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Abstract

Given a density f on Euclidean k-space Rk and a starting point x, choose a line L
at random through x and move to a point on L chosen at random from f restricted to
L. This procedure de�nes a Markov chain|the \hit and run process." The given density
f is stationary; for almost all starting points x, the distribution of the chain at time n
converges to the stationary distribution as n gets large. This expository paper proves some
of the convergence theorems, and gives examples.

1. Introduction

This paper is largely expository. We explore convergence properties of the \hit and
run" process, as de�ned below. The mathematical context is (1); heuristics will be dis-
cussed later.

(1) Let f � 0 be a non-negative, real-valued function on Rk, with

Z
Rk
f(x) dx = 1.

If x 6= x0 are two points in Rk, let Lxx0 be the line through them, and let Mxx0 =Mxx0(f)
be the integral of f along Lxx0 . Generally, 0 < Mxx0 < 1, but there are exceptions (see
below). If 0 < Mxx0 < 1, let �xx0 be the probability measure on Lxx0 whose (linear)
density is f restricted to Lxx0 and renormalized. The \hit-and-run" kernel Qx(dy) is an
algorithm for choosing y given x:

(i) Choose a point x0 at random on the sphere of radius 1 centered at x.
(ii) If 0 < Mxx0 <1, choose a point at random from �xx0 and move to that point.
(iii) Otherwise, stay at x.

A little more notation is needed. If � is a probability and K = Kx(A) is a kernel, the
probability �K is de�ned by the relation �K(A) =

R
Kx(A)�(dx). If K and L are kernels,

then KL is the kernel (KL)x = KxL. Multiplication of kernels is associative. If �, � are
probabilities, then k� � �k = supA j�(A) � �(A)j. If x 2 Rk, then kxk is the Euclidean
norm of x. Our objective in this paper is to provide relatively self-contained proofs of the
following three facts:

Theorem 1. Assume (1). Let �(dx) = f(x) dx. Then � is stationary under Q, that
is, �Q = �.

Theorem 2. If f satis�es condition (1), then kQn
x��k ! 0 as n!1, for Lebesgue-

almost all x in Rk.

Theorem 3. Suppose f vanishes o� some compact set C, and
R
C
f(x) dx = 1. Sup-

pose there is a �nite constant c with 0 � f � c on C. Then there is a � = �c 2 (0; 1) such

1



that supx2C kQn
x � �k < (1� �)n for all n = 1; 2; : : : :

These theorems will be proved in sections 2{4. Under condition (1), convergence can
be arbitrarily slow; examples will be given in section 5. Variations on the hit-and-run
algorithm will be discussed in section 6, which also has a literature review, and explains
the motivation for this line of research.

2. Proof of Theorem 1

Throughout this section, we assume (1). The easy proof of Lemma 1 is omitted.

Lemma 1. Mxy = Myx for all x 6= y in Rk. Moreover, Mxy = Mxz provided
z � x = a(y � x) for some real number a 6= 0.

Part of the reasoning for Lemma 3 may be easier to see in the abstract. Let (
i;Fi)
be measurable spaces; P1 is a probability on F1 and �2 is a �-�nite measure on F2; V
is a measurable mapping from 
1 to 
2, whose distribution P2 = P1V

�1 happens to be
absolutely continuous with respect to �2, having density g.

Lemma 2. P1fg(V ) > 0g = 1.

Proof. Plainly, g > 0 almost surely with respect to g d�2; that is, P2fg > 0g = 1. But
P1fg(V ) > 0g = P1V

�1fg > 0g = P2fg > 0g. QED

The \unit sphere" in Rk is Sk = fv : v 2 Rk and kvk = 1g; this is a (k�1)-dimensional
object in k-dimensional space.

Lemma 3. For each x, for �-almost all y, Mxy > 0.

Proof. Without real loss of generality, take x = 0. Let v be a point in the unit
sphere Sk. Let 
v =

R1
0
rk�1f(rv) dr. Then 
v � 0 and

R

v dv = 1, as one sees by

changing to polar coordinates: indeed, v ! 
v is the density of V (y) = y=kyk, where y is
picked at random from f . Thus, 
V (y) > 0 for �-almost all y, by Lemma 2. Consequently,

0 <
R1
0
f
�
rV (y)

�
dr =M0y for �-almost all y. QED.

Lemma 4. Mxy(f) is a jointly measurable function of x and y.

Proof. If f is continuous and vanishes o� a compact set, then x; y ! Mxy(f) is
continuous. The argument can be completed in the usual way, via repeated monotone
passages to the limit. QED

Let �k be the uniform distribution on the unit sphere Sk; �k is normalized to have
total mass 1. Let X1 consist of all the x in Rk such that Mx;x+v < 1 for �k-almost all
v 2 Sk. If A;B are sets, we write A� B for the set of points in A but not in B.

Lemma 5. X1 is Borel, R
k � X1 has Lebesgue measure 0, and �(X1) = 1.

Proof. That X1 is Borel measurable follows from Lemma 4 and Fubini's theorem. Let
� run through a �xed (k�1)-dimensional linear subspace L of Rk, for instance, all vectors
whose kth coordinate vanishes. Let t run through the real line R. For each v 2 Sk � L,
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there is a constant cv such that for any measurable g � 0 on Rk,

(2)

Z
Rk
g(x) dx = cv

Z
L

Z
R

g(� + tv) dtd�:

This is an \oblique" version of Fubini's theorem; cv is the sine of the angle between v and
L: the more familiar version has v ? L and cv = 1. Let L0 be the set of � 2 L with
M�;�+v(f) = 1: this is a Borel set with Lebesgue measure 0, as one sees by using (2)
with f in place of g. Since Mxy depends only on the line through x and y, the set Lv
of x 2 Rk with Mx;x+v = 1 is the set of lines parallel to v running through points in
L0. So Lv has Lebesgue measure 0 by another application of (2). In other words, for each
v, Mx;x+v < 1 for almost all x. By Fubini's theorem|the ordinary measure-theoretic
one|for almost all x, Mx;x+v < 1 for almost all v 2 Sk. Lemma 3 shows that for all
x, �kfMx;x+v > 0g > 0. Hence, Rk � X1 is Lebesgue-null, and �(X1) = 1 because � is
absolutely continuous. QED

Lemma 6. LetQx(dy) be the kernel for the hit and run process. Let sk = 2�k=2=�(k=2)
be the \surface area" of the unit sphere Sk. And let

Q0
x(dy) =

2f(y) dy

skky � xkk�1Mxy
;

with the understanding that the right hand side is 0 for y with Mxy = 0 or 1. (It is
possible that Q0

x(R
k) < 1, even for a set of x's of positive Lebesgue measure.)

(a) If 0 < Mxy <1 for Lebesgue-almost all y, then Qx = Q0
x.

(b) Otherwise, Qx(dy) = Q0
x(dy) + px�x, where px is the chance of choosing x0 2 Sk

with Mxx0 = 0 or 1, and �x is point mass at x.

Proof. We follow the convention that 0=0 = 0=1 = 0, and keep x0 2 Sk:

Qx(A) =
1

sk

Z
Sk

�xx0(A) dx
0 + px�x

=
2

sk

Z
Sk

Z 1

0

1A(x+ rx0)f(x+ rx0)

Mx;x+x0
drdx0 + px�x

=
2

sk

Z
Rk

1A(y)f(y)

ky � xkk�1Mxy
dy + px�x:

The 1st equality holds by the de�nition of the hit-and-run process; the 2nd, by the de�ni-
tion of �xx0 . The factor of 2 comes in because r is restricted to the positive half-line, while
�x;x0 covers the whole line. The last equality is obtained by changing from polar to rect-
angular coordinates: dy = rk�1drdx0. Polar coordinates are centered at x, so r = ky� xk.
QED

Corollary 1.

Z
Rk

2f(y)

skky � xkk�1Mxy
dy = 1� px:
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This and Lemma 1 prove Theorem 1. Indeed,

Z
Rk
f(x)Qx(A) dx =

Z
Rk
f(x)px1A(x) dx+

Z
Rk
f(x)Q0

x(A) dx

=

Z
Rk
f(x)px1A(x) dx+

Z
Rk

Z
Rk

2f(x)f(y)1A(y)

skky � xkk�1Mxy
dydx

=

Z
Rk
f(x)px1A(x) dx+

Z
Rk

Z
Rk

2f(x)f(y)1A(y)

skkx� ykk�1Myx
dxdy

=

Z
Rk
f(x)px1A(x) dx+

Z
Rk
f(y)1A(y)(1� py) dy

=

Z
Rk
f(y)1A(y)py dy +

Z
Rk
f(y)1A(y)(1� py) dy

=

Z
Rk
f(y)1A(y) dy:

Corollary 2. Let X consist of all the x in Rk such that 0 < Mx;x+v < 1 for a
set of v 2 Sk of positive �k-measure, with Sk the unit sphere in Rk, and �k the uniform
distribution on Sk. Then X is Borel, Rk � X has Lebesgue measure 0, and �(X) = 1. For
every x 2 X, Qx = px�x + (1 � px)Q

0
x where 0 � px < 1, �x is point mass at x, and

Q0x � �; in particular, Qx(X) = 1. Moreover, Q0 is a kernel.

Remarks.

(i) Lemma 5 cannot be improved to \all x." For instance, let f(x) � e�kxk=kxkk�1.
Then M0y =1 for all y 6= 0.

(ii) In case (b) of Lemma 6, there are some x0 2 Sk with
R
L
xx0

f(y) =1, and some x0

with f = 0 almost everywhere on Lxx0 . The �rst sort of x
0 generate a cone with apex at

x; for y in this cone, Mxy = 1. This cone has Lebesgue measure 0, for Lebesgue-almost
all x; that is the content of Lemma 5. (A \cone" has a measurable base, but may be quite
irregular in shape.) Likewise, the second sort of x0 generate a cone with apex at x; for y
in this cone, Mxy = 0. This second cone may well have positive Lebesgue measure, but
its �-measure is 0 for all x; that is the content of Lemma 3. For a concrete example, take
k = 2; let x 2 R2 have coordinates x1 and x2. Let f(x) � e�kxk provided x1 > 0 and
x2 > 0; otherwise, f(x) = 0. If x1 < 0 and x2 < 0, then Mxy = 0 if (y1�x1)(y2�x2) < 0.

(iii) If x is a Lebesgue point of ff > 0g, then Mxy > 0 for Lebesgue-almost all y. In
particular, �fpx = 0g = 1.

(iv) For x 2 X, Qx is reversible relative to �.
(v) In proving Theorem 2, we will show that kQn

x � �k ! 0 for all x 2 X. If on the
other hand x =2 X, the hit-and-run process stagnates at x.

3. Proof of Theorem 3

We begin with a result of Doeblin's, stated a bit more abstractly than is needed for
Theorem 3. Let (X;B) be a measurable space. Let Qx(A) be a kernel. That is, A! Qx(A)
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is a probability on B while x! Qx(A) is B-measurable. Let ' be an auxiliary probability
on (X;B), and � a positive real number. We assume that for all A 2 B and all x 2 X,

(3) Qx(A) � �'(A):

Theorem 4. Assume (3).
(a) There is a unique stationary probability �.
(b) � � �'.
(c) kQn

x � �k � (1� �)n for all x 2 X.
Proof. If �; � are probabilities on (X;B), and 0 � f � 1 is a measurable function,

then

j R f d�� R f d�j � k�� �k � 1;

these inequalities will be used below. Let Rx = (Qx � �')=(1� �), which is also a kernel.

Step 1. If � and � are two probabilities on B, then

k�Qn � �Qnk � (1� �)nk�� �k:
Indeed,

�Qn =

Z
X

Z
X
Qn�1
y Qx(dy)�(dx)

= �

Z
X

Z
X
Qn�1
y '(dy)�(dx) + (1� �)

Z
X

Z
X
Qn�1
y Rx(dy)�(dx)

= �'Qn�1 + (1� �)�RQn�1:

Therefore,

k�Qn � �Qnk = (1� �)k�RQn�1 � �RQn�1k
= (1� �)2k�R2Qn�2 � �R2Qn�2k
...

= (1� �)nk�Rn � �Rnk
� (1� �)nk�� �k:

Step 2. If � is any probability on B, then fQn : n = 1; 2; : : :g is a Cauchy sequence of
probabilities. Indeed, by Step 1,

k�Qn � �Qn+mk = k�Qn � (�Qm)Qnk � (1� �)n:

Step 3. If � is any probability on B, then �Qn converges to a limiting probability � as
n!1; convergence is at a geometric rate, and the limit does not depend on �. Indeed,
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k�Qn � �Qn+mk � (1� �)n:

Let m!1, so Qn+m ! �:

k�Qn � �k � (1� �)n:

In principle, � could depend on �, but that possibility is eliminated by Step 1.

Step 4. � is stationary. Indeed,

�� �Q = lim(�Qn � �QQn) = lim�Qn � lim�Qn+1 = 0:

Step 5. � is unique, by Step 1.

Step 6. It remains only to prove claim (b). Now

� = �Q = �(�'+ R) � �':

This completes the proof of Theorem 4, and Theorem 3 follows. Indeed, Mxy is
positive for �-almost all y; it and kx� yk are bounded above. Theorem 4 applies, with '
a small multiple of �: see Lemma 6.

4. More on Doeblin's theory

References on Doeblin's theory of Markov chains include Doob (1953) and Orey (1971).
This theory does not seem to be so accessible, even today; we will prove here the results we
need, taking advantage of special features which permit a simpli�cation of the argument.
We begin by extending Theorem 4, replacing (3) by a \local" condition. Again, (X;B) is a
measurable space; Qx(A) is a kernel; ' is an auxiliary probability on B; and � > 0. Now,
C is a �xed set in B, with '(C) > 0. The local condition is that

(4) Qx(A) � �'(A) for x 2 C:

Suppose further that, from any starting positions, a pair of independent chains will hit C
almost surely at the same time. More speci�cally, if X and Y are independent Markov
chains moving according to Q, with X0 = x and Y0 = y, we assume the coupling condition

(5) ProbfXn 2 C and Yn 2 C for some n = 1; 2; : : :g = 1; for any x and y:

Condition (4) is weaker than (3), because nothing is assumed for x =2 C. As written,
the condition is to hold for all A, whether or not A � C. That is of course immaterial,
because ' can be restricted to C and then renormalized. The set C is like \C-sets" in
the literature; compare p. 7 in Orey (1971). Condition (5) is a strong type of recurrence
condition.
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Theorem 5. Let � and � be two starting probabilities on (X;B). The local Doeblin
and coupling conditions (4{5) imply k�Qn � �Qnk ! 0 as n!1.

Proof. We construct two independent chains Xn and Yn starting from � and � re-
spectively. Let �1 be the �rst time that both chains hit C. We can rede�ne X and Y so
that with probability � their next move is from the ' in (4), hence the rede�ned processes
agree from �1 + 1 forwards; with the remaining probability 1 � � the processes continue
to move independently. Now by strong Markov there will be another time at which both
chains are simultaneously in C, and so forth. In short, given any � > 0, we can construct
chains X�

n and Y �
n which start from � and � respectively, such that

ProbfX�
n = Y �

n for all su�ciently large ng > 1� �:

Hence
lim infn!1 ProbfX�

n = Y �
n g > 1� �;

which completes the proof. QED

Remark. Theorem 5 applies to nonstationary processes, for instance, the random
walk on the integers.

To use Theorem 5, it is necessary to verify the conditions. The hit-and-run kernel has
two features which make veri�cation relatively easy:

(6a) a stationary probability � is given;

(6b) for all x, Qx = px�x + (1� px)Q
0
x, where 0 � px < 1, �x is point mass at x, and

Q0x � �.

(For the hit-and-run kernel, the second condition holds after deleting a null set of x's.)
To exploit the stationarity, we use the following lemma, which is well known in ergodic

theory. Let (
;F;P) be a probability triple, and let T be a measure-preserving transfor-
mation: that is, T is a measurable mapping of 
 into itself, and PT�1 = P. If F 2 F, let
�F be the time of the �rst return to F : that is, �F (!) is the least n = 1; 2; : : : if any with
Tn(!) 2 F , and �F (!) =1 if none.

Lemma 7. If P(F ) > 0 then Pf �F <1jF g = 1.

Proof. Let F0 = F � (T�1F [ T�2F [ � � �): Starting from F0 � F , the process never
returns to F . Suppose by way of contradiction that PfF0g > 0. Now F0; T

�1F0; : : : are
pairwise disjoint sets with the same positive probability, which is impossible. QED

Remark. Suppose P(F ) > 0. Let PF = Pf � jF g. De�ne TF almost surely on F as
TF = T �F . Then TF is measure-preserving relative to PF .

The kernel Q is \'-irreducible" if, for all x in X and all A 2 B with '(A) > 0, there
is a positive probability that a chain starting from x at time 0 hits A in positive time: in
other words, '(A) > 0 implies Vx(A) > 0, where

(7) Vx(A) =
1X
n=1

Qn
x(x;A):

7



Generally, irreducibility is much weaker than recurrence. However, condition (6)|which
implies irreducibility and stationarity|is enough to get recurrence, in the form of the
coupling condition (5).

Lemma 8. Suppose the kernel Q on (X;B) satis�es (6). Suppose F 2 B and �(F ) >
0. For any x 2 X, a chain starting from x and moving according to Q visits F i.o. a.s.

Proof. Let ~F be the set of x such that a chain starting from x and moving according
to Q is almost sure to hit F in�nitely often. We begin by showing that �( ~F ) = 1.
Now Qx(F ) > 0 for all x 2 X by (6b), because �(F ) > 0. Thus, X =

S
m Fm, where

Fm = fx : Qx(F ) > 1=m g. Therefore, it su�ces to prove that Qxf hit F i:o:g = 1 for
�-almost all x 2 Fm.

In view of Lemma 7, for �-almost all x 2 Fm, a chain that starts from x and moves
according to Q will return to Fm i.o. a.s. On each return, the chain has chance at least
1=m to hit F , and the conditional form of the Borel-Cantelli lemma completes the proof
that �( ~F ) = 1. (Of course, some of the Fm may be empty or �-null; for such Fm, the
argument is vacuous.)

Now N = X� ~F is �-null; there seems to remain the possibility that N is non-empty.
However, condition (6b) shows that N is actually empty. Indeed, starting from x, the
process is almost sure to move eventually, and when it moves, it almost surely moves to
some y 2 ~F : from there it will almost surely visit F in�nitely often. QED

For reasons that will be clear in a moment, we need to consider the chain at times
0; 2; 4; : : : :

Lemma 9. Suppose the kernel Q on (X;B) satis�es (6). Then Qj satis�es the cou-
pling condition (5), for any positive integer j, and any set C of positive �-measure.

Proof. To begin with, Qj satis�es (6), so we might as well take j = 1. Now de�ne
R = Q�Q as a kernel on (X� X;B�B):

Rxy(D) = (Qx �Qy)(D)

for any product-measurable set D. It is easy to see that R satis�es (6), the stationary
probability being �� �. Lemma 7|with F = C � C|completes the proof. QED

The next project is to construct a C-set as in (4). That may not be possible for Q
itself, but is possible for Q2. (This wrinkle necessitates the k in the previous lemma.) We
adapt the argument from Orey (1971). For the measure-theoretic preliminaries, let (Xi;Bi)
be measurable spaces, and let  i be a probability measure on (Xi;Bi). The setting for
Lemma 10 is the product space (X1 � X2; B1 � B2;  1 �  2); the leading special case,
of course, is Lebesgue measure on the unit square. If A � X1 � X2, then Ax� is the
vertical section of A through x, namely, fy : y 2 X2 and (x; y) 2 Ag. Likewise, A�y is the
horizontal section through y. We use � for the generic small positive number, and N for
the generic large positive number.

Lemma 10. Let g be a non-negative, measurable function on X1 � X2, withR
g d 1d 2 � �.
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Then
 1
�
x : x 2 X1 and

R
g(x; y) 2(dy) �

p
�
	 � p

�.

Proof. Let U(x) =
R
g(x; y) 2(dy); consider U as a random variable on the probability

triple (X1;B1;  1). By Fubini's theorem, E(U) =
R
g d 1d 2. This is at most � by the

conditions of the lemma, so the chance that U � N� is at most 1=N by Markov's inequality.
Put N = 1=

p
� to complete the proof. QED

Corollary 3. If A 2 B1 �B2 and ( 1 �  2)(A) � �, then

 1fx : x 2 X1 and  2(Ax�) �
p
� g � p

�:

Proof. Use Lemma 10, with g = 1A. QED

Corollary 4. If B 2 B1 � B2 and ( 1 �  2)(B) � 1� �, then

 1fx : x 2 X1 and  2(Bx�) > 1�p� g � 1�p�:
Proof. Set A = X1 � X2 � B. Then ( 1 �  2)(A) � �. By Corollary 3,

 1fx : x 2 X1 and  2(Ax�) �
p
� g � p

�:

so that

 1fx : x 2 X1 and  2(Ax�) <
p
� g � 1�p�:

But  2(Ax�) <
p
� i�  2(Bx�) > 1�p�, which completes the proof. QED

Our next topic is lower bounds on transition densities. Recall that (X;B) is a measur-
able space; let  is a probability on B. Let p(x; y) be a non-negative measurable function
on X � X, with R p(x; y) (dy) = 1. Then p is a transition density with corresponding
kernel P (x; dy) = p(x; y) (dy). If p and q are transition densities, so is

(p ? q)(x; y) =

Z
p(x; u)q(u; y) (du):

Now p?n can be de�ned in the obvious way. Even if p is positive everywhere, p � � may
include no positive rectangle|see Example 1 below. However, the two-step density does
admit such rectangles; that is the content of the next result.

Proposition 1. Suppose p is a transition density and p(x; y) > 0 for all x; y. For
any � with 0 < � < 1, there are measurable sets G�, H� and a positive real number �0 such
that  (G�) > 1� �,  (H�) > 1� �, and p?2(x; y) � �0 > 0 for all x 2 G� and y 2 H�.

Proof. Without loss, we take 0 < � < 1=3. There is a �nite positive N so large thatR
p^N d 2 � 1� �2. (As usual, for non-negative a and b, a ^ b is the smaller of the two.)

Let G be the set of x 2 X with
R
p(x; u)^N  (du) > 1 � �. Lemma 10 may be applied

to p � p^N , to see that  (G) � 1 � �. Let � be a small positive number, to be chosen
later, and de�ne �0 = 1 �  2fp � �g; thus �0 # 0 as � # 0. Let H be the set of y in X
for which  fp(�; y) � �g > 1 �p�0. Then  (H) � 1�p�0, by Corollary 4 applied to the
set B of pairs (x; y) in X2 with p(x; y) � �; horizontal and vertical directions have been
interchanged.
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Fix x 2 G and y 2 H. Now

p?2(x; y) =

Z
X
p(x; u)p(u; y) (du)

� �

Z
fp(u;y)��g

p(x; u) (du)

� �

Z
fp(u;y)��g

p(x; u)^N  (du)

� �
h Z

p(x; u)^N  (du)�N fu : p(u; y) < � g
i

> �
h
1� � �N fu : p(u; y) < � g

i

> �
h
1� � �N

p
�0
i
;

the second-to-last line holds because x 2 G, and the last line holds because y 2 H. We now
choose � so small that �0 < �2 and N

p
�0 < 1=3. That completes the proof of Proposition 1.

QED

Corollary 5. If the kernel Q satis�es (6), then Q2 satis�es the local Doeblin condi-
tion (4).

Proof. Use Proposition 1 on the transition density of the kernel Q0x, with � in place
of  . Let C = G� \ F�, where F� = fx : px < 1� �g and � is chosen so that �(F�) > 1� �.
let ' be � retracted to H� and renormalized to have mass 1. QED

Remark. The C-set may be chosen to have �-measure arbitrarily close to 1; the
auxiliary measure ' may be chosen to be arbitrarily close to �.

Corollary 6. If the kernel Q satis�es (6), then kQn
x � �k ! 0 as n ! 1, for all

x 2 X.
Proof. This is immediate from Corollary 5 and Theorem 5; even and odd n can be

considered separately. QED.

Proof of Theorem 2

We can restrict x 2 Rk to the X of Corollary 2. The probability � on X is stationary
by Theorem 1, and condition (6) holds by Corollary 2. Corollary 6 completes the proof.

Example 1. Let X = [0; 1] and let B be the �-�eld of Borel sets in X. Let '
be Lebesgue measure on B. There is a positive measurable function f on X2 with the
following property. If (i) � > 0, (ii) A and B are Borel sets, and (iii) A�B � ff � �g up
to a '2-null set, then '(A)� '(B) = 0.

Construction. Let R consist of the rationals in the open interval (0, 2). Let x be
the point (x1; x2) in X

2. The basic idea is to set f(x) = 1 unless x1 + x2 2 R, otherwise
f(x) = 0. Then f > 0 includes no measurable rectangle of positive measure. However,
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f(x) = 0 for some x, and f � 1=2 includes the whole unit square|up to a null set. To
remove these blemishes, we rede�ne f , as follows. Order R as r1; r2; : : : : Fix a sequence of
small positive numbers �i such that

P
i �i < 1=10. Let Vi consist of all x = (x1; x2) 2 X2

such that ri � �i < x1 + x2 < ri + �i.
De�ne fn inductively: f0(x) = 1 for all x; fn+1(x) = fn(x) except on Vn+1, where

fn+1(x) = fn(x)=2. Of course, fn(x) is non-negative, and non-decreasing with n. Let
f1(x) = limn fn(x). Plainly, f1(x) > 0 unless x 2 Vi for in�nitely many i; this set of x
has Lebesgue measure 0. Let f = f1 where f1 > 0, and f = 1 where f1 = 0. To verify
the claimed properties of f , write ? for convolution. Let A and B be Borel sets of positive
measure. Then g = 1A ? 1B is a continuous, non-negative, and non-vanishing function on
(0, 2). In particular, g > 0 on (ri � �i; ri + �i) for in�nitely many i. Consequently, there
must be in�nitely many i for which '2f(A� B) \ Vig > 0. Further details are omitted.

For the hit-and-run kernel in R2, the density of Qx(dy) with respect to �(dy) is

const.=ky � xkMxy.

There is an issue as to whether
�
(x; y) : x 2 R2; y 2 R2; ky � xkMxy < N < 1	 includes

a \rectangle" A� B, where A and B are planar Borel sets of positive Lebesgue measure.
The construction in Example 1 can be modi�ed to show that this is not necessarily so. Let
� be Lebesgue measure on the Borel subsets of [0; 1].

Example 2. There is a positive measurable function f on [0; 1]2 which has
R
f d�2 =

1, and which has the following property. If A and B are any two Borel subsets of [0; 1]2

with �(A) > 0 and �(B) > 0, and N is any �nite positive number, then

�4
�
(x; y) : x 2 A and y 2 B and Mxy(f) > N

	
> 0:

Construction. Let R consist of all pairs of points with rational coordinates on the
perimeter of [0; 1]2; each point in a pair is to be on a di�erent edge of the unit square.
Order R as r1; r2; : : :; each ri consists of a pair of points. Fix a sequence of small positive
numbers �i such that

P
i i�i < 1. Let Li be the line through ri, and let Vi be the set of

points in the unit square within a distance �i of Li, measured perpendicular to Li. De�ne
the continuous function fi on [0; 1]2 as follows: fi(x) = i if x is on Li; fi(x) = 0 if x is
outside Vi; and fi is linearly interpolated in between, along the line perpendicular to Li.
Let f =

P
i fi, normalized so that

R
f(x) dx = 1. We will refer to the Vi as \tubes."

Let A and B be Borel sets in [0; 1]2. Suppose for now that their symmetric di�erence
has positive Lebesgue measure. Let a be a Lebesgue point of A0 = A � B; let b be a
Lebesgue point of B0 = B � A. Make sure that a; b are interior points of the unit square.
Fix a positive number � < ka� bk=8. Find an open disk Da around a, of radius less than
�, such that �2(Da \ A0) > :99�2(A0). Likewise for Db with b 2 B0. Make sure that Da

and Db are wholly within the unit square.
Let � be the smaller of the two radii (of Da and Db). There will be in�nitely many

n such that �n < �=16, while Ln passes within �=16 of a and of b. Take any such n. The
tube Vn runs through Da; however, at least 1=4 of the area of Da lies above the tube.
There must therefore be a set of x, of positive Lebesgue measure, with x 2 Da \ A0, and
x above the tube. Likewise, there must be a set of y, of positive Lebesgue measure, with
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y 2 Db \ B0, and y below the tube. In particular, the line Lxy cuts through the tube
Vn, on a line segment of length at least ka � bk � 2� > 6�. Consequently, f > n=2 on a
segment of Lxy of length at least 3�, andMxy > n�. Now � > 0 is �xed, while n is free; for
su�ciently large n, n� > N , which completes the argument under the assumption that the
symmetric di�erence between the two sets has positive Lebesgue measure. Essentially the
same argument goes through if A coincides with B, provided the set has positive Lebesgue
measure: just take two di�erent Lebesgue points a; b in A.

Remarks.

(i) The function f is lower semi-continuous.

(ii) We can make
P

i �i small. Then the unit square less the tubes|[0; 1]2�Si Vi|is
large. And fMxy > Ng wholly includes no tube. The \tube-crossing" argument in the
proof is needed to overcome this di�culty.

5. The Saturn Construction

For simplicity, take k = 2. We are going to construct a density f for which Theorem 2
holds, but convergence will be arbitrarily slow. Let An : n = 1; 2; : : : be annuli centered at
the origin; An has inner radius rn which is large, outer radius rn + wn where wn is small,
and mass �n spread uniformly over the area. The �n decrease to 0 slowly, but

P
n �n = 1.

There is radial symmetry around 0. We are going to take rn = 10n, say, and show that
Qx(An+j) � 2=10j for all n; j = 1; 2; : : : , and all x 2 An.

Consider an auxiliary random walk with IID incrementsXi, where PfXi = jg = 2=10j

for j = 1; 2; : : : and PfXig = 0 with the remaining probability. We can couple the Saturn
process and the auxiliary walk so that if Saturn moves forward, so does the walk: the
coupling has to be done in time; results in space follow. The Saturn process will always
be closer to 0 than the walk. (We view the Saturn process as being on the index set of the
rings, which is permissible by radial symmetry; the walk and the process start from the
same place, i.e., if the Saturn process starts in ring An0 , the walk start at n0.)

Of course, E(Xj) =
P1

k=1

P1
j=k 2=10

j = 20=81. The auxiliary walk therefore moves
forward at rate 20=81: in other words, for any �nite constant C > 20=81, there is a positive,
�nite D and � with 0 < � < 1 such that

PfX1 +X2 + � � �+Xn > Cng < D�n:

The variation distance between Qn
x and the stationary distribution is bounded above by

D�n +
1X

i=Cn

�i:

The displayed sum tends to 0 with arbitrary slowness.
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Some geometric preliminaries

Fix r large and w small. Consider the annulus bounded by an inner circle of diameter
r and an outer circle of diameter r+w; these circles have a common center at the origin of
coordinates. Consider a line which cuts the annulus; we are interested in the length of the
cut. A moment's re
ection shows that we may assume the line to be above the horizontal
axis and parallel to it; let s be the height of the line above the horizontal axis. Let �(s)
denote the length cut o� on the annulus by the line. By Pythagoras' theorem,

�(s) = 2
�p

(r + w)2 � s2 �
p
r2 � s2

�
for 0 � s � r:

Clearly, �0 is positive and increasing, so � is convex increasing; alas, �0(r) = 1. If
r � s � r + w, then �(s) = 2

p
(r + w)2 � s2 ; further details are omitted. In particular,

we have the following result.

Lemma 11. � is convex increasing as s increases from 0 to r; then � is convex
decreasing.

Let r0 � r=10, and let w0 be another small, positive number. Consider the small
annulus bounded by circles of radius r0 and r0+w0. Suppose a line cuts the small annulus
and the big annulus. How long is the cut on big annulus?

Lemma 12. The length of the cut is at least 2w and at most 2:02w, provided w0

and w are smaller than certain small positive constants.

Proof. This follows from Lemma 11. The lower bound is immediate on putting s = 0.
For the upper bound, put s = r0 + w0. Let

 (x) =
p
(r + x)2 � (r0 + w0)2 �

p
r2 � (r0 + w0)2:

Plainly,  (0) = 0. For 0 � x � w and w small,

@

@x
 (x) =

r + xp
(r + x)2 � (r0 + w0)2

< 1:01;

because lim sup 0(x) � 1=
p
:99 as x;w0 ! 0. In particular, if w0; w are small and x < w,

then  (x) < 1:01x.

Some estimates

We need the following estimates, uniform in n = 1; 2; : : : ; � is a small positive number,
which does not depend on n; we will require � < 1=10. It is understood that we may choose
wn small.

(a) The area of An is bounded between 2�rnwn and (1+�)2�rnwn provided wn � 2�rn.
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(b) Then the density fn onAn is bounded between �n=[(1+�)2�rnwn] and �n=(2�rnwn).

(c) Draw a line through any point in An. The length cut o� on An+j is bounded
between 2wn+j and 2:02wn+j for j = 1; 2; : : : : This follows from Lemma 12 above.

(d) Fix x 2 An. Without loss of generality, put x on the horizontal axis. Draw a
backward-sloping line through x, making acute angle � with the horizontal axis; thus,
0 � � � �=2. The length cut o� on An is at least 2wn unless cos� < wn=(rn + wn). The
latter � are \bad"; the \good" � have cos� > wn=(rn + wn). The worst x in the present
regard is on the outer boundary of An: see Lemma 11. (Then you consider the isosceles
triangle with one long edge being the radius from 0 to x; the base of the triangle is the
chord whose length is to be computed.)

(e) The chance of picking a bad � is at most wn=rn. Indeed, the construction starts at
a point x in An, on the horizontal axis, and chooses a backward sloping angle � at random
between 0 and �=2. Of course, cos� = sin(�=2� �); so the chance of picking a bad � is
the chance that sin� < wn=(rn+wn). But sin� > 2�=�, so the chance of getting a bad �
is bounded above by wn=(rn + wn) < wn=rn. (This only does quadrant #2; however, #3
follows by symmetry|and the other two quadrants follow because lines are bidirectional.)

(f) Recall that Mxy is the integral of f along the line through x and y. Fix x 2 An

and y 2 An+j : later, we will choose an angle � de�ning a line through x, and move to a
random y on that line. For the good �,

Mxy � 2wnfn � �n
(1 + �)�rn

:

For the bad �,

Mxy � 2wn+1fn+1 � �n+1
(1 + �)�rn+1

:

Fix x 2 An and j = 1; 2; : : : . We compute Qx(An) by picking an angle � 2 (0; �=2)
and then a point along the corresponding line; let L�;n+j be the length cut o� by the line
on An+j , and write Mx� for Mxy, the latter being constant for y on the �-line through x:

Qx(An+j) =
2

�

Z �=2

0

fn+jL�;n+j
Mx�

d�

=
2

�

Z
fgood �g

fn+jL�;n+j
Mx�

d�+
2

�

Z
fbad �g

fn+jL�;n+j
Mx�

d�

< 1:01(1 + �)
�n+j
�n

rn
rn+j

+ 1:01(1 + �)
wnrn+1
r2n

�n+j
�n+1

rn
rn+j

< 2
rn
rn+j

:

The last inequality holds provided

1:01(1 + �)
�
1 +

wnrn+1
r2n

�
< 2;
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by assumption, �n is monotone decreasing with n, so e.g. �n+j=�n � 1.

Details for bounding the integral over the bad � are omitted; details for the good �
follow below.

2

�

Z
fgood �g

d� <
wn
rn

by (e).

1

Mx�
<

(1 + �)�rn
�n

by (f).

fn+j <
�n+j

2�rn+jwn+j
by (b).

L�;n+j < 2:02wn+j by (c).

6. Literature Review

Extending results in Smith (1984), B�elisle, Romeijn and Smith (1993) show conver-
gence for a density on a compact set; the density is positive everywhere, bounded above,
and continuous a.e. No rates are established. A fairly general probability on the unit sphere
Sk is used to choose the direction in which to move; our arguments may handle this case.
Athreya, Doss and Sethuraman (1996) show convergence and slow convergence for other
algorithms; Athreya and Ney (1978) formulate the \local Doeblin condition" in their de�-
nition (2.2), and derive convergence from the renewal theorem. B�elisle (1998) shows slow
convergence for the Gibbs sampler. Eaton (1992) proves convergence theorems using re-
versibility; also see Smith (1984). Lamperti (1960) gives martingale recurrence conditions.
The most accessible reference on Doeblin's general theory is perhaps Orey (1973); other
references are Asmussen (1987), Doob (1953), Lindvall (1992), Meyn and Tweedie (1993),
and Revuz (1984); Cohn (1993) gives an overview of the history. Doeblin (1940) and
Harris (1956) should be mentioned.

The hit-and-run construction, as we have de�ned it, is feasible for choosing a point
uniformly in a high-dimensional bounded, convex set. Otherwise, a Metropolis step could
be taken along Lxy; the arguments would be about the same, because condition (6) would
still hold. The Gibbs sampler may also be covered by our argument, although the proofs
of Lemmas 8{9 would need to be reworked: Qx ? �, but in many circumstances Qk

x has
a large component that is equivalent to �. In Diaconis and Freedman (1997), we consider
more general versions of Doeblin's theory. Elsewhere, we hope to give a more abstract
de�nition of the hit and run process, with additional examples.

If f has compact support but is unbounded, it is natural to ask whether there a rate
of convergence. B�elisle (1998a) answers this in the negative. The idea is the following. In
the unit square, put a sequence of points along the 45-degree line, converging to (1; 1). Put
a disk around each point, with radius converging very rapidly to 0. Given any sequence
pn > 0 with

P
n pn = 1, spread mass pn uniformly on the nth disk. From disk n, the angle

subtended by disk n+1 is minute, so, it takes a long time to get from disk n to disk n+1.
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