height x, independently of the residual process with
lifetime � � (D��G�) obtained from the process R on [0; � ] by excision
of the excursion over (G�;D�).

2) Conditionally given M� = x, the residual process is identical in law to

(Rt; 0 � t � GTx jLTx = 1);

where GTx is the time of the last zero of R before Tx, the �rst hitting
time of x by R.

3) Conditionally given M� = x, the excursion of height x over (G�;D�)

may be decomposed at its maximum into two independent copies of R̂
run till time T̂x and joined back to back, where T̂x is the hitting time of
x by the di�usion R̂ started at 0 obtained as \R conditioned to reach
+1 before returning to 0" in the usual sense of h-processes. (Williams
decomposition [33, 34]. For R a BES(�), it is known [19] that R̂ is a
BES(4��).)

By combination of 1), 2) and 3) with the last exit decomposition of R at
time GTx , which has a similar expression in terms of excursion theory, it is
clear that

4) if the excursion attaining the maximum of R on [0; � ] is removed and
tacked after the residual process, conditionally given M� = x, this
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rearranged process of lifetime � decomposes at its maximum (at time
� � (D� � �)) into two independent processes, the �rst a copy of

(Rt; 0 � t � TxjLTx = 1)

and the second a time-reversed copy of (R̂t; 0 � t � T̂x):

Assuming now that R is a BES(�)0 for some � 2 (0; 2), the two processes
considered in Theorem 21 are obtained from the two processes considered
above by application of Brownian scaling to obtain processes with maximum
value 1 instead of M� . Combined with the Brownian scaling property of R,
the above argument shows

(R#(t); 0 � t � ~� � ( ~D � ~G)jM� = x)
d
= (Rt; 0 � t � T1jLT1 = x�2�)

where LT1 is the local time at 0 of R, a BES
(�)
0 , up to the time T1 = T

(�)
1 that

R �rst hits 1. Similarly

(R#(~� � v); 0 � t � ~D � ~�jM� = x)
d
= (R̂t; 0 � t � T̂1):

where T̂1
d
= T

(4��)
1 is the hitting time of 1 by the BES(4��)0 process R̂. Since

the distribution of the last path is independent of the value x of M� , the
independence claimed in the theorem is immediate. To �nish the argument,
it only remains to check that the following relation holds for R a BES(�):

M�2�
�

d
= LT1; where � = (2 � �)=2: (28)

By Theorem 6, for BES(�) the rate of excursions to hit x is cx�2� for some c de-
pending on the choice of normalization of local time, so LT1 is exponential(c):

P (LT1 > `) = e�c`: (29)

But also
P (M�2�

� > `) = P (M� < `�1=2�) = e�c` (30)

where the second equality is a consequence of Itô's excursion theory: in a
Poisson process with rate c `�(1=2�)(�2�) = c`, the probability of no points in
time 1 is e�c`: 2
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Remark. Consider again for R a BES(�)0 with � 2 (0; 2) the process ~R with
lifetime ~� = �=M2

� derived by Brownian scaling R on [0; � ] to have maximum
height 1, as in (26). It is natural to consider the decomposition of ~R at its
maximum time ~� = �=M2

� . By symmetry under time reversal, ~R decomposes
at time ~� into an exchangeable pair of processes, say Y with lifetime ~� and
Ŷ with lifetime ~� � ~�, put back to back. A variation of the above argument
identi�es the common law of Y and Ŷ , and shows they are not independent.
To see this, let L := ~L~�, the total local time at 0 of Y , L̂ = ~L~� �L, the total

local time at 0 of Ŷ . A variation of the above argument shows that

(Yt; 0 � t � ~�jL = `)
d
= (Ŷt; 0 � t � ~� � ~�jL̂ = `)
d
= (Rt; 0 � t � T1jLT1 = `):

Moreover, Y and Ŷ are conditionally independent given (L; L̂). But it is
easily seen that

(L; L̂)
d
= (ULT1 ; (1� U)LT1) ; (31)

where U is uniform [0; 1] independent of LT1, which has exponential(c) dis-
tribution for some c > 0. Let (R0t; 0 � t � T 01) be an independent copy of
(Rt; 0 � t � T1). It follows easily that the law of (Y; Ŷ ) is absolutely contin-
uous with respect to that of ((Rt; 0 � t � T1); (R0t; 0 � t � T 01)), with density
c�1(LT1 + L0T 0

1
)�1 where L0T 0

1
is the local time of R0 at 0 at time T 01.
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tingales, Vol. II: Itô Calculus. Wiley, 1987.

25



[28] T. Shiga and S. Watanabe. Bessel di�usions as a one-parameter family
of di�usion processes. Z. Wahrsch. Verw. Gebiete, 27:37{46, 1973.

[29] P. Vallois. Sur la loi conjointe du maximum et de l'inverse du temps
local du mouvement brownien: applications �a un th�eor�eme de Knight.
Stochastics and Stochastic Reports, 35:175{186, 1991.

[30] P. Vallois. Decomposing the Brownian path via the range process. Stoch.
Proc. Appl., 55:211{226, 1995.

[31] W. Vervaat. A relation between Brownian bridge and Brownian excur-
sion. Annals of Probability, 7:143{149, 1979.

[32] D. Williams. Decomposing the Brownian path. Bull. Amer. Math. Soc.,
76:871{873, 1970.

[33] D. Williams. Path decomposition and continuity of local time for one
dimensional di�usions I. Proc. London Math. Soc. (3), 28:738{768, 1974.

[34] D. Williams. Di�usions, Markov Processes, and Martingales, Vol. I:
Foundations. Wiley, Chichester, New York, 1979.

[35] D. Williams. Brownian motion and the Riemann zeta-function. In Dis-
order in Physical Systems, pages 361{372. Clarendon Press, Oxford,
1990.

[36] M. Yor. Some Aspects of Brownian Motion. Lectures in Math., ETH
Z�urich. Birkha�user, 1992. Part I: Some Special Functionals.

[37] M. Yor. Random Brownian scaling and some absolute continuity rela-
tionships. In E. Bolthausen, M. Dozzi, and F. Russo, editors, Seminar
on Stochastic Analysis, Random Fields and Applications. Centro Stefano
Franscini, Ascona, 1993, pages 243{252. Birkh�auser, 1995.

[38] M. Yor. Some Aspects of Brownian Motion. Lectures in Math., ETH
Z�urich. Birkha�user, 1997. Part II: Some Recent Martingale Problems.

26



Jim Pitman Marc Yor
Department of Statistics Laboratoire de Probabilit�es
University of California Universit�e Pierre et Marie Curie
367 Evans Hall # 3860 4, Place Jussieu - Tour 56
Berkeley, CA 94720-3860 75252 Paris Cedex 05
U.S.A. France

27


