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Abstract

An identity in distribution due to F. Knight for Brownian motion
is extended in two different ways: firstly by replacing the supremum of
a reflecting Brownian motion by the range of an unreflected Brownian
motion, and secondly by replacing the reflecting Brownian motion by
a recurrent Bessel process. Both extensions are explained in terms of
random Brownian scaling transformations and Brownian excursions.
The first extension is related to two different constructions of [to’s
law of Brownian excursions, due to D. Williams and J.-M. Bismut,
each involving back-to-back splicing of fragments of two independent
three-dimensional Bessel processes. Generalizations of both splicing
constructions are described which involve Bessel processes and Bessel
bridges of arbitrary positive real dimension.
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1 Introduction

Let B := (B;,t > 0):=(B(t),t > 0) be a standard one-dimensional Brown-
ian motion started at 0, and let M; := supyc,<; |Bs|. Let (Ly,t > 0) be the
usual local time process at 0 for B, and set 7 = inf{t : L; = 1}. For 6 > 0 let

R be a BESSS) process, that is a Bessel process of dimension ¢ started at
0, which can be constructed for positive integer 6 as the square root of the
sum of squares of § independent copies of B. For z > 0 let T¥) denote the

hitting time of = by R®). As observed by Biane [2], a result of Knight [14,
Theorem 3] can be re-expressed as follows:

T d
i = 17 (1)

where £ denotes equality in distribution. Biane [2] and Vallois [29] explained
Knight’s identity (1) by decomposing the path of the randomly rescaled pro-
cess

(B(uM?)/M,, 0 <u < 7/M?)

into various fragments, and rearranging these fragments to make a path with
the same distribution as (R(*),0 < u < TQ(S)). Here we use similar techniques
to obtain some extensions of Knight’s identity which were announced with-
out proof in [21]. We also relate these identities in distribution to splicing
constructions involving Bessel processes and their bridges for arbitrary pos-
itive real dimension 6. See Section 2 for a brief review of the definition of
these processes.
Let

o= g B fii= = L @
and let A; := S; + [, called the amplitude or range of the Brownian path B
up to time .

Theorem 1 There is the identity in distribution

Ly ®

where TI(S) is an independent copy of TI(S). Moreover, 7/A? is independent of
the random variable I./A,, which has uniform distribution on [0,1].

2



Theorem 1 constitutes an extension of Knight’s identity (1), because

T T [ (]T | ]T)]‘Q )
Mz oAz [MY\AT T A
and (1) follows from Theorem 1 and (4) by a routine Laplace transform cal-
culation. A pathwise explanation of Theorem 1 is provided by the following

theorem, which is proved in Section 3.
For t > 0 and a continuous function f whose domain contains the interval

[0,1], let T/ be the least s such that f(s) = infocu<t f(u), and let T4 the

inf sup

least s such that f(s) = supgc,<, f(u).
Theorem 2 Let p:= T2, so B, = —I,. Define

inf

B#(t) = Bp—l—t (modT) — pr 0 S t S T,
and let o := Tsﬁj”, so B¥ (o) = A,. Then the two processes
R = (AT_IB#(UAZ),O <u<a/A?)

and

Ri= (A7 B¥((r — u)A2),0 < u < (7 — 0)/A2)

are independent copies of (R 0 < u < Tl(S)). Moreover, the pair of pro-
cesses (R, fx’) is independent of the random variable I, /A, whose distribution
is uniform on [0,1].

See also [9, 10, 30] for other decompositions of the Brownian path in-
volving the range process and BES®) pieces. These results are all closely
related to Williams’ [34] construction of 1td’s law of Brownian excursions via
back-to-back splicing of two independent BES®) fragments R and R as in
Theorem 2. To describe some more general splicing results, we consider the
following construction:

Construction 3 Given two continuous path processes with random finite
lifetimes and final value 1, say R := (R(?),0 <t < n) and (E’ = (E’(t),() <
t < 7)) with R(p) = R(7)) = 1, construct a random element r := (r(u),0 <
u < 1) of C[0,1] by first pasting R and R back to back and then transforming
the resulting path by Brownian scaling to have lifetime 1; that is

[ (VPR(w) Hfo<u<V
TW”‘{C*”mu—ux> iV <u<i (5)

where ( :=n+ 7 and V :=1n/(.



Observe that R and R can be recovered from (r, V) via the formulae

(= 1Y)
(R().0 < ¢ <0) = ((t/Q)fr(V).0 £ LS V)
(R(.0 0 <7) = (r(1=1/Q)/r(V).0 S 1< (1= V()

So any joint distribution of (R, E’) determines a unique joint distribution of
(r, V) with ry > 0 a.s., and vice versa.

Our proof of Theorem 2 is based on case 6 = 3 of the following result of
21, 22]. Let 7 be a standard BES® bridge, starting at 0 at time 0 and

ending at 0 at time 1.

Theorem 4 [21][22, Thm. 3.1] For each real 6 > 0 the following conditions
(i) and (ii) are equivalent:

(i) R and R are two independent BESE;S) processes, each run until its first
hit of 1;

(i1) The law of r is determined by the formula

P(r e dw) =27 ()7 sup w, ) 2P € dw), we C[0,1] (6)

0<u<1

and V = T"!

sup*

Formula (6) is meant to indicate the following absolute continuity relation
between the laws of r and () on €0, 1]: for every non-negative Borel mea-

surable function F' defined on C[0, 1],

where the density factor D(w) at path wis D(w) = 21_3, (%)_I(SUPogug w, )° 72

Here P stands for the probability measure and expectation operator on some
background probability space where processes under consideration are de-
fined. Throughout the paper, similar notation will be used to describe ab-
solute continuity relationships between the laws of various processes. See
also [37] regarding other absolute continuity relationships related to random
Brownian scaling operations.



For 6 = 2 the density factor in (6) reduces to 1, so condition (ii) of
Theorem 4 reduces to

rZr@ and V= Tsﬁ;.

For § = 3, the standard BES® bridge #® has the same distribution as a stan-

dard Brownian excursion [32]. See [4, 35, 38] regarding the close connection

between this case of Theorem 4 and the functional equation for Riemann’s

zeta function. In Section 4 we establish the following analog of Theorem 4

for splicing of two Bessel processes at their last hits of 1 instead of their first
hits of 1.

Theorem 5 For each 6 > 2 the following conditions (i) and (ii) are equiva-
lent:
(i) R and R are two independent BESE;S) processes, each run until its last

hit of 1.
(ii) the joint law of r and V is determined by the formula

P(r € dw,V € dv) = cs 0’ P(r®®) € dw) dv (7)
where w € C[0,1], v € (0,1), and

14

7(%) 7(1/)

In this result the density factor in (7) reduces to 1 only if 6 = 4. Then
condition (ii) simplifies to:

2 with v = (6 — 2)/2. (8)

rZr@ and V is independent of r with uniform distribution on (0,1).

Theorems 4 and 5 are probabilistic equivalents of the following two the-
orems which express identities between o-finite measures on appropriate
spaces.

Theorem 6 [34, 19, 4, 22] For each 6 > 0, on the space Qex of continuous
non-negative paths with a finite lifetime, starting and ending at 0, the same
o-finite measure As is determined by either of the following two descriptions:



Description I: Conditioning on the lifetime ¢: First pick t accord-
ing to the o-finite density 2_%, (%)_lt_%dt on (0,00); then given
t, pick w according to the distribution of a BES®) bridge from 0
to 0 over time t.

Description II: Conditioning on the maximum m: First pick m
according to the o-finite density m*~*dm on (0,00); then given
m, construct w by joining back to back two independent BESSS)
processes, each run till it first hits m.

For each € € (0,2) and C > 0, when the local time process of BESéE) is
normalized as occupation densily relative to the speed measure 2Cz"tda on
(0,00), Ito’s law for excursions of BESéE) away from 0 is (2 — €)*C'Ay_,.

In particular, for 6 = 3 the measure A3 is [t0’s law for excursions of | B| away
from zero for the local time process defined by occupation density of B at 0
relative to Lebesgue measure. Theorem 6 in this case was indicated by D.
Williams [34, §I1.67]. The extension to other dimensions ¢ was obtained in
[19, 4, 22]. The last sentence of the theorem was indicated without atten-
tion to normalization constants in [19], and with an incorrect normalization
constant (4 instead of 2) in [4, formula (3h)]. For 6 € (0,2] U [4,00) the
measure Ag is not an excursion law in the sense of 1t6 [11]. Nonetheless these
measures have some interesting properties [19, 22]. Due to the Ray-Knight
description of Brownian local times, the measure 4A, is is the distribution of
the square root of the total local time process of a path governed by the Brow-
nian excursion law A;. Consequently, A4 appears also in the Lévy-Khintchine
representation of the infinitely divisible family of squares of Bessel processes
and Bessel bridges [19, 18]. As will be seen in Section 4, the simple form of
Theorem 5 for 6 = 4 is also closely connected to the Ray-Knight description
of Brownian local times.

The next theorem gives an alternative characterization of the measures
Ag for all 6 > 2 by generalizing a result of Bismut [5] for 6 = 3. The constant
¢s involved is the same as in (8).

Theorem 7 For each 6 > 2 the same o-finite measure Ms on Qey x (0,00)
is determined by each of the following two ways of picking a point (w,a) from
Qex % (0,00).



Description I': Conditioning on the lifetime ¢ of w: First pick
t according to the o-finite density cst™3tdt on (0,00); given t,
pick w from the distribution of a BES®) bridge from 0 to 0 over
time t, pick u from the uniform probability distribution on (0,1),
independently of w, and let a = w(u).

Description II’: Conditioning on the level a: First pick a according
to the o-finite density 2a°~%da on (0,00); then given a, construct
w by joining back to back two independent BESSS) processes, each
run til it last hits a.

The marginal distribution of w induced by My has density t(w) relative to
(6 — 2)?As, where t(w) is the lifetime of the path w.

For 6 € (2,4), Theorem 7 can be read from Theorem 6 by application
to BESU=% of a generalization of Bismut’s result to an arbitrary recurrent
strong Markov process, given in [17, §11]. In Section 4, Theorem 7 is deduced
for all 6 > 2 by application of Theorem 5.

The rest of this paper is organized as follows. In Section 2 we briefly
review the definition and basic properties of Bessel processes which underlie
our study. Section 3 presents the proof of Theorem 2 followed by some
variations of Knight’s identity for one-dimensional Brownian motion. The
splicing results of Theorems 5 and 7 are established in Section 4, followed in
Section 5 by some corollaries for Bessel bridges. Section 6 presents another
extension of Knight’s identity, in which the reflecting Brownian motion |B)|
is replaced by a recurrent BES(®) process with dimension é € (0,2). For yet
another extension of Knight’s identity, involving the process (|B| — ulLs,t >
0) for p > 0, see [36, Chapter 9] and [6].

2 Preliminaries on Bessel Processes.

The construction of BESSS) as the radial part of a é-dimensional Brownian
motion for 6 = 1,2,3... makes evident the Pythagorean property of Bessel
processes: for positive integers ¢ and &, the sum of squares of independent
BES®) and BES® processes is the square of a BES(+9) process. As shown
by Shiga-Watanabe [28], the family of BES®) processes for all real § > 0 can
be constructed by extension of this Pythagorean property to all non-negative
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real 6 and e. See [19, 26, 22] for further background. Typical properties of
Bessel processes are consequences of the Brownian representation for positive
integer 6 which have natural extensions to all 6 > 0. In particular, for each
real 6 > 0 the BESSS) process R inherits the familiar Brownian scaling
property from integer dimensions which underlies all the results of this paper:
for every ¢ > 0

(PR 2 0) £ (B 12 0.
A standard BES® bridge, denoted r(®) is a process

(r90<u<1)£(RY,0<u<1RY =0).
where R is a BESE;S). Such a process is conveniently constructed as

3
For an account of the basic properties of bridges derived from a nice Markov
process such as BES®) see [7].

3 Results for one-dimensional Brownian mo-
tion

For a suitable real-valued path with either finite or infinite lifetime (, say
w = (w, 0 <t < (), and arandom time T' = T'(w) < ¢, let (Ly(w,x),z € R)
denote the process of local times of w at time 1" parameterized by the space
variable z, as determined for all + € R almost surely by the occupation
density formula

/OT flw)ds = [~ f(a)Lr(w,a)de

for all non-negative Borel functions f, and continuity in x. It is well known
[26] that such a local time process exists for arbitrary T'(w) < ¢ and almost all
w with respect to the laws of various processes under consideration here, such
as fragments of Brownian motion, Brownian bridges, and Bessel processes.
To illustrate the notation, for B a Brownian motion, the local time process

of B at 01is (Ls,t > 0) defined by L; := L(B,0).



3.1 Proof of Theorem 2.

Starting from the basic Brownian motion B and its inverse local time 7,
it is easily checked that the pair of processes (R, fx’) defined in Theorem 2
corresponds by Construction 3 to (r, V'), where r is constructed from B via
an intermediate process X, as in the statements of next two lemmas, and
V =T} Also, I./A, = L(X)/A(X) as in Lemma 9. Theorem 2 then
follows immediately by combination of the lemmas and the case 6 = 3 of
Theorem 4.

Lemma 8 [3] Let X(u) := By /v/7,0 <u<1. Then

P(X € dw) = @Ll(i O)P(Bbr € dw), weC0,1] (10)

where B is a standard Brownian bridge.
For w € C[0,1] let

Si(w) := sup wy; L(w)=— inflwu; Aj(w) = S1(w) + [1(w)

0<u<1 0<u<

Lemma 9 For a random element X of C[0,1] let U := Tiff’l, and define
another random element r of C[0,1] by

Ty = XU—I—t(modl) - XU7 0 S t S 1.

If X has the distribution (10) on C[0,1] then [,(X)/A1(X) and r are inde-
pendent; the distribution of I[1(X)/A1(X) is uniform on [0, 1], while

P(r € dw) =/2/7S1(w)P(r®) € dw),  w e C[0,1]. (11)

Proof. Note first from the construction of U and r that for any X with
Xy = X; = 0 there are the identities

L(X)=r_v; A(X)=5:1(r);  L1(X,0) = Li(r,r1_p). (12)

Let P govern X with distribution (10), and let P govern X as a standard
Brownian bridge. As shown by Vervaat [31] and Biane [1], under P™ the
random elements U and r are independent, with U uniform on [0, 1], and
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r a standard BES®) bridge. Let ¢ = /2/x. Then for w € C[0,1] and

0 <2 < Si(w) we can use (12) to compute as follows:

P(I(X) €de,r € dw) = cP™(1/L1(X,0); [,(X) € dz,r € dw))
= ¢PP"(1/Li(w,x);r_p € da,r € dw)
= o(1/Ly(w,z)) Ly (w, ) dz PP (r € dw)
where the last equality uses the fact that under PP* the variable 1 — U has

uniform distribution and is independent of r. It follows that for x > 0 and

w € C10,1]
P(L(X) € dz,r € dw) = cl(0 < x < Sy(w)) dx P> (r € dw)

and the conclusions of the lemma are evident. O

3.2 Some variations of Knight’s identity.

Recall the well known formulae

A2 1 A2 A
Pexp (=27} = — = pegp|-q®) =
eXP ( 2" ) cosh(z\)’ eXP ( 2" sinh(z\) (13)

which are the particular cases 6 = 1 and 6 = 3 of the general formula for the
Laplace transform of T®) which appears later in equation (24). In view of
the second formula in (13), Knight’s identity (1) amounts to the formula

VT ) 2A (A > 0). (14)

Pexp |-l )= 2
exp( 2 M? sinh(2A)

Use sinh(2X) = 2(cosh A)(sinh A) and (13) to see that Knight’s identity can

be rewritten
T 4

where Tl(l) and TI(S) are assumed independent. The fact that TQ(S) 2 T1(1)+T1(3)
can be understood as follows:

Y = (17 =17+ 11
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where TQ(S) — TI(S) and TI(S) are independent by the strong Markov property
of BESE)S) at time T1(3); that TQ(S) — T1(3) 4 Tl(l) is implicit in the description
of BES® as a conditioned one-dimensional Brownian motion [15, 33].

Straightforward calculations based on Theorem 1 yield also the following
variation of (15) and (3):

T T IN\7?
s-ml-x) 2+ (16)

where TI(S) is assumed independent of 7, and 7 has the same stable(1/2)
distribution as both By? and the hitting time of 1 by B. Similarly, we find

that
-

(min(S;, I;))?

The identities in law (1), (3), (16), and (17) exhibit some interesting fea-
tures of the 4-dimensional random variable (r%,5,,77,1,), where 7% =
Jo ds1(Bs; € Ry). We shall not attempt here the systematic description
of this joint law, but see [26, p. 484, Ex. (4.24)] for some further results
involving it. See also [22, 25, 23, 24] for the study of related laws of both
heights and lengths of excursions of Brownian motion and Bessel processes.

L4 4+ 7). (17)

4 Splicing of Bessel Bridges

The following lemma records a variation of the Ray-Knight description of the
local time process of B in the space variable at the inverse local time 7:

Lemma 10 The processes
(L(B,S; —v),0<v<S5;) and (L.(B,—I.+v),0<v < 1)

are independent copies of the square of (R),0 < v < ™) where ¥ =
sup{? : RW = 1}.

Proof. According to one of the Ray-Knight theorems, the processes

(L(B,z),z >0) and (L,(B,—z),2 > 0)

11



are two independent squares of Bessel processes of dimension 0, each started
at 1, whose hitting times of 0 are S, and —I; respectively. The conclusion
now follows by application of Williams’ time-reversal theorem [33, 19]. O

On the other hand, we obtain the following corollary of Theorem 2. See
also [19] for closely related appearances of the square of the standard BES®
bridge.

Corollary 11 The process (A7'L, (B, —1I. + uA;),0 <u < 1) is the square
of a standard BESY bridge; moreover this process is independent of the uni-
formly distributed random variable I, /A..

Proof. Let B¥ be as constructed in Theorem 2, and let B*(v) := A7! B#(vA?)
for 0 < v < 7/A?. Then it is easily seen that for 0 <u <1

AT'L(B,—I, +uA,) = A7V L (B¥ uA,) = L(B*, 7/A* u)  (18)

where on the right side, and in some following equations, we write L(w,t, x)
instead of Li(w,x). According to Theorem 2, the process B* can be con-
structed by pasting back-to-back two independent copies of (R§3),0 <t <
TI(S)), and B* is independent of I,/A.. It is implicit in Williams’ path de-
compositions [32, 33] that the process (L(R(3),T1(3),u),0 < u < 1) is the
square of a standard BES® bridge. Since the sum of squares of two inde-
pendent standard BES®) bridges is the square of a standard BES® bridge,
the conclusion follows. O

The simplest case of Theorem 5, when 6 = 4, is now evident by compar-
ison of the results of Lemma 10 and Corollary 11. The proof of Theorem 5
for general 6 > 2 is based on the known results stated in the following two
lemmas.

For v > 0 let , , denote a random variable with the gamma(r) density
, (v)ytar e for @ > 0.

Lemma 12 For 6 > 0 let n®) := sup{t : R = 1}.

(i) [8] @ £ 1/(2, ) where v = (§ —2)/2.

(ii) [7] Conditionally given n®) = v the process (Rié),o <t<w)isa
BES®) bridge from (0,0) to (1,v).

12



By the identity r(®) L 2v(1 — v), 572 which follows from (9), for z > 0

P9 € dz) = ps(v, 2)d=

( ) ZQU—I—lv—y—l(l _ v)—u—l 22
V., Z) = eX —_
Pt (v + )2 PA\7 201 — o)

and v = (6 — 2)/2. The next lemma is an instance of Proposition 4 of [7]:

where

Lemma 13 [7] Fiz 6 > 0. For a processr := (r,,0 < v < 1) with continuous
paths and a random time V with values in (0,1) the following conditions (i)
and (ii) are equivalent:

(i) ForO<v<1and z >0

PV € dv,ry € dz) = p(v,z)dvdz

for some joint probability density function p(v,z), and conditionally given
(V =wv,ry = 2) the two processes (r,,0 < u < v) and (r1—,,0 <u <1 —wv)
are independent, with the first a BES®) bridge from (0,0) to (v,z) and the
second a BES®) bridge from (0,0) to (1 —v,z).

(ii) the joint law of r and V is given by the formula

P(r € dw,V € dv) = f(v,w,)P(r® € dw)dv (19)

where w € C[0,1], v € (0,1), for some non-negative measurable function

flv,2).
When these conditions hold, f and p are related by the formula

fv,z) = p(v,2)ps(v,2), dvdz almost everywhere.

Proof of Theorem 5. Because the transformation involved is a bijection,
it suffices to show that (i) implies (ii). Suppose (i) holds. According to
Lemma 12, conditionally on their lifetimes  and 7 the processes R and R
are independent Bessel bridges from 0 to 1 with the given lengths. After the
scaling operation to construct r the images of these processes are bridges of
lengths /¢ and /¢ from 0 to 1/4/(. Lemma 13 now yields the conclusion

13



with fs(v,r,) instead of cs7°=* where fs(v, z) = ps(v, 2)/ps(v, z) with ps(v, 2)
the joint density at (v, z) of

(v~ ()
n+n Vn+n o+ \20 2,

for ,, and ,, independent gamma(v) variables with v = (6 — 2)/2. But
elementary calculations show that fs(v,z) = c;z°~*, and (ii) follows. O

Proof of Theorem 7. In Description II’, given a denote by 5, and 7,
the last hitting times of a by the two independent BESSS) processes. So by
construction ¢ = w, where v := 7,, and the lifetime ¢ of w is t = n, + 7,.

Let @ be the path w standardized by Brownian scaling to have length 1.
Note that @, = a/V/t, and that (w,a) is a measurable function of (a,w,v).
Description I’ specifies the o-finite marginal distribution 2a*~*da for a, and
given a a conditional probability distribution for (@, v). By Brownian scaling
and Theorem 5, this conditional probability distribution of (@, v) given a does
not depend on «, and is identical to the distribution of (r, V') described by
formula (7). It follows from Fubini’s theorem that for every non-negative
measurable function ® = ®(a,w,v), the integral of ® with respect to the
o-finite joint distribution of (a,@,v) determined by Description II” equals

P® /OO da 24”0 csrim®(a,r,U) (20)
0

where P(©) denotes expectation with respect to a probability distribution
which governs r as a standard BES(®) bridge and U as an independent random
variable with uniform distribution on (0,1). The lifetime ¢ = #(w) is recovered
from (a,w,v) as t = a?/©2. Apply (20) with ®(a,,v) = ¥(a?/©?,10,v), and
make the change of variable ¢ = a?/r{, in the integral, to deduce that for
every non-negative measurable function ¥ = U (¢,o, v), the integral of ¥ with
respect to the distribution of (¢,@, v) induced by that of (a,©, v) determined
by Description II” equals

P /Oo dt es 15 W(t,r, U). (21)
0

But this is precisely the integral of W(¢,w0, v) with respect to the joint distri-
bution of (¢,@,v) specified by Description I'. O
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We now discuss further the correspondence between probability laws for
(R, E’) and for (r, V) induced by Construction 3. Instead of considering the
distribution of (r, V') corresponding to R and R which are independent copies
of a BESE;S) run until its last hit of 1, we ask the following question: assuming
that R is an independent copy of R, how must R be distributed so that r is a
standard BES®) bridge and V is independent of #? This question is answered
by the following variation of Theorem 5, which coincides with that theorem
for 6 = 4, but which is valid for all dimensions é > 0 rather than just 6 > 2.

Theorem 14 For each 6 > 0 there is a unique distribution Fs on (0,1),
and a unique distribution (Qs for a process with finite lifetime, such that the
following two conditions are equivalent:

(i) r is a standard BES®) bridge and V is independent of r with distribu-
tion Fs;

(ii) R and R are independent with common distribution Qs.

The distribution Fs is beta(6/4,6/4); when R has distribution Qs the life-
time T' of R is distributed like (2, s74)”", and given T the process R is dis-
tributed like a BES®) bridge starting at (0,0) and ending at (T,1).

For the proof of this theorem, we introduce the following notation. For
two random variables W and Y with W > 0 and Y > 0, call a process
(X,,0 <t < T)aBESY (W, Y) bridgeif (T, X7) £ (W,Y) and given (T, X7)
the process X is distributed like a BES(®) bridge starting at (0,0) and ending
at (T, X7): that is, for all v,y >0

(X, 0<t<T|T=v,Xr=9y)2 (R, 0<t<v|R® =y)

For 6 > 2 let () be the law of an unconditioned BESSS) process R° stopped
at its last hit of 1. According to Lemma 12,

Q% is the law of a BESE;S)((Z, (s=2)/2) ", 1) bridge.

The distribution (s, defined in Theorem 14 for all 6 > 0 rather than just
6 > 2, 1s the law of a BESE;S)((Z, s/4)”", 1) bridge. These distributions Q% and
()s are mutually absolutely continuous for each ¢ > 2. But they are identical
only if (6 —2)/2 = 6/4, that is 6 = 4. The following variation of Lemma 13
simplifies the proof of Theorem 14:

15



Lemma 15 Fiz & > 0. Suppose that v is a standard BES®) bridge and that
V € (0,1) is independent of r. Then

R isa BES&S)(V/T‘Q/, 1) bridge, Risa BESE;S)((I — V) /r{, 1) bridge,
and these two processes are conditionally independent given (V,rv).

Proof. This follows easily from the inhomogeneous Markov property of r,
according to which for each fixed time u € (0,1), and y > 0, the two processes
(r,0 <t <wu)and (ri—¢, 0 <t <1 —u) are conditionally independent given
r. =y, with the first process a BESéé)(u, y) bridge and the second process a
BESéé)(l — u,y) bridge. See [7]. O

Proof of Theorem 14. For r and V as in Lemma 15, that lemma shows
that R and R are i.i.d.(independent and identically distributed), if and only
if r,/V and r{ /(1 — V) are i.i.d.. But from the representation (9),

(Vv TXQ/) = (VvQV(l - V)? 5/2)

where , 5/5 is assumed independent of V. So r{/V and r{ /(1 — V) are i.i.d.
iff (1 —=V),s/2 and V, 5/, are i.i.d.. It is well known and easily verified that
this condition holds iff the distribution of V' is beta(6/4,6/4); then

PRIV R (1= V) L2V, 50 £ 2, 5

and the theorem follows. O
As a final variation on this theme, we record the following extension of
Theorems 5 and 14.

Theorem 16 Let 9 be a standard BES®) bridge. For § > 0 and a,b €
(0,6/2), the following conditions (i) and (i) are equivalent:

(i) R and R are independent, with R a BESE;S)((Z, %_a)_l,l) bridge and
Ra BES&S)((Z, %_b)_l, 1) bridge;

(ii) the joint law of r and V is determined by the formula

P(r € dw,V € dv) = 500" 11 — )"t 2272 P(r® € dw)dv  (22)

where w € C[0,1], v € (0,1), and

5
Coap = 207072



Proof. This is obtained by the same method used to derive Theorem 5.
Details are left to the reader. O

As a check on this theorem, for 6 > 2 and a« = b =1, in view of Lemma
12 we recover Theorem 5, while for 6 > 0 and @ = b = /4 we recover most
of Theorem 14. See also [36, Section 3.7] for some related results.

5 Some identities in law for Bessel bridges

We indicate in this section some consequences for Bessel bridges of the splic-
ing constructions considered in the previous section. Observe first, in the
setting of Theorem 2, with notation from the proof of Corollary 11, that the
lifetime 7/A2 of the process (B*(v),0 < v < 7/A?2) can be written as

1
* 2
v :/0 L(B*, 7 /A%, u)du.

T

But from (18)
L(B*,T/AE,IT/AT) = L(B,0,7)/A; = 1/A;.

Thus 7 can be recovered from the squared BES™ bridge in (18) and the
independent uniform random variable I, /A, as
1

T = (L(B*,T/AZ,]T/AT))Q/O L(B*,7/A% u)du.

Similar considerations apply to the amounts of time 7, and 7_ that B spends
in the intervals (0,00) and (—o0, 0] respectively up to time 7. On the other
hand, in the notation of Construction 3, we have

I_:= r4(1V) /OV r?(u)du = /077 R*(t)dt
I = r4(1v) /Vl r2(u)du:/jﬁ>2(t)dt
I:= r4(1V) /01 r2(u)du =1_+1;

17



Thus we deduce from Lemma 10 and Corollary 11 that for (r, V) and (R, E’)
as in Theorem 5 for 6 = 4, the random variables /_ and I, are independent
with the same stable(1/2) distribution shared by 7_, 74, 7/4 and 1/(8, 1,2),
while I has the same distribution as 7 and 1/(2, 1/5). This is the case p = 2
of the following result:

Theorem 17 Let r be a standard BES® bridge, and V an independent ran-
dom variable with uniform distribution on (0,1). For p >0 let

v 1 .
J-(p) 3:/0 rer=2ds;  Ji(p) 3:/‘/ r=2ds;  J(p) ::/ r=2ds

0

Then
(i) the random variables p*J_(p)/ri¥ and p*Ji(p)/rif are independent
with the same distribution as 1/(2, 1/,);
(ii) J_(p)/J(p) has a beta(1/p,1/p) distribution, and is independent of
the random variable
' J(p)

2p*J_(p)J+(p)
which has a gamma(2/p) distribution.

This result is obtained by combination of Theorem 5 with the following
lemma:

Lemma 18 [26, p. 427, Prop. (1.11)] Let (Rs(t),t > 0) be a BES®). For
all 6 >0 and p >0

_ ¢
RY(t) = R;s (pQ/ dsR?p_z(s)) , 1>0
0

where 6 =2+ (6 —2)/p and R is a BES®),

Proof of Theorem 17. In terms of R and E’, two independent BES(®)
processes, with 7 and 7 are their respective last hits of 1, from Theorem 5
for 6 =4, Lemma 18 and Lemma 12, we find

2J_ 2] N 1 1
(p zp(p)vp -Iz-p(p)) é (pz /77 dtR?p—27p2 /77 dtRz?p_27) 4 (2 — )
0 0 » 1/p 27 1/p

ry ry

u

18



where , 1/, and jl/p are two independent gamma(l/p) variables. This is
(i), and (ii) follows by the elementary relations between beta and gamma
variables. O

The simplicity of this result should be compared with the complexity of
the law of J(p). See [12] and references therein for an approach to the law
of J(p) via Sturm-Liouville equations.

The following further corollary, whose proof is left to the reader, is a
consequence of Theorem 5 and Lemma 18. In two particular cases, if 6 = 4
or ¢ = 4 we recover some instances of [26, p. 444, Theorem (3.5)].

Proposition 19 Let P be an expectation operator governing r as a stan-
dard BES®) bridge, and let cs be as defined by (8). Suppose & > 2,p > 0,
and let € := 24 (6 — 2)/p. Then for every non-negative measurable function
f there is the equality

¢ P©) [ ! ( / 1 durip_z) ( / 1 dur;‘;‘*)]
_ P [f ((/01 du(pru)%_2) _p) (/01 dur2_4)] .

6 An analog of Knight’s identity for a recur-
rent Bessel process

Another generalization of Knight’s identity is obtained by replacing |B| by
a BESE;S) process R := R for some § € (0,2), when 0 is a recurrent point
for R. Let M; := supg<,<; Rs, let (Lt > 0) be a local time process at 0 for
R, and for s > 0 set 7, = inf{t : L, > s}. Note that while the definition
of these processes (L;) and (75) in terms of R involves 6, this dependence is
suppressed in the notation. It is known [16] that (75) is a stable subordinator
of index a:=1 — %, that is

PO exp(—ATs) = exp(—KsA?) (A >0) (23)

where P®) is an expectation operator governing R as a BES?, and K 1is
a constant depending on the normalization of the local time process. By
scaling, the law of 7,/M? depends neither on s, nor on the choice of nor-
malization of local time. So we now write simply 7 instead of 75 for some
arbitrary fixed 6 and s.
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Theorem 20 For § € (0,2) the distribution of 7/M? for a BESSS) Process is
identical to that of Tl(é) + T1(4_6) where Tl(é) and T1(4_6) are independent.

For all 6 > 0 there is the formula [13]

(2))"
PO exp(—gN'TY) = oo P

where v := (6 — 2)/2 (24)

and [/, 1s the modified Bessel function of index v. So Theorem 20 amounts
to the formula
Ao ) sin(7a) 1

P® exp (—?ﬁz = [RENTANEY, for a:=(2—-16)/2 € (0,1).
(25)

We offer the following pathwise explanation of Theorem 20, in the same spirit
as Theorem 2. See also [20, Sec. 6] for a similar construction. Let 7 := 7/M?

and

L Ry, 0 <t <+, (26)

T

I%t =

so the process (fm’t, 0 <t < 7) begins and ends at 0, and has maximum value
1 at time p := p/M? where p is the a.s. unique time u in (0,7) at which
R, = M.. Now define a rearrangement R# of the path of R, as follows:
delete the excursion of R straddling time p, close up the gap, and replace the
deleted excursion at the end. Let

D := (first zero of R after time p) = D,/M? (27)
where D, is the first zero of R after time p.
Theorem 21 For R a BESY) with 6 € (0,2) the two processes
(R*(t),0 <t <7 — (D —p)) and (R¥( —v),0 <t < D — j)

are independent; the first s distributed as a BESE;S) up to its hitting time of
1, and the second is distributed as a BESE;I_&) up to its hitting time of 1.

As a consequence of Theorem 21, for (7, M) derived from a BESSS) process,
the decomposition

L:T_(DP_P)_I_(DP_P)

M? M? M?
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expresses 7/M? as the sum of two independent random variables, distributed

like Tl(é) and T1(4_6) respectively. Thus Theorem 20 is a consequence of The-
orem 21. In the Brownian case (6 = 1), this derivation of Knight’s identity
in the form (15) simplifies the closely related approaches of Vallois [29] and
Biane|2].

Proof of Theorem 21. The following observations 1)-4) are consequences
of Itd’s excursion theory [11, 27] which are valid for any recurrent diffusion
process R starting at 0 instead of a BESSS) process R, with 7 :=inf{t: L; >
1} where L is a local time process of R at 0, with M the past maximum
process of R, and p € (0,7) defined by M. = R,. The excursion interval of
R containing p is denoted (G, D,).

1) For each x > 0, conditionally given M, = z, the excursion of R over
(G,, D,) is distributed according to It6’s excursion law given an excur-
sion of maximum height x, independently of the residual process with
lifetime 7 — (D, — (G,) obtained from the process R on [0, 7] by excision
of the excursion over (G,, D,).

2) Conditionally given M, = x, the residual process is identical in law to
(Rtvo <t< GTI|LT.T = 1)7

where G'7, is the time of the last zero of R before T, the first hitting
time of = by R.

3) Conditionally given M, = x, the excursion of height = over (G,, D,)
may be decomposed at its maximum into two independent copies of R
run till time 7}, and joined back to back, where T, is the hitting time of
x by the diffusion R started at 0 obtained as “R conditioned to reach
+0o0 before returning to 0”7 in the usual sense of h-processes. (Williams

decomposition [33, 34]. For R a BES®), it is known [19] that R is a
BES(*-9).)

By combination of 1), 2) and 3) with the last exit decomposition of R at
time Gz, which has a similar expression in terms of excursion theory, it is
clear that

4) if the excursion attaining the maximum of R on [0, 7] is removed and
tacked after the residual process, conditionally given M. = =z, this
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rearranged process of lifetime 7 decomposes at its maximum (at time
T — (D, — p)) into two independent processes, the first a copy of

(Ri,0 <t < To|lp, = 1)
and the second a time-reversed copy of (fm’t, 0<t< Tl,)

Assuming now that R is a BESSS) for some ¢ € (0,2), the two processes
considered in Theorem 21 are obtained from the two processes considered
above by application of Brownian scaling to obtain processes with maximum
value 1 instead of M,. Combined with the Brownian scaling property of R,
the above argument shows

(R*(1),0 <t <7 —(D—G)|M, =2) £ (R;0 <t < Ty|Ly, = 27%)

where L7, is the local time at 0 of R, a BESé5), up to the time Ty = Tl(é) that
R first hits 1. Similarly

(R#(F —v),0<t < D—p|M, =) £ (R,0 <t <T).

IA

where T, £ T1(4_6) is the hitting time of 1 by the BESE;I_&) process R. Since
the distribution of the last path is independent of the value x of M., the
independence claimed in the theorem is immediate. To finish the argument,
it only remains to check that the following relation holds for R a BES®):

M2 L [, where o = (2—20)/2. (28)

By Theorem 6, for BES(®) the rate of excursions to hit # is cx =2 for some ¢ de-
pending on the choice of normalization of local time, so Ly, is exponential(c):

P(Ly, > () = e, (29)

But also
P(MZ% > () = P(M, < (7Y/?%) = ¢~ (30)

where the second equality is a consequence of 1t0’s excursion theory: in a
Poisson process with rate ¢ ¢(~(1/20)(=29) — ¢¢_ the probability of no points in
time 1 is e~*. O
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Remark. Consider again for R a BESSS) with 6 € (0,2) the process R with
lifetime 7 = 7/M? derived by Brownian scaling R on [0, 7] to have maximum
height 1, as in (26). It is natural to consider the decomposition of R at its
maximum time p = p/M?. By symmetry under time reversal, R decomposes
at time p into an exchangeable pair of processes, say Y with lifetime p and
Y with lifetime 7 — p, put back to back. A variation of the above argument
identifies the common law of ¥ and Y and shows they are not independent.
To see this, let L := Lﬁ, the total local time at 0 of Y, L=1>1:- L, the total

local time at 0 of Y. A variation of the above argument shows that

(Vi,0<t<7—plL=10)
(R,0 <t < Ty|Ly, =0).

(V0<t<plL=10) 2
4

Moreover, Y and V are conditionally independent given (L,[l). But it is
easily seen that

(L, L) £ (ULz,, (1 = U)Lzy), (31)

where U is uniform [0, 1] independent of Ly, which has exponential(¢) dis-
tribution for some ¢ > 0. Let (R},0 <t < T7) be an independent copy of
(R:,0 <t <T7y). It follows easily that the law of (Y, f/) is absolutely contin-
uous with respect to that of ((R;,0 <t <T),(R;,0 <t <1TY])), with density
Ly, + L 1,)_1 where L7, is the local time of R’ at 0 at time T7.
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