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Abstract

For each �nite measure � on [0; 1], a coalescent Markov process, with state space the com-
pact set of all partitions of the set N of positive integers, is constructed so the restriction of
the partition to each �nite subset of N is a Markov chain with the following transition rates:
when the partition has b blocks, each k-tuple of blocks is merging to form a single block at rateR 1
0 xk�2(1 � x)b�k�(dx). Call this process a �-coalescent. Discrete measure valued processes
derived from the �-coalescent model a system of masses undergoing coalescent collisions. King-
man's coalescent, which has numerous applications in population genetics, is the �0-coalescent
for �0 a unit mass at 0. The coalescent recently derived by Bolthausen and Sznitman from
Ruelle's probability cascades, in the context of the Sherrington-Kirkpatrick spin glass model in
mathematical physics, is the U -coalescent for U uniform on [0; 1]. For � = U , and whenever an
in�nite number of masses are present, each collision in a �-coalescent involves an in�nite num-
ber of masses almost surely, and the proportion of masses involved exists as a limit almost surely
and is distributed proportionally to �. The two-parameter Poisson-Dirichlet family of random
discrete distributions derived from a stable subordinator, and corresponding exchangeable ran-
dom partitions of N governed by a generalization of the Ewens sampling formula, are applied
to describe transition mechanisms for processes of coalescence and fragmentation, including the
U -coalescent and its time reversal.
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1 Introduction

Markovian coalescent models for the evolution of a system of masses by a random process of bi-

nary collisions were introduced by Marcus [29] and Lushnikov [28]. See Aldous [3] for a recent

survey of the scienti�c literature of these models and their relation to Smoluchowski's mean-�eld

theory of coagulation phenomena. Evans and Pitman [15] gave a general framework for the rigorous

construction of partition valued and discrete measure valued coalescent Markov processes allowing

in�nitely many massses, and treated the binary coalescent model where each pair of masses x and

y is subject to a coalescent collision at rate �(x; y) for a suitable rate kernel �. This paper studies

a family of partition valued Markov processes, with state space the compact set of all partitions

of N := f1; 2; : : :g, such that the restriction of the partition to each �nite subset of N is a Markov

chain with transition rates of a simple form determined by the moments of a �nite measure � on

the unit interval. The case � = �0, a unit mass at 0, is Kingman's coalescent in which every pair of

blocks coalesces at rate 1. The case � = U , the uniform distribution on [0; 1] yields the coalescent

derived by Bolthausen-Sznitman [9] from Ruelle's probability cascades [39]. See also [8] for another

derivation of this coalescent from the genealogy of a continuous-state branching process.

The rest of this paper is organized as follows. Section 2 describes the main results, with pointers

to following sections for details. Section 2.1 gives some results for the partition valued �-coalescent

for general �. Section 2.2 describes an associated discrete measure valued process, the ranked mass

�-coalescent. Section 2.3 presents a theorem which shows how certain operations of coagulation

and fragmentation act on the two-parameter family of distributions of exchangeable random par-

titions of N introduced in [31] and studied further in [33, 34]. Section 2.4 applies this theorem

to the U -coalescent to recover some of the results of Bolthausen-Sznitman and to obtain various

further developments. The conceptual framework of the paper is provided by Kingman's theory of

exchangeable random partitions of N, as reviewed in Appendix A.

2 Summary of Results

For n 2 N := f1; 2; : : :g let Pn be the �nite set of all partitions of the set [n] := f1; : : : ; ng. Let P1 be

the set of all partitions of N. Each � 2 P1 is identi�ed with the sequence (�1; �2; : : :) 2 P1�P2�� � �
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where �n is the restriction of � to [n]. Give P1 the topology it inherits as a subset of P1 �P2� � � �

with the product of discrete topologies. So P1 is compact and metrizable. Following [25, 15], call a

P1-valued stochastic process �1 := (�1(t); t � 0) a coalescent if �1 has c�adl�ag paths and �1(s)

a re�nement of �1(t) for every s < t. That is to say, for each n the restriction �n := (�n(t); t � 0)

of �1 to [n] is a process with right-continuous step function paths such that �n(s) a re�nement of

�n(t) for every s < t. The following result is established in Section 3.1:

Theorem 1 Let (�b;k; 2 � k � b < 1) be an array of non-negative real numbers. There exists for

each � 2 P1 a P1-valued coalescent �1 with �1(0) = �, whose restriction �n to [n] is for each n

a Markov chain such that when �n(t) has b blocks each k-tuple of blocks of �n(t) is merging to form

a single block at rate �b;k, if and only if

�b;k =
Z 1

0
xk�2(1� x)b�k�(dx) (1)

for some non-negative and �nite measure � on the Borel subsets of [0; 1]. For (�b;k) so derived

from � and � 2 P1 let P�;� denote the probability distribution governing �1 with �1(0) = �

on the space of c�adl�ag P1-valued paths with the Skorohod topology. Then the collection of laws

(P�;�; � 2 P1) de�nes a strong Markov process with state space P1 and Feller semigroup. Moreover

the map (�; �) 7! P�;� is continuous when the spaces of measures are given their weak topologies.

De�nition 2 Call this P1-valued Markov process induced by a �nite measure � on [0; 1] the �-

coalescent. Let 11 denote the partition of N into singletons. Call a �-coalescent started in state 11

a standard �-coalescent.

For � = �0, the transition rates are �b;k = 1(k = 2). So the �0-coalescent is Kingman's coalescent

[25, 27] in which each pair of blocks coalesces at rate 1, and no multiple collisions are allowed. For

r; s > 0 and � = beta(r; s), the probability distribution on (0; 1) with density B(r; s)�1xr�1(1�x)s�1

at x 2 (0; 1) where B(r; s) = �(r)�(s)=�(r + s), the rates are �b;k = B(r + k � 2; s+ b� k)=B(r; s).

In particular, if U = beta(1,1) is the uniform distribution on (0; 1), then

�b;k =
(k � 2)!(b� k)!

(b� 1)!
=

"
(b� 1)

 
b� 2

k � 2

!#�1
: (2)
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These rates identify the U -coalescent with the coalescent studied by Bolthausen-Sznitman [9].

Provided � has no mass at 0, it is easily checked that a family of chains �n with the transition

rates (1) can be constructed as follows from the countable collection of points of a Poisson point

process N on (0;1)� f0; 1g1 with intensity dtL(d�) where

L :=
Z
(0;1]

x�2�(dx)Px (3)

with Px governing � := (�1; �2; : : :) as a sequence of independent Bernoulli trials with Px(�i = 1) = x

for all i. Given an arbitrary partition � of N, let �n(0) be the restriction of � to [n], and let the

process �n be allowed the possibility of jumping only at the times t of points (t; �) of N such thatPn
i=1 �i � 2. For such t, if �n(t�) = fA1; : : : ; Abg say, where the Ai are in the order of their least

elements, let �n(t) be derived from �n(t�) by merging those Ai with �i = 1. This will result in a

transition of �n at time t if and only if
Pb

i=1 �i � 2. It follows immediately from the de�nition (3) of

L that �n is Markovian with the desired transition rates (1). By construction, �n is the restriction

to [n] of �n+1 for every n. The Poisson point process N therefore determines a unique P1-valued

coalescent process �1 whose restriction to [n] is �n for every n. To summarize:

Corollary 3 Provided � has no mass at 0, the above construction of consistent coalescent chains

�n from a Poisson point process on (0;1) � f0; 1g1 with intensity dtL(d�) for L in (3) yields a

�-coalescent process �1.

In particular, for �(dx) = dx Corollary 3 gives a new construction of the U -coalescent.

2.1 Some results for general �.

Throughout the paper, the notation

�r :=
Z 1

0
xr�(dx)

is used for the rth moment of the �nite measure � on [0; 1] for arbitrary real r. Note that �r is a

decreasing function of r with 1 > �0 � �r � 0 for r � 0, while �r may be either �nite or +1 for

r < 0. For r = 0; 1; : : : observe from (1) that �r = �r+2;r+2 is the rate at which �n is jumping to its

absorbing state f[n]g from any state with r+2 blocks. To avoid trivialities, assume from now on that

�0 > 0. Let F denote a generic probability measure on [0; 1], and take � = �0F . By rescaling the
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time parameter, there is no loss of generality in supposing �0 = 1. So when convenient, results may

be presented just for an F -coalescent. Let X denote a random variable with distribution F , de�ned

on some background probability space (
;F ;P) with expectation operator E , so E (Xr) = �r=�0.

From (1), the transition rates of the �-coalescent are

�b;k := �0 E (X
k�2(1�X)b�k) for all 2 � k � b: (4)

Let �1 be a �-coalescent started at �. For i; j 2 N with i and j in di�erent blocks of �, let �i;j denote

the collision time of i and j, meaning the unique time t such that i and j belong to the same block of

�1(t) but di�erent blocks of �1(t�). By the exchangeability property of the �-coalescent described

in Section 3.2, the random time �i;j has the same exponential distribution with rate �2;2 = �0 for all

such i; j. Write #� for the number of blocks of a partition �.

Theorem 4 For an F -coalescent �1 started with i and j in distinct blocks of �1(0), and �i;j the

collision time of i and j, if the event (#�1(�i;j�) =1) has strictly positive probability, then given

this event a random variable Xi;j with distribution F is recovered as the almost sure relative frequency

of blocks of �1(�i;j�) which merge at time �i;j to form the block containing both i and j.

According to Proposition 23, provided F has no atom at 1, in a standard �-coalescent the

probability of the event (#�1(�i;j�) = 1) is either 0 for all i; j or 1 for all i; j. In particular,

it will be seen that for a standard U -coalescent this event has probability one for all i; j. So at

each collision time �i;j in a standard U -coalescent, the relative frequency of blocks involved has the

uniform distribution U .

For any initial partition with a �nite number of blocks b � 2, the total rate of transitions of all

kinds in a �-coalescent can be variously expressed as

�b :=
bX

k=2

 
b

k

!
�b;k =

b�2X
i=0

(�1)i(i+ 1)

 
b

i+ 2

!
�i (5)

= �0 E

"
1� (1�X)b � bX(1�X)b�1

X2

#
(6)

where the ratio is interpreted by continuity to equal
�
b
2

�
if X = 0. From (6),

�b " ��2 :=
Z 1

0
x�2�(dx) as b " 1 . (7)
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It follows that the holding time of the initial state 11 of the standard �-coalescent has an exponential

distribution with rate ��2, and that the �-coalescent is a Markov process of jump-hold type with

bounded transition rates and step-function paths if and only if ��2 < 1. Example 19 describes

more explicitly the simple transition mechanism of the �-coalescent when ��2 <1.

It was observed by Kingman for � = �0, and is true also for general �, that in a standard �-

coalescent the partition �1(t) is for each t an exchangeable random partition of N. That is, for each

particular partition fB1; : : : ; Bkg of [n] into k blocks, the probability that �n(t) = fB1; : : : ; Bkg is

a symmetric function of the sizes n1; : : : ; nk of the blocks B1; : : : ; Bk, say

P�;1
1

(�n(t) = fB1; : : : ; Bkg) =: p
�
t (n1; : : : ; nk): (8)

For each �xed t and �, this function p�t of �nite sequences of positive integers (n1; : : : ; nk) is the

exchangeable probability function (EPF) associated with the P�;1
1

distribution of �1(t) on P1. This

probability distribution on P1 may also be denoted p�t . Appendix A reviews the basic properties

the EPF determining the distribution on P1 of an exchangeable random partition of N. For �xed

� and n, the EPF p�t (n1; : : : ; nk) is determined for all (n1; : : : ; nk) with
Pk

i=1 ni = n and all t � 0

by the n � 1 moments �0; �1; : : : ; �n�2 of �. For these moments determine the transition rates of

the �nite state chain (�n(t); t � 0), and these rates in turn determine pt(n1; : : : ; nk) for all such

(n1; : : : ; nk) and all t � 0 via Kolmogorov's di�erential equations. Section 3.8 gives some more

explicit expressions.

De�nition 5 For a partition � of [n], where n 2 N [ f1g and [1] := N, write � = fA1; A2; : : :g

to indicate that the blocks of � in increasing order of their least elements are A1; A2; : : :, with

the convention Ai = ; for i > #�. For a partition � = fA1; A2; : : :g of N and a partition � :=

fB1; B2; : : :g of [n] with n � #� let the �-coagulation of � be the partition of N whose blocks are

the non-empty sets of the form [j2Bi
Aj for some i = 1; 2; : : :. For each probability distribution p

on P1, de�ne a Markov kernel p -coag on P1, the p-coagulation kernel, as follows: for � 2 P1 let

p -coag(�; � ) be the distribution of the �-coagulation of � for � with distribution p.

Think of � as describing a coagulation of singleton subsets into the blocks B1; B2; : : :. Then the

�-coagulation of � describes a corresponding coagulation of blocks of �.
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Let ��
1 be a P1-valued coalescent process with ��

1(0) = � for some � with #� = n 2 N[f1g.

Then it is easily seen that

��
1(t) = the �n(t)-coagulation of � for t � 0 (9)

for some uniquely de�ned Pn-valued coalescent process �n with initial state 1n, the partition of [n]

into singletons.

Theorem 6 A coalescent process ��
1 starting at � with #� = n for some 1 � n � 1 is a �-

coalescent if and only of �n de�ned by (9) is distributed as the restriction to [n] of a standard

�-coalescent. The semigroup of the �-coalescent on P1 is thus given by

P�;�(�1(t) 2 �) = p�t -coag(�; � ) (10)

where p�t ( � ) := P
�;11(�1(t) 2 �) is the distribution of an exchangeable random partition of N with

the EPF p�t (n1; : : : ; nk) which is uniquely determined by Kolmogorov equations for the �nite state

chains �n for n = 2; 3; : : :.

For a standard �-coalescent �1 let �1(t) = fB1(t); B2(t); : : :g. By Kingman's theory of ex-

changeable random partitions, each block Bj(t) has an almost sure limiting frequency

~fj(t) := lim
n!1

1

n

nX
i=1

1(i 2 Bj(t)) (11)

with 0 � ~fj(t) � 1 and
P

j
~fj(t) � 1 almost surely for each t. De�ne f(t) := (f1(t); f2(t); : : :) to

be the ranked rearrangement of ( ~f1(t); ~f2(t); : : :), and let P�
t denote the probability distribution of

f(t) on the set �S# of all non-negative sequences x = (x1; x2; : : :) with
P

i xi � 1 which are ranked,

meaning x1 � x2 � : : : � 0. According to Kingman's correspondence p $ P between distributions

p of exchangeable random partitions of N and probability measures P on �S# (Theorem 36), the

distribution p�t of �1(t) and the distribution P�
t of f(t) determine each other uniquely: p�t $ P�

t .

It appears that for general � there is neither a simple formula for the EPF p�t , nor any simple

description of the corresponding distribution P�
t on �S#. So Theorem 6 is a rather soft generalization

of results of Kingman for � = �0 and of Bolthausen-Sznitman for � = U (recalled in Theorem 14

below) which give explicit descriptions of both p�t and P�
t for these �.
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2.2 The ranked mass �-coalescent

As in [15, 27, 9], the P1-valued �-coalescent can be used to build various discrete measure valued

coalescent processes. Section 3.7 gives some results for the ranked mass �-coalescent (X(t); t � 0)

with state space S# := fx 2 �S# :
P

i xi = 1g, the set of ranked probability distributions on N,

with the topology it inherits as a subset of `1. In this process, masses labeled by N collide by the

mechanism of the standard �-coalescent applied to their labels. The stateX(t) := (X1(t);X2(t); : : :)

of the process at time t is the ranked rearrangement of the masses. The existence of this process

is made precise by the following corollary, which follows from Theorems 1 and 6 by the well known

criterion of Dynkin [13, Theorem 10.13] for a function of a Markov process to be Markov. See also

[15, x5] where the same construction is applied to other P1-valued coalescents. Variations of the

corollary yield corresponding basic and shunted coalescents with similar regularity properties, as

treated in [15].

Corollary 7 Let �1 be a standard �-coalescent. For x 2 S# and � 2 P1 let (x; �) 2 S# be

the decreasing rearrangement of the x-masses of the blocks of �. For each x 2 S# the process

((x;�1(t)); t � 0) is an S#-valued process with c�adl�ag paths. Let Q�;x be the law of this process on

the space of c�adl�ag S#-valued paths with the Skorohod topology. Then (Q�;x;x 2 S#) is for each �

the collection of laws of a strong Markov process X with state space S#.

Consider now the sequence of ranked frequencies f(t) derived from the standard �-coalescent at

time t. Call the frequencies proper if
P

i fi(t) = 1 almost surely. Recall that ��1 :=
R 1
0 x

�1�(dx).

Theorem 8 If ��1 = 1 then the standard �-coalescent has proper frequencies almost surely for

each t > 0; the S#-valued process (f(t); t > 0) de�ned by these ranked frequencies then has the unique

distribution of a c�adl�ag S#-valued process Y := (Y (t); t > 0) governed by the semigroup of the ranked

mass �-coalescent and such that Y1(0+) = 0 almost surely. Whereas, if ��1 <1 then the standard

�-coalescent does not have proper frequencies almost surely for each t > 0, and there exists no such

process Y .

Put another way, if ��1 = 1, the family of distributions (P�
t ; t > 0) on S# derived from

the standard �-coalescent �1 de�nes an entrance law for the ranked mass �-coalescent semigroup
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(Q�
t ; t � 0). That is, for s; t > 0 there is the identity P�

s Q
�
t = P�

s+t, where P
�
t is the distribution of

ranked frequencies of �1(t), and Q�
t (x; � ) is the distribution of (x;�1(t)). The ranked frequencies

of the standard �-coalescent then de�ne a process with this entrance law which comes in from \dust"

at time 0+, meaning that the largest mass vanishes almost surely as t # 0. The construction of this

entrance law was indicated by Kingman [27, x8] for � = �0 and Bolthausen-Sznitman [9, Corollary

2.3] for � = U . The uniqueness property of this entrance law for � = �0 was shown by Aldous

[3, A.5]. See Section 3.7 for a description of the process of ranked frequencies (f(t); t � 0) in the

improper case ��1 < 1. Theorem 27 characterizes the entrance boundary of the ranked mass �-

coalescent in both the proper and improper cases. See also [1, 4, 5, 15] regarding similar entrance

laws and the entrance boundary for some particular binary coalescents with time parameter set

(�1;1) instead of (0;1).

2.3 The two-parameter family

The following two lemmas recall some known results regarding a two-parameter family of probability

distributions of exchangeable random partitions of N. These results turn out to be the basis of various

descriptions of the U -coalescent.

Lemma 9 [31, 32] There exists an exchangeable random partition of N whose block frequencies ~fn

in order of least elements are strictly positive with
P

n
~fn = 1 almost surely and such that

~f1 = ~Y1; ~fn = (1 � ~Y1) � � � (1 � ~Yn�1) ~Yn (n � 2) (12)

for a sequence of independent random variables ( ~Yn), if and only if

~Yn has beta(1 � �; � + n�) distribution for n = 1; 2; : : : (13)

for some (�; �) with

0 � � < 1 and � > ��; (14)

the corresponding EPF is

p�;�(n1; : : : ; nk) :=
[�=�]k
[�]n

kY
i=1

�[��]ni (15)

where [x]n :=
Qn

i=1(x+ i� 1).
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Note that formula (15) contains some factors of � and � which should be cancelled before eval-

uation if either � = 0 or � = 0. For (�; �) subject to (14) call an exchangeable random partition of

N characterized by the EPF (15), or by frequencies of the form (12)-(13), an (�; �) partition. It was

shown in [31] how to construct an (�; �) partition by a simple urn scheme. Following [37], de�ne the

Poisson-Dirichlet distribution with parameters (�; �), abbreviated PD(�; �), to be the distribution

of ranked frequencies of an (�; �) partition. That is, PD(�; �) is the distribution on S# obtained

after ranking ~f generated by (12)-(13).

Lemma 10 De�ne V := (Vn) 2 S
# by Vn := Xn=�1 where �1 :=

P
mXm and the Xn are the ranked

points of a Poisson point process with intensity �(dx) on (0;1), as obtained by ranking the jumps of

a subordinator (�t; 0 � t � 1), that is an increasing process with stationary independent increments,

with

E exp(���s) = exp
�
�s

Z 1

0
(1� e��x)�(dx)

�
for � � 0:

(i)[22, 23] If �(dx) = �x�1e�xdx for � > 0, corresponding to �1 with the gamma(�) distribution

P(�1 2 dx) = �(�)�1x��1e�xdx, then V has PD(0; �) distribution.

(ii)[30] If �(dx) = cx���1dx for � 2 (0; 1) and c > 0, corresponding to �1 with a stable distribution

of index �, then V has PD(�; 0) distribution.

The PD(0; �) distribution has well known applications in population genetics, number theory,

and combinatorics, as reviewed in [17, 6]. Formula (15) in this case is a variation due to Kingman [26]

of the Ewens sampling formula [16], [20, Ch. 41]. See [30, 37] for interpretations of PD(�; 0) in terms

of excursions of a Markov process such as a Brownian motion or a recurrent Bessel process whose

zero set is the closed range of a stable subordinator of index �, and [39, 10, 11, 9] for applications

of PD(�; 0) in mathematical physics.

De�nition 11 For each probability measure p on P1, de�ne a Markov kernel p -frag on P1, the

p-fragmentation kernel as follows. Let p -frag(�; � ) be the distribution of a random re�nement

of � whose restriction to the mth block of � is the restriction of �(m) to that block, where the

(�(m);m = 1; 2; : : :) are independent random partitions of N with distribution p.

For p = p�;�, the distribution of an (�; �)-partition, the notations (�; �) -coag and (�; �) -frag

will be used instead of p�;� -coag and p�;� -frag. Say that �0 is an (�; �)-coagulation of � if
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P(�0 2 � j� = �) = (�; �) -coag(�; � ) and an (�; �)-fragmentation of � if P (�0 2 � j� = �) =

(�; �) -frag(�; � ): The following theorem is proved in Section 4:

Theorem 12 For all 0 < � < 1; 0 � � < 1; � > ���, the following two conditions are equivalent:

(i) � is an (�; �) partition and �0 is a (�; �=�)-coagulation of �;

(ii) �0 is an (��; �) partition and � is an (�;���)-fragmentation of �0.

For each allowed choice of �; � and �, these equivalent conditions describe a particular joint

distribution of a pair (�;�0) of exchangeable random partitions of N such that � is a re�nement of

�0. Kingman's correspondence yields parallel descriptions of a joint distribution of a pair (V ;V 0)

of random elements of S#. Recall that (x; �) is the ranked rearrangement of the partial sums of x

over blocks of �.

Corollary 13 For all 0 < � < 1; 0 � � < 1; � > ���, the following two conditions are equivalent:

(i) V has PD(�; �) distribution and V 0 = (V ;�00) for �00 a (�; �=�)-partition independent of V .

(ii) V 0 has PD(��; �) distribution and V is the ranked rearrangement of the collection of products

fV 0
mWm;n;m; n 2 Ng, where for each m the sequence Wm := (Wm;n; n 2 N) has PD(�;���)

distribution, and the sequences V 0 and Wm;m = 1; 2; : : : are independent.

To specify the conditional law of V 0 given V as in (i), say V 0 is a (�; �=�)-coagulation of V ,

and to specify the conditional law of V given V 0 as in (ii), say V is an (�;���)-fragmentation of

V
0. As part of the implication (ii) ) (i) in the previous corollary,

if V 0 has PD(��; �) distribution and V is an (�;���)-fragmentation of V 0, then V has

PD(�; �) distribution.

For � = 0 this construction of PD(�; �) for 0 < � < 1 and � > 0 from the more elementary PD(0; �)

and PD(�; 0) distributions appears in [37, Proposition 22]. As part of the implication (i) ) (ii) in

Theorem 12,

if � is an (�; �) partition and �0 is a (�; �=�)-coagulation of �, then �0 is an (��; �)

partition.

The case � = 0 of this implication amounts to part (i) of the next theorem. Thus Theorem 12 uni�es

and generalizes these two known relations involving fragmentation and coagulation operations on

the two-parameter family.
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2.4 The U -coalescent

Starting from a representation of the U -coalescent in terms of a Poisson process associated with Ru-

elle's probability cascades [39], and using the characterization of PD(�; 0) in Lemma 10, Bolthausen-

Sznitman discovered the following much more explicit form of Theorem 6 for � = U :

Theorem 14 [9]

(i) The family of Markov kernels ((e�t; 0) -coag; t � 0) on P1 forms a semigroup.

(ii) The Markov process with this semigroup is the U-coalescent:

PU;�(�1(t) 2 �) = (e�t; 0) -coag(�; � ): (16)

(iii) For a standard U-coalescent, �1(t) is an (e�t; 0)-partition, with EPF

pUt (n1; : : : ; nk) =
(k � 1)!

(n� 1)!
e�(k�1)t

kY
i=1

[1� e�t]ni�1: (17)

As shown by Bolthausen-Sznitman, (ii) follows easily from (i) by a transition rate calculation,

and (iii) can be checked by showing that the right side of (17) solves the system of Kolmogorov

backward equations for pUt . The EPF in (17) is the instance (�; �) = (e�t; 0) of the EPF in (15).

So either of (ii) and (iii) can be read from the other by application of Theorem 6 and Lemma 9.

Apply Kingman's correspondence to deduce from Theorem 14 that the distribution PU
t of ranked

frequencies of blocks at time t in a standard U -coalescent is PU
t = PD(e�t; 0).

Part (ii) of Theorem 14 combined with the implication (i) ) (ii) of Theorem 12 for

� = e�s; � = e�(t�s); � = 0

yields part (i) of the next corollary, part (ii) of which follows using the implication (ii) ) (i) of

Theorem 12 for

� = e�s; � = e�(t�s); � = �e�T :

Corollary 15 Let �1 be a standard U-coalescent. Then

(i) the co-transition probabilities of �1 are given for 0 < s < t by

P(�1(s) 2 � j�1(t) = �) = (e�s;�e�t) -frag(�; � ):

12



(ii) Fix T > 0, and let �1(T ) = fB1(T ); B2(T ); : : :g. For 0 � t � T and m = 1; 2; : : : let �(m)
1 (t)

be the restriction of �1(t) to Bm(T ), regarded as a P1-valued process after relabeling Bm(T ) by

N. Then, independently of (�1(u); u � T ), the processes (�(m)
1 (t); 0 � t � T ) are independent and

identically distributed time-inhomogeneous Markovian coalescents, each with �nal state �(m)
1 (T ) =

fNg, and each with the same co-transition probabilities as those of �1 described in (i). For each

m and 0 < t < T the partition �(m)
1 (t) is an (e�t;�e�T )-partition, and the forwards transition

probabilities are given for 0 < s < t < T by

P(�(m)
1 (t) 2 � j�(m)

1 (s) = �) = (e�(t�s);�e�(T�s)) -coag(�; � ): (18)

Less formally, each of the inhomogeneous Markovian coalescents �(m)
1 is a copy of the standard

U -coalescent conditioned to reach state fNg at time T .

For �1 a standard U -coalescent, let ( ~f1(t); ~f2(t); : : :) denote the frequencies of blocks of �1(t),

in order of least elements, as de�ned by (11). Combine Lemma 10 and Theorem 14 to deduce the

representation

~f1(t) = ~Y1(t); ~fn(t) = (1� ~Y1(t)) � � � (1� ~Yn�1(t)) ~Yn(t) (n � 2) (19)

where for each �xed t the ~Yn(t) are independent, and ~Yn(t) has beta(1 � e�t; ne�t) distribution

for n = 1; 2; : : :. As shown in Section 3.9, it follows that the two-dimensional distributions of the

process ( ~f1(t); t � 0) are as described in the following result. What is not at all obvious from this

approach is that the process ( ~f1(t); t � 0) has the Markov property. However, this is an immediate

consequence of the description of the time-reversed U -coalescent provided by Corollary 15: the

process (�(1)
1 (t); 0 � t � T ) is independent of of (�1(u); u � T ), and ( ~f1(t); 0 � t � T ) can be

recovered measurably from ~f1(T ) and (�(1)
1 (t); 0 � t � T ). See [5, Theorem 6] for a strikingly

similar description of the corresponding process derived from the standard additive coalescent with

time parameter set (�1;1).

Corollary 16 Let ~f1(t) be the frequency of the block containing 1 at time t in a standard U-

coalescent. Then

(i) the process ( ~f1(t); t � 0) is Markovian, with the same distribution as the process

((1 � e�t)=(1); t � 0) where ((s); s � 0) is a gamma process, with stationary independent incre-

ments and P((s) 2 dx) = �(s)�1xs�1e�xdx; x > 0.

13



(ii) The distribution of ~f1(t) is beta(1 � e�t; e�t), and the process (� log(1 � ~f1(t)); t � 0) has

non-stationary independent increments.

(iii) Let J1 � J2 � : : : be the ranked magnitudes of jumps of the process ( ~f1(t); t � 0), and let Ti be

the time when the jump of magnitude Ji occurs. Then the distribution of the sequence (J1; J2; : : :)

on S# is PD(0; 1), and this sequence is independent of the Ti, which are independent with standard

exponential distribution.

To restate (i), the random measure on (0;1) which assigns mass ~f1(t) to [0; t] is a Dirichlet

random measure governed by the standard exponential distribution, as in [19]. Parts (ii) and (iii)

are equivalents of (i) by well known properties of the Dirichlet randommeasure [12, Theorem 3.1],[19].

To interpret these results, regard the frequencies of blocks of �1(t) as masses engaged in coalescent

collisions governed by the ranked mass U -coalescent with conservation of total mass. Then ~f1(t)

describes the mass at time t that has coalesced around some particle labeled 1 in the dust at time

0+. Each jump Ji of the process ( ~f1(t); t � 0) describes the increment of this mass due to a collision

at some time Ti. According to Theorem 4, with probability one the collision at each of these times

Ti involves an in�nite number of other masses besides the mass of magnitude ~f1(Ti�) containing

particle 1. The sum of all these other masses is Ji. As an application of Corollary 16, consider

the increment of mass to the cluster containing 1 at the instant �1;2 when this cluster �rst collides

with the cluster containing a second particle labeled 2. By exchangeability considerations, for any

standard �-coalescent there is the formula

P�;1
1

(�1;2 � s j ~f1(t); t � 0) = ~f1(s) for all s � 0: (20)

For the U -coalescent, this fact can be combined with Corollary 16 as follows, to yield an explicit

description of the trivariate law of �1;2 and the random variables ~f1(�1;2�) and ~f1(�1;2), which rep-

resent the mass of the cluster containing 1 just before and just after the collision with the cluster

containing 2. Let

J1;2 := ~f1(�1;2)� ~f1(�1;2�)

which is the mass added to the cluster containing 1 at the time �1;2 when that cluster �rst collides

with the cluster containing 2. Then from (20) and Corollary 16 there is the equality of trivariate
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distributions

(�1;2; ~f1(�1;2�); J1;2)
d
= (X;D(X�);D(X) �D(X�)) (21)

where D is the cumulative distribution function of a Dirichlet random discrete distribution on (0;1)

governed by the standard exponential law, and X is a sample from D. It is well known (see e.g. [33,

Corollary 9]) that D(X) �D(X�) has uniform distribution on [0; 1] and is independent of X, that

the pair (X;D(X) � D(X�)) is independent of the the random distribution function D0 derived

from D by deleting the atom of magnitude D(X) � D(X�) at X and renormalizing to obtain a

probability distribution, and that D0 has the same distribution as D. So (21) yields the following

Corollary:

Corollary 17 In the standard U-coalescent, let J1;2 be the mass added to the cluster containing 1 at

the time �1;2 when that cluster �rst collides with the cluster containing 2. Then J1;2 has the uniform

distribution U independent of the standard exponential time �1;2, and the conditional distribution of
~f1(�1;2�)=(1� u) given J1;2 = u and �1;2 = t is beta(1 � e�t; e�t).

3 The �-coalescent

3.1 Construction

For 1 � n < N � 1 and � 2 PN let Rn(�) 2 Pn be the restriction of � to [n]. For each �nite n

let �n := (�n(t); t � 0) be a Pn-valued coalescent Markov chain de�ned by the following transition

rates: when the partition of [n] has b blocks, each k-tuple of blocks is merging to form a single block

at rate �b;k, for some array of non-negative real numbers (�b;k) indexed by 2 � k � b. Call such an

array of rates (�b;k) consistent if for all n < m < 1 and each �m 2 Pm, the process Rn(�m) given

�m(0) = �m has the same distribution as �n given �n(0) = Rn(�m).

Lemma 18 An array of rates (�b;k) is consistent if and only if

�b;k = �b+1;k + �b+1;k+1 for all 2 � k � b: (22)

Formula (1) sets up a bijection between consistent arrays (�b;k) and �nite non-negative measures �

on the Borel subsets of [0; 1].
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Proof. It is easily seen that to check consistency for an array of rates it su�ces to considerm = n+1.

Condition (22) then appears from the well known condition in terms of transition rates for a function

of a �nite state Markov chain Y to be Markovian with some speci�ed rates, no matter what the

initial state of Y . See e.g. Rosenblatt [38, xIIId]. Let

�i;j := �i+j+2;i+2 for i; j = 0; 1; : : : : (23)

Then condition (22) becomes

�i;j = �i+1;j + �i;j+1 for i; j = 0; 1; : : : : (24)

It follows from de Finetti's representation of in�nite exchangeable sequences of 0's and 1's [18,

VII.4] that (24) is the necessary and su�cient condition for an array of non-negative numbers

(�i;j; i; j = 0; 1; : : :) with �0;0 = 1 to be of the form

�i;j = E (X i(1�X)j) (i; j = 0; 1; : : :) (25)

for some random variable X with values in [0; 1]. The conclusion now follows easily. 2

Proof of Theorem 1. The necessity of condition (1) follows from the previous Lemma. Assuming

(1) holds, the desired process �1 is constructed as in Kingman [27], who carried out this construction

in the case � = �0. An application of the Kolmogorov consistency theorem shows that for each initial

partition � of N it is possible to construct the Markov chains �n all on the same probability space,

each with right continuous step function paths, in such a way that �n(0) = Rn�, and �n = Rn(�m)

for n < m <1. The desired process �1 is then obtained by letting �1(t) be the unique partition

of N whose restriction to [n] is �n(t) for every n. The claimed regularity properties of �1 then

follow by straightforward arguments given in [15, 9] for similar constructions. 2

3.2 Symmetry properties

For a bijection � with domain A and range B, and a partition � of A, let �� denote the partition of

B whose blocks are the �-images of the blocks of �. The form of the transition rates of �n implies

that if �n is started in state �n, then for every permutation � of [n] the process ��n is a copy of

16



�n started in state ��n. This basic exchangeability property of the chains �n implies the following

exchangeability property of the �-coalescent. Let [1] := N. For each n = 1; 2; : : : ;1, and each

subset H of N containing n elements, the restriction of �1 to H, when regarded as a Pn-valued

process by labeling H by an arbitrary bijection � from H to [n], has the same distribution as �n

started in state ��H, where �H is the restriction to H of the initial state � of �1.

Proof of Theorem 6. The exchangeability for each t of the random partition �1(t) derived

from a standard �-coalescent is evident from the previous paragraph. The construction of the �-

coalescent started in state � from the standard �-coalescent, and vice versa, are easily established

by consideration of restrictions to [n] for each �nite n. 2

3.3 Generalizations

Note from De�nition 5 that no matter what the distribution p on P1, each of the kernels K =

p -coag acts locally on P1, meaning that if �� denotes a random partition of N with distribution

K(�; � ), then for each n the distribution of Rn�� depends on � only through Rn�. It follows that any

P1-valued Markov process �1, each of whose transition kernels is of the form p -coag for some p, is

such that the Pn-valued process Rn�1 is a Markov chain. Such a coalescent process �1 with c�adl�ag

paths could therefore be constructed more generally than in Theorem 1 from a consistent family

of Markov chains with more complex transition rules, allowing not just multiple collisions in which

several blocks merge to form one block, but simultaneous multiple collisions, in which several new

blocks might be formed, each from the merger of two or more smaller blocks. There is a composition

rule for coagulation kernels associated with exchangeable distributions pi on P1 which induces a

semigroup operation on these distributions, or equivalently on �S#: (p1 -coag)(p2 -coag) = p3 -coag

where p3 is determined explicitly by Lemma 34. From this perspective, Theorems 1 and 6 must

be special cases of some more general characterization of consistently de�ned Pn-valued Markov

chains with appropriate exchangeability properties, or of one-parameter semigroups of exchangeable

coagulation kernels (pt -coag; t � 0). Similar remarks apply to Markovian fragmentation processes

each of whose transition kernels is p -frag for some p. But such generalizations will not be pursued

further here.
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3.4 Examples

Example 19 � such that ��2 <1.

Fix � > 0, let p be the distribution on P1 of an exchangeable random partition of N with ranked

frequencies Y = (Y1; Y2; : : :) 2 �S#, and de�ne for each t � 0 a transition probability kernel Pt on

P1 by

Pt :=
1X

m=0

e��t
(�t)m

m!
(p -coag)m: (26)

From the previous general remarks about coagulation kernels, it is clear that this formula de�nes the

semigroup of a P1-valued Markov process �1 whose restrictions �n are Markovian for every n. Such

a process �1 can be constructed with step function paths by the usual scheme of jumping according

to p -coag at the arrival times of a homogeneous Poisson process with rate �. If P(Y2 > 0) > 0 then

starting in state 11 there is positive probability of more than two new blocks being formed at the

�rst jump. So the only distributions of Y such that �1 could be a �-coalescent for some � are those

with P(Y2 = 0) = 1. Assuming P(Y2 = 0) = 1, let F1 be the distribution of Y1, so F1 could be any

probability distribution on [0; 1], and p is the distribution of the exchangeable random partition of

N with ranked frequencies (Y1; 0; : : :). By consideration of restrictions to [n] it is easily veri�ed that

�1 so constructed is a �-coalescent for �(dx) = �x2F1(dx). This construction can therefore be used

to make a �-coalescent for any � with ��2 < 1 by use of � = ��2 and F1(dx) := x�2�(dx)=��2.

Indeed, this is just another way of expressing the result of Corollary 3 when ��2 <1. Each jump

in this construction according to p -coag can be described by the following variation of Kingman's

paintbox scheme for generating an exchangeable random partition with distribution p: given the

current partition is �, to make the next partition �0 with distribution p -coag(�; � ), �rst pick Y1

with distribution F1. Given Y1 = y toss a coin which lands heads independently with probability y

for each block of �, and let �0 be derived from � by merging all the blocks whose coins land heads.

Example 20 � with an atom at 1. Let �1 = �+ ��1 where � has no atom at 1, for � > 0 and �1 a

unit mass at 1. Let �1 be a �-coalescent, let T be an independent exponential time with rate �, and

let �0
1(t) equal �1(t) if t < T and fNg if t � T . Then it is easily seen that �0

1 is a �1-coalescent.

As the �1-coalescent is so easily described in terms of the �-coalescent, to avoid trivial exceptions

in the formulation of some later results it may be assumed that � has no atom at 1.
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3.5 Behavior at collision times

Theorem 4 is an immediate consequence of the following lemma and de Finetti's strong law of

large numbers for exchangeable indicator variables. In view of the exchangeability property of the

�-coalescent, for i and j in distinct blocks of the initial partition, all probabilistic features of the

collision at time �i;j are identical, modulo relabeling, to corresponding features of the collision at time

�1;2, assuming 1 and 2 are in di�erent blocks of �. So to simplify notation, take (i; j) = (1; 2). Say

that indicator variables J1; : : : ; Jn are exchangeable(F ) indicators if the Ji have the same distribution

as K1; : : : ;Kn where the Ki are conditionally independent given X with P(Ki = 1 jX) = X for all

i, for some random variable X with distribution F . That is, for every subset A of [n]

P(fi 2 [n] : Ji = 1g = A) = E (X jAj(1�X)n�jAj) (27)

where jAj is the number of elements of A. Recall that #� is the number of blocks of a partition �.

Lemma 21 Let �1 be an F -coalescent started at � with 1 and 2 in distinct blocks of �. Let

B1; B2; : : : denote the blocks of �1(�1;2�), in order of their least elements, so 1 2 B1 and 2 2 B2.

Let Ij be the indicator of the event that the collision between B1 and B2 at time �1;2 also involves

block Bj, meaning that Bj; B1 and B2 all belong to the same block of �1(�1;2). Then for each n � 3,

conditionally given �1;2 and #�1(�1;2�) � n, the I3; I4; : : : ; In are exchangeable(F ) indicators.

Proof. By (27) it is enough to show for arbitrary n � 3 and t > 0 that for every subset A of

f3; : : : ; ng with jAj = a

P(fj : 3 � j � n; Ij = 1g = A j �1;2 = t;#�1(t�) � n) = �i;n�i�2 (28)

for �i;j de�ned by (23)-(25) with X distributed according to F . For � 2 P1 with #� � n let �n� be

the leastm such that the restriction of � to [m] has at least n blocks. Then it su�ces to establish (28)

with conditioning on �1;2 = t and #�1(t�) � n replaced by conditioning on �1;2 = t, #�1(t�) � n

and �n�1(t�) = m for arbitrary m = n; n + 1; : : :. This variant of (28) is implied another variant

of (28) with conditioning on �1;2 = t and #�1(t�) � n replaced by conditioning on �1;2 = t and

�m(t�) = �m for some arbitrary partition �m of [m] into n blocks, say fBm;1; Bm;2; : : : ; Bm;ng, with

1 2 Bm;1 and 2 2 Bm;2. But this last form of (28) follows immediately from the description of the
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transition rates of �m: given that �m is in such a state �m, the rate of all transitions that cause

blocks Bm;1 and Bm;2 to be merged (perhaps also with other blocks) is �2;2 = �0;0 = 1, while the

rate of these transitions in which the set of other blocks involved is fBm;j ; j 2 Ag, where jAj = a, is

�n;a+2 = �a;n�a�2. 2

Example 22 As a check on Theorem 4, consider the F -coalescent �1 constructed for F such that

��2 < 1, as in Example 19, for F with no atom at 1. Let the initial state � with in�nitely many

blocks have 1 and 2 in di�erent blocks. From the description of Example 19, it is clear that the

coalescent has in�nitely many blocks at all times t > 0, and that �1;2 = TN for some random index

N , where Ti is the time of the ith jump of �1. The variable X1;2 in Theorem 4 is then X1;2 = YN

where by construction the Yi; i = 1; 2; : : : are independent with

P(Yi 2 dx) = x�2F (dx)=��2

and for i = 1; 2; : : :

P (N = i jY1; Y2; : : :) = (1 � Y 2
1 ) � � � (1 � Y 2

i�1)Y
2
i :

It follows easily that P(YN 2 dx) = F (dx) as claimed, and that N is independent of YN with

geometric distribution with mean ��2. As a �nal check, �1;2 = TN is the sum of N independent

exponential variables with mean 1=��2, hence exponential with mean ��2=��2 = 1, as required

since �2;2 = 1.

3.6 The total number of blocks

Let #(t) := #�1(t), the number of blocks at time t in a �-coalescent �1. It was observed by

Kingman for � = �0 and Bolthausen-Sznitman for � = U , and is easily seen for general �, that the

process (#(t); t � 0) is a time-homogeneous Markov process relative to the �ltration of �1, with

state-space f1; 2; : : : ;1g and only downwards jumps, such that for 2 � k � b <1 the rate of jumps

down from b to b� k + 1 is

rate(b! b� k + 1) = �#b;k :=

 
b

k

!
�b;k: (29)
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The total rate of downward jumps is �b :=
Pb

k=2 �
#
b;k, as in (5)-(6). By (6), the sequence (�b; b =

1; 2; : : :) is strictly increasing, no matter what non-zero � is considered. And (5) shows that the �i

for 0 � i � n � 2 and hence the �b;k for all 2 � k � b � n are universal linear combinations of

�2; : : : ; �n.

For the rest of this section, � is �xed and suppressed in the notation. Let P govern �1 as a

standard �-coalescent. For each n = 1; 2; : : : ;1 let

Tn := infft : #�n(t) = 1g; (30)

call it the absorbtion time of �n. By construction, the distribution of T2 is exponential with rate

�2 > 0, and

0 = T1 < T2 � T3 � T4 � � � � " T1 �1: (31)

For � > 0 and n = 1; 2; : : : ;1, let

�n(�) := E (e��Tn) = �
Z 1

0
P(Tn � t)e��tdt: (32)

For each � > 0 the rates �b;k determine �n(�) for all �nite n by the recursion

�n(�) =
�

1

�n + �

� nX
k=2

�#n;k�n�k+1(�) where �1(�) = 1; (33)

which follows from (29) by conditioning on the number of blocks after the �rst collision. By (31), as

n!1

�n(�) # �1(�) = E (e��T1): (34)

Say the �-coalescent comes down from in�nity if P(#(t) < 1) = 1 for each t > 0. Say it stays

in�nite if P(#(t) = 1) = 1 for each t > 0. Kingman showed that the �0-coalescent comes down

from in�nity. The results of Bolthausen-Sznitman reviewed in Theorem 14 show the U -coalescent

stays in�nite.

Proposition 23 Suppose that � has no atom at 1. Then

either: �1(�) > 0 for all � > 0, in which case the standard �-coalescent comes down from in�nity

in such a way that #(0+) =1 a.s., by an in�nite number of collisions, each involving only a �nite

number of blocks almost surely; the absorbtion time T1 is then a.s. �nite.
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or: �1(�) = 0 for all � > 0, in which case the standard �-coalescent stays in�nite by an in�nite

number of collisions, each involving an in�nite number of blocks almost surely. The absorbtion time

T1 is then a.s. in�nite.

Proof. Let T := infft : #(t) < 1g. One possibility to be eliminated is that P(0 < T < 1) > 0.

If P(0 < T < 1) > 0 the strong Markov property implies that #(T ) < 1 a.s. on the event

f0 < T <1g. On the same event #(T�) =1 by the de�nition of T . Hence T must be a collision

time, and Theorem 4 gives a contradiction. The remaining possibilities are eliminated similarly.

Theorem 4 also implies that if the coalescent stays in�nite then every collision involves in�nitely

many blocks almost surely. 2

Continuing to suppose � has no atom at 1, Lemma 25 in the next section shows that if ��1 <1

then the �-coalescent stays in�nite. But this condition is not necessary, as shown by the U -coalescent.

If � has an atom at 0 of magnitude �0 > 0, then the �-coalescent comes down from in�nity. For it

is easy to see that (#(t); t � 0) can then be constructed on same probability space as (#0(t); t � 0)

derived from a �0�0-coalescent in such a way that #(t) � #0(t) for all t � 0. In principle, the

condition on �1 in Proposition 23 is a condition on � equivalent to the �-coalescent staying in�nite.

But the condition is not an easy one to check. It is a natural problem to �nd a simpler equivalent

of this condition.

The following proposition develops Theorem 4 to give a more complete description of the nature

of collisions in a �-coalescent that stays in�nite.

Proposition 24 Suppose that � has no atom at either 0 or 1, and that the standard �-coalescent

�1 stays in�nite. Let �i;j be the collision time of i; j in �1,and Xi;j the almost sure limiting fraction

of blocks of �1(�i;j�) involved in the collision at time �i;j, as in Theorem 4. Then the random set

S := f(�i;j;Xi;j); i; j 2 Ng � (0;1)� (0; 1)

is the set of points of a Poisson point process with intensity dt x�2�(dx).

Proof. Without loss of generality, it can be supposed that the standard �-coalescent �1 is created

by the Poisson construction of Corollary 3. By the assumption that the coalescent stays in�nite, the
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random set S is identical to the set of all points (t; x) where x is the limiting relative frequency of

1's of � as (t; �) ranges over the points used in the Poisson construction of �1. The conclusion is

now evident. 2

3.7 The ranked mass coalescent

The following lemma starts the proof of Theorem 8.

Lemma 25 The standard �-coalescent has proper frequencies almost surely for each t > 0 if and

only if ��1 =1.

Proof. By Kingman's correspondence, the exchangeable random partition �1(t) has proper fre-

quencies i� the singleton set f1g is almost surely not a block of �1(t). In the restriction of the

�-coalescent to [n], when there are b blocks including f1g, the total rate at which f1g is colliding

with one or more of the b� 1 other blocks is found to be

�b :=
bX

k=2

 
b� 1

k � 1

!
�b;k = �0E

"
1 � (1�X)b�1

X

#
(35)

where the ratio is interpreted by continuity to equal b�1 if X = 0. Thus �b increases to �0E (X�1) =

��1 as b increases to 1. In the standard �-coalescent, the rate at which f1g is colliding with some

other block is therefore always bounded above by ��1. If this moment is �nite, the probability

that 1 is still a singleton at time t is at least exp(���1t) > 0, so the frequencies of �1(t) are not

proper. If ��1 =1 there are two possibilities. Either #(t) =1, in which case f1g has been subject

to collisions at an in�nite rate for time t, so some such collision has a.s. occurred by time t, or

#(t) <1, in which case also f1g is a.s. not a singleton of �1(t), because an exchangeable random

partition of N with a �nite number of blocks contains no singletons a.s.. 2

If ��1 < 1, the process of frequencies (f(t); t � 0) derived from a standard �-coalescent is an
�S#-valued process governed by an analog of the �-coalescent ranked mass semigroup on �S# which

allows creation of mass, starting from mass 0 at time 0 and terminating with mass 1 at time1�.

The missing mass in this process at time t, that is 1�
P

i fi(t), is the relative frequency of the union
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of all singleton blocks of �1(t). Only in the case ��1 =1 is mass 1 instantaneously created at time

0+ so that the state-space can be restricted to S# for t > 0. The process of creation of mass when

��1 <1 is described by the following proposition.

Proposition 26 Let St := 1�
P

i fi(t), which is the frequency of singletons at time t in a standard

�-coalescent �1. If ��1 < 1 then the process (� log St; t � 0) is a drift-free subordinator whose

L�evy measure is the image of x�2�(dx) via the map x 7! � log(1�x). Consequently, the distribution

of St on [0; 1] is that determined by Mellin transform

E (S�
t ) = exp

�
�t
Z 1

0
(1 � (1 � x)�)x�2�(dx)

�
for � � 0: (36)

For � 2 N this formula gives the probability that each element of [�] is still a singleton at time t. In

particular, the mean frequency of singletons in �1(t) is

E (St) = P(f1g 2 �1(t)) = exp(���1t): (37)

Proof. As in the proof of Proposition 24 it can be supposed that �1 is created by the Poisson

construction of Corollary 3. Formula (36) for � 2 N can be read directly from this Poisson con-

struction. It is clear from the Markov property of �1 expressed in Theorem 6 that the process

(� logSt; t � 0) has stationary independent increments. But if Ŝt := exp(�Yt) where (Yt; t � 0) is a

drift free subordinator whose L�evy measure is the image of x�2�(dx) via the map x 7! � log(1�x),

then the L�evy-Khintchine formula shows that E(Ŝ�
t ) equals the right side of (36) for every � � 0.

Since a probability distribution on [0; 1] is determined by its positive integer moments, St and Ŝt

must have the same distribution for each t > 0, and the conclusion follows. 2

Consider now the problem of characterizing all entrance laws (qt; t > 0) for the ranked mass �-

coalescent. By general theory [14], each entrance law is an integral mixture over some set of extreme

entrance laws, called the entrance boundary of the semigroup. The following theorem identi�es this

entrance boundary with S# if ��1 < 1 and with �S# if ��1 = 1. Theorem 8 is an immediate

consequence of this more general result.
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Theorem 27 Let (X(t); t > 0) be a process with c�adl�ag S#-valued paths governed by the �-coalescent

ranked mass semigroup. Then X(0+) := limt#0X(t) exists almost surely as limit in �S# in the sense

of componentwise convergence.

(i) If ��1 < 1 then X(0+) 2 S# a.s. and the extreme entrance laws are obtained by starting the

ranked mass �-coalescent at x as x ranges over S#.

(ii) If ��1 = 1 then X(0+) may have an arbitrary probability distribution on �S#. There is then

for each x 2 �S# a unique extreme entrance law under which X(0+) = x a.s.. The corresponding

process may be constructed by de�ning X(t) to be the ranked frequencies of �1(t), where �1 is a

�-coalescent with �1(0) an exchangeable random partition of N whose sequence of ranked frequencies

is x.

Proof. Acording to the de�nition of the �-coalescent ranked mass semigroup by Corollary 7, for each

" > 0 the process (X(t); t � ") has the same distribution as ((X(");��
1(t�")); t � ") for a standard

�-coalescent ��
1 that is independent of X("). Let (�"

1(t); t � ") be a �-coalescent with initial state

�"
1(") which is an exchangeable random partition of N such that f(�"

1(")) has the same distribution

asX("), where f(�) denotes the sequence of ranked frequencies of an exchangeable random partition

�. By application of Theorem 6 and [15, Lemma 29], the process ((X(");��
1(t� ")); t � ") has the

same law as (f(�"
1(t)); t � "). Thus

(X(t); t � ")
d
= (f(�"

1(t)); t � ")

where
d
= denotes equality in distribution of processes. An application of Kolmogorov's extension

theorem now shows that there exists a P1-valued Markov process (�1(t); t > 0) governed by the

�-coalescent semigroup, with �1(t) an exchangeable random partition of N for each t > 0, such

that

(X(t); t > 0)
d
= (f(�1(t)); t > 0):

Since �1(t) is re�ning as t decreases, its limit �1(0+) exists in P1, and is exchangeable. Since for

each m the sum of the m largest frequencies of �1(t) is a non-decreasing function of t, the limit

of f(�1(t)) as t # 0 exists in �S# almost surely, hence the limit X(0+) exists in �S# almost surely.

Moreover, the continuity of Kingman's correspondence (Theorem 36) implies that X(0+) has the

same distribution as the ranked frequencies of �1(0+). By the Feller property of the �-coalescent
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semi-group on P1, the process (�1(t); t > 0) must be just the restriction to the time interval

(0;1) of a �-coalescent started in the random state �1(0+). If X(0+) is improper with positive

probability, then �1(0+) has a strictly positive frequency of singletons with positive probability.

If ��1 < 1, formula (37) implies that �1(t) has a positive frequency of singletons with positive

probability, contradicting the assumption that X(t) 2 S# for every t > 0. If on the other hand

��1 = 1 there is no contradiction. Rather, for any given vector x 2 �S#, a process started with

X(0+) = x is obtained as indicated in the theorem. Finally it is easily shown that the law of each

such process is extreme, by application of Kingman's result that the extreme laws of exchangeable

random partitions of N are the laws px corresponding to a given sequence of ranked frequencies

x 2 �S#. 2

3.8 The exchangeable probability function

Formulae for the EPF p�t (n1; : : : ; nk) derived from the standard �-coalescent for general �, as in

(8) can be found explicitly at least for some particular (n1; : : : ; nk). Fix � and let pt(� � �) stand for

p�t (� � �). Due to symmetry of the EPF, it su�ces to consider pt(n1; : : : ; nk) for decreasing sequences

(n1; : : : ; nk). Write for instance 32231 for the decreasing sequence (3; 3; 2; 2; 2; 1). The decreasing

rearrangement of the sizes of blocks of a partition � of [n] is a partition of the integer n, call it the

type of �. Note that pt(32231) is not the probability that �13(t) is of type 32231, but rather the

probability that �13(t) = � for each particular partition � of f1; : : : ; 13g of type 32231. The holding

time of (�n(t); t � 0) in its initial state 1n is exponential with rate �n, as in (5), so

pt(1
n) = e��nt for n = 2; 3; : : : where (38)

�2 = �0; �3 = 3�0 � 2�1; �4 = 6�0 � 8�1 + 3�2

and so on. Note that the �j simplify to j(j � 1)=2 for � = �0 and to j � 1 for � = U . The values

of pt(n1; : : : ; nk) for all (n1; : : : ; nk) with
P

j nj � 3 can be deduced from (38) for n = 2; 3 and the

addition rules (66) for an EPF. Thus

pt(1) = 1; pt(1
2) = e��2t; pt(2) = 1 � e��2t (39)

pt(1
3) = e��3t; pt(2

11) = 1
2e

��2t � 1
2e
��3t; pt(3) = 1� 3

2e
��2t + 1

2e
��3t (40)
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As a check, for � such as U with �0 = 1; �1 = 1=2, formula (17) is recovered for all (n1; : : : ; nk) withP
i ni � 3.

For n � 3 a state of type 21n�2 can only be entered directly from 1n. So by conditioning on the

entry time and using (38)

pt(21
n�2) =

Z t

0
e��ns�n;2 e

��n�1(t�s)ds =
�n;2

(�n � �n�1)
(e��n�1t � e��nt):

For n � 4 a state of type 31n�3 can only be entered directly from 1n or via one of 3 di�erent states

of type 21n�2. Conditioning on these cases and the entry time gives

pt(31
n�3) =

Z t

0
ps(1

n)�n;3e
��n�2(t�s)ds+ 3

Z t

0
ps(21

n�2)�n�1;2e
��n�2(t�s)ds

and hence by integration

pt(31
n�3) =

(
�n;3

(�n � �n�2)
+

3�n;2�n�1;2
(�n � �n�1)

"
1

�n�1 � �n�2
�

1

�n � �n�2

#)
e��n�2t+

+
3�n;2�n�1;2
(�n � �n�1)

"
�1

�n�1 � �n�2

#
e��n�1t +

(
�

�n;3
(�n � �n�2)

+
3�n;2�n�1;2
(�n � �n�1)

"
1

�n � �n�2

#)
e��nt

Proceeding in this way, it is clear that for given n the values of pt(n1; : : : ; nk) with
P

i ni = n can be

found one by one by repeated integration for k = n; n � 1; n � 2 and so on. So a reverse induction

on k for �xed n yields:

Proposition 28 The EPF p�t derived from a standard �-coalescent is of the form

p�t (n1; : : : ; nk) =
nX

j=k

a�j (n1; : : : ; nk)Y
k�i<h�b

(�h � �i)
e��jt (41)

where n :=
P

i ni and a�j (n1; : : : ; nk) is a polynomial in the �b;i for k � b � n and 2 � i � b, with

integer coe�cients.

In principle, the inductive derivation of this result yields a recursive description of the a�j (n1; : : : ; nk),

but this recursion seems very complicated. Neither does there appear to be any substantial simpli�-

cation for � with simple rates, such as � = �x or � = beta(r; s), except in the special cases � = �0

(see [25, 27] and [40, (6.1)]), and � = U (Theorem 14).
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An unfortunate feature of formula (41) is that for given n =
P

i ni the description of pt(n1; : : : ; nk)

is most complicated when k = 1, which is one of the most interesting cases. A more explicit

description of pt(n) can be obtained as follows. Observe �rst that for Tn the absorbtion time

of �n as in (30), there is the formula pt(n) = P(Tn � t), so (32) yields the Laplace transformR1
0 pt(n)e��tdt = �n(�)=� where �n(�) = E (e��Tn) is determined recursively by (33). The connection

with Tn can be exploited to obtain the following formula, by conditioning the range of the process

(#�n(t); 0 � t � Tn) to be a particular subset fm0; : : : ;mcg of [n]:

pt(n) = 1�
n�1X
c=1

X
(m0;:::;mc)

 
cY

i=1

�#(mi;mi �mi�1 + 1)

�mi

!
Gt(�m1

; : : : ; �mc) (42)

where �#(m;k) := �#m;k as in (29), for each c = 1; : : : ; n � 1 the sequence (m0; : : : ;mc) ranges over

the set of
�
n�2
c�1

�
strictly increasing sequences of positive integers with m0 = 1 and mc = n, and for

�1 < : : : < �c as in (42) for �i = �mi

Gt(�1; : : : ; �c) := P

 
cX

i=1

�i=�i > t

!
=

cX
i=1

8<
:
Y
j 6=i

 
�j

�j � �i

!9=
; e��it (43)

where �i; i = 1; 2; : : : is a sequence of independent standard exponential variables. This calculation

yields:

Proposition 29 For a �-coalescent the probability that any particular set of n blocks in the initial

partitition is contained in the same block at time t is

pt(n) = 1 �
nX

r=2

an;re
��rt (44)

where for each 2 � r � n the function an;r := an;r(�2; : : : ; �n) is a rational function of �2; : : : ; �n, or

of the �rst n � 2 moments of �, which may be expressed as follows in terms of the �i and the �#b;k
which are just linear combinations of the �i:

an;r =
n�1X
c=1

X
(m0;:::;mc)3r

cY
i=1

�#(mi;mi �mi�1 + 1)
1(mi 6= r)

(�mi
� �r)

(45)

where for each c = 1; : : : ; n � 1 the inner sum is over the set of
�
n�2
c�2

�
strictly increasing sequences

of positive integers (mi; 0 � i � c) with m0 = 1;mc = n, and mi = r for some i, and the factor

1(mi 6= r)=(�mi
� �r) equals 1=(�mi

� �r) if mi 6= r and 0 otherwise.
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For n = 2; 3 it is easily checked that these formulae (44)-(45) are consistent with the previous

formulae (39)-(40). For n = 4, after simpli�cation using �3;2=(�3 � �2) = 1=2, it is found that the

coe�cients are

a4;2 =
3

2
+
2�4;3 + 3�4;2
2(�4 � �2)

; a4;3 = �
1

2
�

3

2

�4;2
(�4 � �3)

; a4;4 = �
�4;3

�4 � �2
+

3�3;2�4;2
(�4 � �2)(�4 � �3)

(46)

For � = U ,

�b = b� 1; �#b;k =
b

k(k � 1)
; (47)

so in particular �4;2 = 1=3; �4;3 = 1=6; �3;2 = 1=2. Expression (44) for n = 4 with the substitutions

(46)-(47) rather miraculously reduces to the following instance of (17):

pUt (4) =
1

3!

�
6 � 11e�t + 6e�2t � e�3t

�
=

1

3!
(1� e�t)(2� e�t)(3� e�t): (48)

It does not seem at all evident from (45) why the substitutions (47) allow formula (44) to be factorized

for every n, as implied by (17). As a consequence of (17), for 1 � j � n � 1 the coe�cient of e�jt

in the generalization of (48) to n instead of 4 is (�1)j
"

n
j + 1

#
=(n � 1)! where

"
n
k

#
is the Stirling

number of the �rst kind which is the number of permutations of [n] with k cycles. The only j for

which this is obviously consistent with (44) is j = 0. Equate coe�cents of e�jt for 1 � j � n� 1 to

see that the factorization implied by (17) amounts to the identity

an;r = (�1)r
"
n
r

#
=(n� 1)! for 2 � r � n for �b; �

#
b;k as in (47): (49)

3.9 Distribution of the frequencies

In this section, let (�1(t); t � 0) be a standard F -coalescent for some probability distribution F on

[0; 1], with moments �r :=
R 1
0 x

rF (dx). For j = 1; 2; : : : let ~fj;t := ~fj(t) as in (11) be the frequencies

of blocks of �1(t) in order of least elements.

Let ~Ft denote the probability distribution of ~f1;t on [0; 1]. As a consequence of known formulae

for exchangeable random partitions and associated random discrete distributions [32, 31], this prob-

ability distribution ~Ft on [0; 1] carries a good deal of information about the distribution of �1(t)
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and the corresponding distribution of ranked frequencies on �S#. The distribution ~Ft is determined

by the following formula for its moments [31, Corollary 8]:

Z 1

0
xm ~Ft(dx) = E ( ~fm1;t) = pt(m+ 1) for m = 0; 1; : : : (50)

where pt(n) is given by (44). In particular, ~f1;t has mean

E ( ~f1;t) = pt(2) = 1� e�t (51)

no matter what F , and (40) gives the variance

Var( ~f1;t) = pt(3)� (pt(2))
2 = 1

2e
�t + 1

2e
��3t � e�2t (52)

where �3 = 3 � 2�1 for �1 the mean of F . One other simple general feature of ~Ft can be read from

Proposition 26:
~Ftf0g = P( ~f1;t = 0) = exp(���1 t): (53)

The following proposition records some basic properties of the process ( ~f1;t; t � 0).

Proposition 30 No matter what F , the process ( ~f1;t; t � 0) is an increasing pure jump process with

c�adl�ag paths, with
~f1;0 = 0 and ~f1;1� = 1 almost surely. (54)

If ��1 =1 then almost surely ~f1;t > 0 for all t > 0 while ~f1;0+ = 0. Whereas if ��1 <1 the process

( ~f1;t; t � 0) starts by holding at zero until an exponential time with rate ��1, when it enters (0; 1]

by a jump, and proceeds thereafter by a succession of holds and jumps, with holding rates bounded

above by ��1.

Proof. It is obvious that the process ( ~f1;t; t � 0) has increasing sample paths, and the facts (54)

follow immediately from this and formula (51). If ��1 = 1 then by Lemma 25 the exchangeable

random partition �1(t) has proper frequencies a.s. for each t > 0, hence ~f1;t > 0 for all t > 0,

and ~f1;0+ = 0 by the continuity of Kingman's correspondence. According to [15, Proposition 30] the

process ( ~f1;t; t � 0) has c�adl�ag paths, and by [15, Proposition 1] the paths are of pure jump type. If

��1 <1 the Poisson construction of Corollary 3 shows that the process ( ~f1;t; t � 0) has c�adl�ag step
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function paths which can jump only when there is a collision involving 1. The rate of such jumps at

time t is bounded above by ��1, and equal to ��1 as long as 1 remains a singleton of �1(t), meaning

as long as ~f1;t = 0. Let T be the time of the �rst collision involving 1, and let ST� be the frequency

of singletons in �1(T�). Proposition 26 shows that ST� > 0 almost surely, hence there is a relative

frequency X1 > 0 of classes involved in the collision, that is the common value of X1;j in Theorem

4 for all j involved in the collision. Since ~f1;T � ST�X1;j > 0 the process ( ~f1;t; t � 0) enters (0; 1] by

a jump at time T . 2

Suppose now that ��1 = 1, so ~f1;t can be interpreted via Theorem 8 as the mass at time t

containing a particle labeled 1 in the ranked mass coalescent derived from frequencies of the standard

F -coalescent. The following proposition, which follows easily from the dynamics of �1 described

in Theorem 6, shows that the joint law of ~f1;t and ~f1;t+u is uniquely determined by the distribution

of the sequence ( ~fi;t; i = 1; 2; : : :) and the distribution ~Fu of ~f1;u. In principle, a similar description

could be given of the conditional distribution of ( ~fi;t+u; i = 1; 2; : : :) given ( ~fi;t; i = 1; 2; : : :), which

would determine the Markovian dynamics of the shunted �-coalescent, de�ned as in [15], whose state

at time t is ( ~fi;t; i = 1; 2; : : :).

Proposition 31 Let �1 be a standard �-coalescent for � with ��1 =1. Let Ii(t; u) be the indicator

of the event that the ith block of �1(t), whose frequency is ~fi;t, has merged with the block containing

1 by time t+ u, so that

~f1;t+u =
1X
i=1

~fi;tIi(t; u) (55)

where I1(t; u) = 1. Then the (Ii(t; u); i = 2; 3; : : :) are exchangeable( ~Fu) indicators which are inde-

pendent of the sequence ( ~fi;t; i = 1; 2; : : :).

As a check, take expectations in (55) and use E (
P1

i=2
~fi;t) = 1 � E ( ~f1;t) = e�t and E (Ii(t; u)) =

E ( ~f1;u) = 1 � e�u to recover 1 � e�(t+u) = (1 � e�t) + e�t(1 � e�u): Less obvious identities can be

obtained from the equality of higher moments in (55).

Applied to the U -coalescent, Proposition 31 yields the following result, which amounts to the

description of two-dimensional distributions given in parts (i) and (ii) Corollary 16.
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Proposition 32 In the standard U-coalescent, for each t; u > 0 the joint law of ~f1;t and ~f1;t+u is

determined as follows: the distribution of ~f1;t is beta(1 � e�t; e�t), and

1� ~f1;t+u = (1� ~f1;t)Zt;u (56)

where Zt;u is independent of ~f1;t with beta(e�t � e�(t+u); e�(t+u)) distribution.

Proof. The identi�cation of the distribution ~Ft of ~f1;t for the standard U -coalescent was indicated

already in (19). Lemma 9 and (19) yield also that ~fi;t = (1 � ~f1;t) ~f�i�1;t for i = 2; 3; : : : where

( ~f�j;t; j = 1; 2; : : :) is the sequence of frequencies of blocks of an (e�t; e�t) partition, and this sequence

is independent of ~f1;t. A manipulation of (55) now yields (56) with

Zt;u = 1�
1X
j=1

~f�j;tIj+1(t; u) (57)

which is independent of ~f1;t. Finally, the distribution of Zt;u is identi�ed by a moment computation.

2

In the proof of the previous proposition, the distribution of Zt;u displayed in (57) was identi�ed.

Take � = e�t and � = e�u in (57) to deduce the following corollary:

Corollary 33 For � and p in (0; 1) let g�;p(x) denote the probability density at x 2 (0; 1) of the

random variable
P1

n=1 Vn;�Yn;p where the sequence (Vn;�; n = 1; 2; : : :) has PD(�;�) distribution,

(Yn;p; n = 1; 2; : : :) is a sequence of independent Bernoulli(p) indicators, and the two sequences are

independent. Then for each �; x 2 (0; 1), the the function p 7! g�;p(x) is characterized by the

following formula: for � 2 (0; 1)

1

�(1 � �)�(�)

Z 1

0
p��(1 � p)��1g�;p(x)dp =

�(�)

�(� � ��)�(��)
x�����1(1� x)���1: (58)

That is to say, the mixture over p of the distribution of
P

n Vn;�Yn;p, for p given a beta(1 � �; �)

distribution, is the beta(����; ��) distribution. For �xed � and x the left side of (58) is essentially

a Mellin transform in �, so this formula determines the the function p 7! g�;p(x) by uniqueness of
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Mellin transforms. The probability density x 7! g�;p(x) was characterized in a di�erent way in [7,

(4.b')] by the following formula: for � > 0

Z 1

0

g�;p(x)dx

(1 + �x)�
=

1

1 + ((1 + �)� � 1)p
: (59)

This probability density g�;p(x) is the density of the time spent positive by a skew-Bessel bridge

(bt; 0 � t � 1) of dimension 2 � 2�, with p = P(Xt > 0) for each �xed t 2 (0; 1). See also [36,

x4]. For � = p = 1=2 this is the density of the time spent positive by a standard Brownian bridge,

which, according to a famous result of L�evy, is uniform. That is g1=2;1=2(x) = 1 for all x. No explicit

formula for g�;p(x) seems to be known for other values of (�; p), but one should be obtainable from

(58) by inversion of the Mellin transform. See also Tsilevich [41] for study of related distributions.

As a check on Corollary 33, formula (58) can be derived from (59) as follows. For k = 0; 1; 2; : : :

a random variable Zr;s with beta(r; s) distribution has kth moment E (Zk
r;s) = [r]k=[r + s]k where

[x]k = x(x+ 1) : : : (x+ k � 1). So for � 2 (0; 1) and jaj < 1

E

 
1

1 + aZ1��;�

!
=

1X
k=0

(�a)kE (Zk
1��;�) =

1X
k=0

(�a)k
[1� �]k

k!
= (1 + a)�(1��):

Apply this with a = (1+�)��1 to see that for Z whose distribution is the mixture of the distributions

characterized by formula (59), for p given a beta(1 � �; �) distribution,

E

"
1

(1 + �Z)�

#
= (1 + �)�(����): (60)

But also

E

"
1

(1 + �Z����;��)�

#
=

1X
k=0

(��)k
[�]k
k!

[�� ��]k
[�]k

= (1 + �)�(����): (61)

From the identity of these transforms it follows that Z has the same distribution as Z����;��, as

claimed in Corollary 33.

4 Coagulation and fragmentation operations on the two

parameter family

Theorem 12 will be proved after two lemmas which follow easily from De�nitions 5 and 11.
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Lemma 34 Let �i
1 for i = 1; 2 be two random partitions of N, with restrictions �i

n to [n]. Let p1

and p be two exchangeable probability distributions on P1. Then the following two conditions are

equivalent:

(i) �1
1 is exchangeable with distribution p1 and for all � 2 P1

P(�2
1 2 � j�1

1 = �) = p -coag(�; � );

(ii) for each n = 1; 2; : : : the joint law of (�1
n;�

2
n) on Pn �Pn is given by the following formula:

for each pair of partitions �1 := fA1; : : : ; AKg and �2 := fB1; : : : ; Bkg of [n] such that �1 is a

re�nement of �2, and #f` : A` � Big = ji for each 1 � i � k

P(�1
n = �1;�2

n = �2) = p1(a1; : : : ; aK)p(j1; : : : ; jk) (62)

where ai = jAij, and
Pk

i=1 ji = K.

When the conditions of the lemma hold, �2
1 is evidently exchangeable with EPF p2(n1; : : : ; nk)

obtained for (n1; : : : ; nk) with
P

i ni = n by summing formula (62) over all �1 2 Pn which are

re�nements of �2 for any particular �2 with jBij = ni for all i. In principle then, Lemma 34 describes

the action of p -coag on an arbitrary exchangeable distribution p1. This induces an operation on the

set of probability measures on �S# via Kingman's correspondence. But this operation seems di�cult

to describe more explicitly. Similar remarks apply to p -frag instead of p -coag, as a consequence

of the following analog of the previous lemma. But the action of p -frag on �S# is much simpler: this

is just the operation described in a particular case in Corollary 13, and considered more generally

as an action on S# in [35].

Lemma 35 Let �i
1 for i = 1; 2 be two random partitions of N, with restrictions �i

n to [n]. Let p2

and p̂ be two exchangeable probability distributions on P1. Then the following two conditions are

equivalent:

(i) �2
1 is exchangeable with distribution p2 and for all � 2 P1

P(�1
1 2 � j�2

1 = �) = p̂ -frag(�; � );

(ii) for each n = 1; 2; : : : the joint law of (�1
n;�

2
n) on Pn �Pn is given by the following formula:

for each pair of partitions �1 := fA1; : : : ; AKg and �2 := fB1; : : : ; Bkg of [n] such that �1 is a
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re�nement of �2 obtained by breaking each Bi into ji blocks of sizes ai;1; : : : ; ai;ji for some ji � 1

with
Pk

i=1 ji = K,

P(�1
n = �1;�2

n = �2) =
kY
i=1

p̂(ai;1; : : : ; ai;ji)p2(b1; : : : ; bk) (63)

where bi = jBij =
Pji

`=1 ai;`.

Proof of Theorem 12. Let par := f(�; �) : 0 � � < 1; � > ��g, which is the set of all (�; �) such

that formula (15) de�nes an EPF corresponding to a random discrete distribution with an in�nite

number of atoms almost surely. The argument yields the following sharper form of the result:

for (�; �); (�c; �c); (�1; �1) and (�f ; �f) in par the joint distribution of (�;�0) de�ned by

(i) � is an (�; �) partition and �0 is an (�c; �c) coagulation of �

is identical to the joint distribution of (�;�0) de�ned instead by

(ii) �0 is an (�1; �1) partition and � is an (�f ; �f)-fragmentation of �0

if and only if the parameters are of the form allowed in Theorem 12, that is

�f = �; �f = ��1 = ���c; �c = �=�; �1 = �: (64)

Indeed, by application of Lemmas 34 and 35, and the formula (15) for the EPF of an (�; �) partition,

the two joint distributions in question are identical if and only if for all 1 � k � K � n < 1 and

all choices of (a1; : : : ; aK), (b1; : : : ; bk) and (j1; : : : ; jk) subject to the obvious constraints,

[�=�]K
[�]n

 
KY
`=1

�[��]a`

!
[�c=�c]k
[�c]K

kY
i=1

�[��c]ji

=
[�1=�1]k
[�1]n

 
KY
`=1

�[��f ]a`

!
kY
i=1

�[��1]bi[�f=�f ]ji
[�f ]bi

:

If (64) holds this equality is evident by inspection. The necessity of (64) can be deduced using the

fact that if
Qk

i=1[��]ni = cn;k
Qk

i=1[��]ni for all 1 � k � n and all (n1; : : : ; nk) with
P

i ni = n for

some constants cn;k, then � = �. 2

Looking at (62) and (63), there appears to be little hope of matching the two formulae unless all

the EPF's involved are of the Gibbs form

p(n1; : : : ; nk) =
bk
cn

kY
i=1

w(ni) (65)
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for some sequences of weights (b1; b2; : : :) and (w1; w2; : : :) and some sequence of normalization con-

stants (c1; c2; : : :) determined by these weights. As shown by Kerov [21], the (�; �) formula (15) and

its limiting cases yield every EPF of this form. So it might be that Theorem 12 describes the only

possible choices of non-degenerate laws p1 and p of exchangeable random partitions of N such that

the action of the p -coag on p1 to obtain p2 can be inverted by p̂ -frag for some p̂.

A Exchangeable Random Partitions

This appendix recalls the basic results of Kingman's theory of exchangeable random partitions, which

are used throughout the paper.

Let � be a random partition of N with restrictions Rn� to [n] for n = 1; 2; : : :. Call �

exchangeable i� for each particular partition fB1; : : : ; Bkg of [n] into k blocks, the probability

P(Rn� = fB1; : : : ; Bkg) is a symmetric function of the sizes n1; : : : ; nk of the sets B1; : : : ; Bk, say

P(Rn� = fB1; : : : ; Bkg) = p(n1; : : : ; nk):

Then p is a non-negative symmetric function of sequences of positive integers (n1; : : : ; nk) of arbi-

trary �nite length, subject to p(1) = 1 and a sequence of addition rules with obvious probabilistic

interpretations, the �rst few of which are

p(1) = p(2) + p(1; 1); p(2) = p(3) + p(2; 1); p(1; 1) = 2p(2; 1) + p(1; 1; 1): (66)

Following [31], call p the exchangeable probability function (EPF) of �. The same symbol p may

denote the probability distribution of � on P1. So p(n1; : : : ; nk) is the pmeasure of the set f� 2 P1 :

Rn� = �ng for each particular partition �n of [n] into k blocks of sizes (n1; : : : ; nk). For a sequence of

random variables Y1; Y2; : : : let �(Y1; Y2; : : :) denote the random partition of N whose blocks are the

sets fi : Yi = yg as y ranges over all values of the Yi. Let �S# be the set of all non-negative sequences

x = (x1; x2; : : :) with x1 � x2 � : : : � 0 and
P

i xi � 1, and give �S# the topology of coordinatewise

convergence. For x = (x1; x2; : : :) 2 �S# let px denote the distribution of �(Y1; Y2; : : :) for Yn that

are independent and identically distributed according to some probability distribution on the line

whose nth largest atom is xn, and whose continuous component has probability 1�
P

n xn.
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Theorem 36 (Kingman's correspondence [24, 25]). A bijective correspondence p $ P between

probability distributions p of exchangeable random partitions of N and probability distributions P on
�S# is determined as follows. Each block Bn of an exchangeable random partition � = fB1; B2; : : :g of

N with distribution p has an almost sure limiting relative frequency ~fn. Let P be the distribution on
�S# of the ranked rearrangement f of these frequencies. Then the conditional distribution of � given

f = x is px, so p =
R
�S# P (dx)px. This correspondence is continuous in the sense that a sequence of

EPF's pn has a pointwise limit p if and only if the corresponding sequence of probability distributions

Pn on �S# has a weak limit P , and then p corresponds to P .

The most general distribution p of an exchangeable random partition of N is thus obtained as the

distribution of �(Y1; Y2; : : :) for a sequence of exchangeable random variables (Yn). For, according to

de Finetti's theorem, such Y1; Y2; : : : are conditionally independent with distribution G given some

random probability distribution G. The corresponding P is then the distribution of ranked sizes

of atoms of G. Aldous [2] gave a quick proof of Kingman's correspondence based on de Finetti's

theorem. If the sequence of ranked frequencies f = (f1; f2; : : :) of the exchangeable random partition

� is proper, meaning
P

n fn = 1 almost surely, the EPF p is determined by the distribution P of f

via the formula

p(n1; : : : ; nk) =
X

(i1;:::;ik)

E

0
@ kY
j=1

f
nj
ij

1
A (67)

where the sum is over all sequences of distinct positive integers (i1; : : : ; ik). See also [31, 33] for

simpler characterizations of the EPF in terms of the distribution of frequencies of blocks of � in

order of their least elements.
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