Abel-Cayley-Hurwitz multinomial expansions
associated with random mappings, forests, and
subsets™

Jim Pitman
Technical Report No. 498

Department of Statistics
University of California
367 Evans Hall # 3860
Berkeley, CA 94720-3860

June 16, 1998

Abstract

Extensions of binomial and multinomial formulae due to Abel, Cayley and
Hurwitz are related to the probability distributions of various random subsets,
trees, forests, and mappings. For instance, an extension of Hurwitz’s binomial
formula is associated with the probability distribution of the random set of vertices
of a fringe subtree in a random forest whose distribution is defined by terms of
a multinomial expansion over rooted labeled forests which generalizes Cayley’s
expansion over unrooted labeled trees.
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1 Introduction

This paper offers some developments and interpretations of the binomial and multi-
nomial expansions due to Abel [1], Cayley [14] and Hurwitz [27], by consideration of
variously constructed random subsets, trees, forests, and mappings. Study of the vari-
ous probability distributions involved is also motivated by applications treated elsewhere
[13, 22, 42, 44, 43, 45]. A central result of this paper, proved in Section 5, is the fol-
lowing generalization of Cayley’s multinomial expansion over trees. See Section 3 for
background.

Theorem 1 For a non-empty subset R of a finite set S let F(S, R) be the set of all
forests of rooted trees labeled by S, with edges directed away from the roots, whose set
of root vertices is K. Then there is the following identity of polynomials in variables
Tg,8 €S

> oete(xa)(se) 0

feF(S,R) s€S réER sES



where Cf is the number of children (out-degree) of s in the forest £, and |A| is the
number of elements of a set A.

Take , = 1in (1) to recover Cayley’s [14] well known formula |F(S, R)| = |R| |S|I¥I-1FI-1,
For 1 <k < |S| <1 Let Fr(9) be the set of all rooted forests of k trees labeled by S.
Summing (1) over all subsets R of S of size k yields the cruder identity [42, 45, 54]

SISt = (|i|:11) (Z x) - (2)

feF.(S) s€s s€S

For variables z,,s € S and a subset A of 5, let z4 := 3,4 z,. Let [n] := {1,...,n}.
Hurwitz [27] studied sums of the form

HP = (2,5 20,8 € ) o= Y (24 20) W (y 4 201 (3)
ACT)

for integers v and 8, where the sum is over all 2" subsets A of [n], and A := [n] & A.
Hurwitz used recurrences to obtain the identities

cH W =yHY ™ = (2 +y + 2)", (4)
ryH 07 = (2 y) (o 4y + )" (5)

which follows easily from (4), and
HYO = 37 AT Lea =)o +y + 20) . (6)

AC[n]
As noted by Hurwitz, for z; = 1 these formulae yield evaluations of corresponding Abel
sums [1]
= 3 (1)t oy )
a=0 a

For various combinatorial interpretations of these identities and related formulae see [30,
34, 25, 11, 50, 52, 56, 57]. Section 2 presents probabilistic interpretations of the Hurwitz
identities (4)-(5)-(6). These interpretations lead to a number of new identities involving
other homogeneous polynomials in 2 + n commuting variables z,y, z1, ..., 2z, defined by
sums of products indexed by subsets of [n]. Following is a selection of several such
identities, with references to their explanations in following sections. These explanations
involve the probability distribution of a suitable random subset of [n] derived from a
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random forest labeled by a superset of [n] with one or two extra elements. The number
of trees in the forest is £ = m 4+ 1 in (8), (9) and (10), and & = 1 in (11) and (12).
Effectively, these identities are deduced by repeated applications of Theorem 1.
(Theorem 36) For 0 < m < n:

A%%] ('2') p(z + 2y + 2 = (;) (z 4y + 2)" " (8)

which reduces to (4) for m = 0.
(Corollary 27) For 1 <m < n:

(S e e = (e s o)

(Corollary 6) For 0 < m < n:

Ol L L Z( ) A s 2o+ 00 (10

ACi) \TT

which reduces to (6) for m = 0.
(Theorem 33)

> 1A (Taea #0) (& + 2a)(@ + 27" = (& 4 240)" (1)
(Theorem 23)
> za :1:|A|_12E;]_|A|_1 = (x4 21" " (12)
AC[n]
For z; = 1 these Hurwitz type identities reduce to corresponding identities for Abel

sums. For instance, the Abel type identity derived from (9) is

3 (Z) (” = @1) (2 + a)'(n ay = = (;) (z +n)m (13)

o m &1

for 1 < m < n. The Abel type identity derived from (11) is the case b = 0 of the
telescoping sum

n

S (male + a)(w 4+ 0=t = (e +n)" " (0 < b<n) (14)

a=b
where (n), :=[[}_;(n <4+ 1), while that derived from (12) reduces easily to the elemen-
tary binomial formula.



2 Probabilistic Interpretations

This section presents probabilistic interpretations of the basic expansions, along with a
number of results which are proved in later sections. First, a brief review of probabilistic
terms as used in this paper. A probability distribution on a finite set S is a non-negative
real-valued function p := (ps, s € 5) with 3 ,c5ps = 1. The definition of p is extended to
subsets A of S by p(A) := pa := Y ;ca ps. Throughout the paper, P denotes a probability
distribution on a suitable finite set (). A function X : Q) — S is called a random element
of S. The distribution of X, denoted dist(X), is the probability distribution p on S
defined by
ps = P(X =3s):=PH{weQ: X(w) =s}) (s € 9).

It elements of S are for instance subsets of another set, or trees, or mappings, a random
element X of S may called a random set, a random tree, or a random mapping, as the
case may be, whether or not the distribution of X is uniform, meaning P(X = s) = 1/]9|
for all s € S. Subsets of  are called events. For an event B C Q with P(B) > 0 and a
random element X of S, the conditional distribution of X given B, denoted dist(X | B),
is the probability distribution p on S defined by

ps:=P(X=s|B):=P{weB:X(w)=s})/P(B) (s €9).

For further background, and definitions of other probabilistic terms such as independence
and expectation, see [23].

Definition 2 Let p be a probability distribution on the interval of integers [0,n + 1] :=
{0,1,...,n,n 4+ 1}. Say that a random subset V of [n] has the Hurwitz distribution of
index (7, 8) with parameters po, pi, ..., pny1, denoted HY?(p), if P(V = A)is proportional
to the Ath term of the Hurwitz sum H*(po, pai1;ps, s € [n]) defined by (3) as A ranges
over 2. Call the distribution of |V| on [0,7n] induced by such a random subset V
of [n] a Hurwitz-binomial distribution, or H*(p)-binomial distribution to indicate the
parameters.

According to (4), a random set V has H_ '9(p) distribution if
P(V = A) = po(po + pa)' ™ (ps1 + pa)! (A S [n]). (15)

Similarly from (5), V' has the H-"~!(p) distribution if

PV =A) = 2Pt p A (pgy + pg) A (A C [n]). (16)
(Po + Prt1)
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These and other similar formulae should be interpreted by continuity in degenerate cases
such the case py = 0 in (15). So (15) for pop = 0 means P(V =0) =1 and P(V =A) =0
for A # (). Take z; = p;s in (4) to see that the existence for each probability distribution
pon [0,n + 1] of a random subset V' of [n] with distribution given by (15) is equivalent
to Hurwitz’s evaluation (4) of H=%% A similar remark applies to (16) and Hurwitz’s
evaluation (5) of H %!, In the Abel case

p1 =2/ poyr =y/Y; pi=1/% for i € [n] (17)

where ¥ := x +y +n for arbitrary z,y > 0, the H)*(p)-binomial distribution on [0, n] is
obtained by normalization of the terms of the coresponding Abel sum A”*(z,y) defined
by (7). Call this special case of the Hurwitz-binomial distribution an Abel-binomial
distribution or AYY(x,y)-binomial distribution to indicate the parameters. The Abel-
binomial distributions A= *(z,y) and A™*%(z,y) are known in the statistical literature
as quasi-binomial distributions [20, 19, 18, 15].

The following theorem, proved in Section 4, presents three different constructions of
a random set V with the H_ '?(p) distribution. The first construction is a probabilis-
tic translation of an identity of enumerator polynomials used by Francon[25] to derive
Hurwitz’s evaluation of H~1° while the second can be read from results of Jaworski
[31]. Corollaries 14 and 29 give similar constructions of V with the H-'~(p) distribu-
tion. See also Berg and Mutafchiev [8] for a closely related appearance of Abel-binomial
distributions in connection with random mappings.

For a mapping M from S to S and v € S define the set of predecessors of v induced
by M by

pred(v, M) := {s € S : M! = v for some i > 1} (18)

where s + M! is the ith iterate of M.

Theorem 3 If M is a random mapping defined by independent random variables M, s €
S with common distribution p on S := [0,n+1], then each of the following random subsets
of [n] has the Hurwitz distribution H='°(p) on 2";

(i) (Francon [25]) assuming popn+1 > 0, the random set pred(0, M) conditionally given
that both 0 and n 4+ 1 are fized points of M ;

(ii) (Jaworski [31]) assuming p,+1 = 0, the random set [n] N pred(0, M);

(iil) assuming pn+1 > 0, the random set pred(0, M) conditionally given that n 4+ 1 is the
unique cyclic point of M.

Let D(M) be the usual functional digraph associated with M, with vertex set S and
a directed edge (s, M) for each s € S. See [39, 24, 25, 41, 35, 2] for background. The
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set of all cyclic points of M is
cyclic(M) :={s € 5 :s € pred(s, M)}.

Call (s, Ms) a cyclic edge of D(M) if s € cyclic(M). Let F(M) be the digraph with
vertex set S derived from D(M) as follows: first delete all cyclic edges, then reverse the
direction of all remaining edges. So F(M) is a forest of rooted trees labeled by S, with
edges directed away from cyclic(M), the set of all root vertices of (F(M)). Call F(M) the
forest derived from M. Each connected component C of D(M) contains a unique cycle
Co, and C' decomposes further into a collection of tree components of F(M) whose set of
roots is Cy. In case (i) of the previous theorem, the conditioning forces pred(0, M) U {0}
to be a connected component of D(M) which is a single tree component of F( M) rooted
at 0, while n + 1 is forced to be the unique cyclic point of another component of D(M).
In case (ii) the set pred(0, M) U {0} may be either the union of a tree component of
F(M) and a cycle of arbitrary size, or just a subtree of a tree component, according to
whether or not 0 € cyclic(M). In case (iii) the conditioning forces F(M) to be a tree
rooted at n + 1, and pred(0, M) U {0} is a fringe subtree of this tree. While the three
results are obtained by a similar arguments, it does not seem easy to deduce any one
from another. Neither does there appear to be any natural generalization from which all
three results could be deduced.

As observed in [42], formula (2) amounts to the fact that for each probability distri-
bution p on S, the formula

I1#5 (f € Fi(5)) (19)

SES

15| <1}
k<l

Hﬂ:ﬁ:(

defines the probability distribution of a random rooted forest Fj, of k trees labeled by S.

Definition 4 For a probability distribution p on 5, call a random forest Fj, of & rooted
trees labeled by S a p-forest, and for k = 1 a p-tree, it the distribution of F}, is given by
(19).

If p is uniform on S, the distribution of a p-forest of k trees is uniform on Fy(S).
Several natural constructions of a p-tree for general p are reviewed in Section 3. As shown
in [42], a p-forest of k trees is obtained by deleting k<1 edges picked uniformly at random
from the |S]| <1 edges of a p-tree. The following proposition records a characterization
of the distribution of a p-forest which follows immediately from the definition.



Proposition 5 A random forest Fi. of k rooted trees labeled by S is a p-forest if and
only if both

(i) the distribution of the out-degree count vector CFy := (CsFg,s € S) is multinomial
with parameters n <k and p = (ps,s € 5), and

(i) for each vector of counts ¢ € {0,1,2,...}° with S;¢, = n &k, the conditional
distribution of Fy, given CFj, = ¢ is uniform over the set Fi(S;¢) of all forests with the
given out-degree counts ¢, as enumerated by

(n<1)!
(k <:>1)’ HSES CS! '
For any random forest Fj of k rooted trees labeled by S, the vector of out-degree
counts (CsFg,s € S) is subject to the constraint Y-, CsFr = n < k. Therefore, the

expectation of CsFj, equals (n<k)ps for some probability distribution p on S. According
to the previous proposition, for any given p this is achieved by a p-forest. Section 5

[Fu(S0) = (20)

presents a number of enumerations of rooted random forests which arise naturally from
the study of p-forests. See also [44].

For distinct vertices u and v of a forest f, a directed path from u to v in f is a sequence
of edges of f of the form (u,s1), (s1,52),...(Sm-1,v) for some m > 1. Write

f
u -5 v if there is a directed path from u to v in f and u + v otherwise. (21)

Let root(t,) be the root of the unique tree component t, of f that contains v. By the
convention that edges of f are directed away from the roots, u £ v if and only if u lies

on the unique path from root(t,) to v along edges of t,. Write u L v if there is a path
from u to v in the undirected graph obtained by ignoring edge directions of f, that is if
t, = t,. Section 6 treats the problem of finding expressions for the percolation probability
P(s % v) and the oriented percolation probability P(s % v) for two vertices s and v of
a p-forest Fy. See [12, 46] for closely related studies of such percolation probabilities
for the digraph of a random mapping, and [26] for a study of such problems for other

models of random forests, and applications to reliability of networks. By a relabeling of
vertices, the problem of finding P(s % v) for two arbitrary vertices s and v of a p-forest

Fi. is reduced to the case when S = [0,n + 1], s =0 and v = n + 1, as supposed in the
following straightforward consequence of Theorem 1:

Corollary 6 Let F, be a p-forest of k trees labeled by [0,n + 1]. Then

POZEn+1)= 3 _UAD-s

po(po + pA)|A|(pn+1 + pA)M'_(k_l) (22)
Ay (7 + Di



where the Ath term equals P(0 Ln+ L Ve = A) for Vi the random set of all v € [n]
such that there exists a directed path from 0 to v in Fy that does not pass via n+1. Also

Al
POZ a4y = 3 L e, )

AC[n] ( k-1

where the Ath term equals P(0 Lon+ L, Ly = A) for Ly the random set of all v € [n]
such that v lies on the path which joins 0 to the root of its tree component in Fy.

For k = 1, Corollary 6 yields Hurwitz’s expression (6) for H%° along with the
following probabilistic interpretation: for 7, a p-tree labeled by [0,n + 1]

P(O ’7\—13 n + 1) = poHop(pOapn-I-l;pjvj S [n]) (24)

In the Abel case (17) this specializes to give the following probabilistic interpretation of
the Abel sum A%°(z,y) as in (7), with an asymptotic expression obtained by a straight-
foward integral approximation using the local normal approximation to the binomial
distribution [23]:

Corollary 7 For T, a p-tree with p the distribution on [0,n + 1] defined by (17), the
probability that there is a directed path from 0 ton+1 in 7, is
T v A% (2, y) T T
P(0~5 1) = K ~y = . 25
(0~3n+1) Gty )y Qﬁasn—w)o (25)
Consequently, for each pair of distinct vertices r and s in a set S of n+ 2 elements, the
number of rooted trees t labeled by S such that r lies on the path in t from root(t) to s is

the Abel sum A%°(1,1), which is asymplotically equivalent to /7 /2e*n™ /2 as n — oo,

It does not appear that there is any simpler expression for the oriented percolation
probability P(0 Tk on 4 1) than the Hurwitz sums provided provided by Theorem 6.

Similar Hurwitz sums are obtained in Section 6 for the percolation probability P(0 7
n + 1). There are however some closely related probabilities where some remarkable
simplifications occur, as indicated in the next theorem, which is proved in Section 5.1.
As a preliminary to the theorem, there is the following easy consequence of Theorem 1:

Corollary 8 Let Ry be the random set of k root vertices of a p-forest Fy of k trees
labeled by S with |S| = n. Then



(i) for each subset R of S with |R| =k

P(Ry = F) = (Z :1) o (26)

(ii) for each r € S
k<l 4+ (n<k)p,

P(TERk): nol

(27)

Theorem 9 For Fi. a p-forest of k trees with roots Ry as in the previous corollary,
(1) for all distinet r,s € S with P(r € Ry) >0

n<k)p,
P(T’QSWER’“): k<:>(1—|-(n)<:>k)p ; (28)

(ii) for all distinct r,s € S

kel
nal’

o
P(r '/i sandr € Ry) = (29)

The fact that the probability in (29) does not depend on p is quite surprising. In the
terminology of statistical theory [36], for each choice of r and s the indicator of the event
in (29) is an ancillary statistic. Here k is regarded as fixed and known, and the family
of distributions of p-forests on F;(59) is regarded as a statistical family parameterized
by the underlying probability distribution p on S. Proposition 5 implies that the vector
of counts C'Fy is what is known [36] as a complete sufficient statistic in the statistical
problem of estimating p given an observation of Fj. According to Basu’s theorem [36,
Thm. 1.5.5] if T'is a complete sufficient statistic for a statistical problem (Fj,0 € 0),
then every ancillary statistic A is independent of 7" under P, for all # € ©. Thus formula
(29) has the following consequence:

Corollary 10 Let 1 < k < n<&1. For S with |S| = n, for each choice of non-negative
integers c,,v € S with ), cqg ¢, = n &k, and each choice of two vertices r and s of S,
among all forests £ of k trees labeled by S such that v has ¢, children in f for everyv € 5,

f
the fraction of £ such that both r € roots(f) and r 56 s equals (k-<1)/(n <1).
This enumeration was actually discovered by the above line of reasoning, which makes
an unusual application of ideas of mathematical statistics to enumerative combinatorics.

But such a simple result invites a direct combinatorial proof, which is provided is at the
end of Section 5.2.
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3 Cayley’s multinomial expansion

Let U(S) be the set of unrooted trees labeled by the finite set S. For¢ € S, u € U(S) let
Dju be the degree of ¢ in u, that is D;(u) := |[{j : i <= j}| where «+= is the undirected
edge relation of t. According to Cayley’s multinomial expansion over unrooted trees

[14, 48]

SR IC Dory o (30)

uelU(s) ses sES

For x; = 1 this reduces to Cayley’s formula |U(S)| = |S|°I=2. Let T(S) be the set of
all rooted trees labeled by S. Let edges of t € T(.S) be directed away from the root of
t, denoted root(t). For s € S, t € T(S) let Cst be the number of children or out-degree

of sin t, that is Cs(t) := [{v: s LA v}| where 4, is the directed edge relation of t. For
r € S let T(S,r) be the set of all trees t € T(S) with root(t) = r. Fix r € S. Multiply
both sides of (30) by x, and use the obvious bijection between U(S) and T(5,r) to see
that (30) can be rewritten

SISt =, (Zx) o (r e 9). (31)

teT(S,r) s€S sES

This is the special case |[R| =1 of (1). Sum (31) over all » € S to obtain the following
variant of Cayley’s expansion, which is the case k =1 of (2):

> et (xe) )

teT(S) ses seS

Take z, = 1 to see |T(S)| = |S]'*I='. Now let p be a probability distribution on S.
According to Definition 4, a rooted random tree 7 labeled by S is a p-tree if

= 125 (t € T(5)). (33)

SES

Call an unrooted random tree U labeled by S an unrooted p-tree if

=[I»>"" (u e U(s)). (34)

SES

The following lemma summarizes the previous discussion of (30),(31) and (32) in prob-
abilistic terms.
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Lemma 11 Let (r,u) denote the rooted tree obtained by assigning root r € S to an
unrooted tree u labeled by S. A random tree T is a p-tree if and only if T = (R,U)
where U is an unrooted p-tree, the root R of T has distribution p, and R and U are
independent.

In the rest of this paper, all trees and forests are assumed to be rooted unless otherwise
specified. The next lemma reviews some constructions of a p-tree. Note that once formula
(33) has been established for a generic p by any of these constructions, it follows that the
sum of the right side of (33) over all t € T(5) equals 1. The various forms (32), (30) and
(31) of Cayley’s multinomial expansion then follow easily, in that order. Constructions
(i) and (ii) yield (33) quite easily by the results cited. Constructions (iii) and (iv) yield
(33) up to a constant of proportionality, which must equal 1 by comparison with any
of the other constructions. A nicer proof for Construction (iv) is indicated in the next
section.

Lemma 12 Let Xy, X1, X3, ... be a sequence of independent random variables with com-
mon distribution p on S with |S| =n.

(i) Let T : S™=' — T(S) be the bijection defined by the Prifer code [47, 17] such that
T(s1,...,80-1) =t with Cst equal to the number of j such that s; = s, for every s € S.
Then T :=T(Xq,...,X,_1) is a p-tree.

(i) [42] Define a coalescing sequence of forests F(0),F(2),...,F(n <1) as follows, by
adding edges one by one in such a way that F(j) has j edges (and hence n &5 tree
components) for each 1 < j < n &1, Let F(0) be the trivial forest labeled by S with
no edges. Given that F(0),...,F(j 1) have been defined for some 1 < j < n &1,
define F(7) by adding the edge (X;,Y;) to F(j <1), where given X; and the (X;,Y;) for
1 <<y, the random variable Y; has uniform distribution on the set of n &3 roots of
tree components of F(j < 1) other than the component containing X;. Then F(j) is a
p-forest of n <y trees for every 0 < j < n-<1. In particular, F(n <1) is a p-tree.

(iii) [10, Theorem 1],[37, §6.1] Assuming ps > 0 for every s € S, let

T .= {(X]‘_l,X]‘) j Z 1,X]‘ Qé {Xo,. .. ,X]‘_l}}.

Then T is a p-tree.

(iv) Let F(M) be the forest derived from a random mapping M from S to S with inde-
pendent images My distributed according to p. Then for each r € S, F(M) conditioned
to be a single tree rooted at r has the same distribution as a p-tree T given root(7T) = r.
Hence, the undirected digraph derived from F(M), given that F(M) is a tree, is an
unrooted p-tree.
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For a tree t labeled by S let Vi(t) :={v € S : s A v}. So V;(t) is the set of non-root
vertices of the fringe subtree of t rooted at ¢, that is the tree t; labeled by {s} U V,(t)
whose edge relation is the restriction to {s} U V,(t) of the edge relation of t. See [3]
for background and further references to fringe subtrees. If t is a tree component of the
forest F(M) derived from a mapping M, so t is rooted at some vertex r € cyclic(M),
then for each non-root vertex s of t the set pred(s, M) of predecessors of s induced
by M is identical to Vi(t). In view of Lemma 12(iv), case (iii) of Theorem 3 can be
reformulated as follows in terms of trees instead of mappings:

Theorem 13 Let p be a probability distribution on the set S :=[0,n+1] forn > 1, with

Pnt1 > 0. Let T be a p-tree with root R, and let Vo(T):={v € S:0 L v} be the set of
non-root vertices of the fringe subtree of T rooted at 0. Given the event (R =n+1) the
random set Vo(T ) has the Hurwitz distribution H-"°(p) on 20", That is, for all A C [n]

P(R=n+1Vo(T)=A) = po(po + pa)" ™ prgs (pag1 + p)"! (35)
where A = [n] < A, and the sum of these probabilities over all subsets A of [n] is
P(R=n+1)=payu.

Proof. Fix an arbitrary subset A of [n]. The probability P(R =n+ 1,V5(7) = A)) is
the sum of P(T =t)overt € T*:={t € T(S,n+1): Vo(t) = A}. For t € T* let v be
the restriction of t to Ag := AU {0} and let w be the restriction of t to A5 := 5 < Ag.
Regard t, v and w as subsets of S?. Then t = v U w U {(s,0)} for some s € A§.
Thus there is a bijection between T* and T(Ag,0) x T(A5,n 4+ 1) x AS. For t € T* the
probability P(7 =t) can be written in terms of the corresponding (v, w,s) as

n+1
P(’]’ = t) = picit — piCz‘V H pfzw s
i=0 i€ Ao LEAS
So P(R=n+ 1,V = A) is the sum of this product over all
(v,w,s) € T(Ag,0) x T(Ag,n+ 1) x Ag.

This sum of products factors into a product of three sums, the first two of which can be
evaluated using (31), and the third of which is the sum of ps over Aj, that is p,+1 + pj.
This yields (35). The evaluation of the sum over all subsets follows from the result of
Lemma 11 that R has distribution p. O
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The above theorem yields Hurwitz’s evaluation (4) of H-'“. A corresponding in-
tepretation and evaluation H 7! is given by the following corollary:

Corollary 14 For T a p-tree labeled by [0,n + 1] with root R let Vi be the random set
of all j € [n] such that there is a directed path from 0 to j in T that does not pass via
n + 1. Given the event (R € {0,n + 1}) the random set Vy* has the Hurwitz distribution
H=""Y(p) on 2", That is, for all A C [n]
P(Re{0,n+1},Vy = A) = po(po + pA)|A|_1pn-|—1 (Prt1 + pA)M'_l (36)
where A := [n] < A, and the sum of these probabilities over all A C [n] is
P(Re{0,n+1}) = po+ pat1.

Proof. The event (R =n+ 1,Vy = A) is identical to the event (R =n +1,V5 = A),
whose probability is given by (35). If R =0 then V5 = W(7) eV, (7)) e{n+1}. It
follows that P(R =0,V = A) can be evaluated from formula (35) by switching py and
Prny1 and switching A and A. That is

P(R=0,Vy = A) = po(po + pA)|A|pn+1 (Png1 + pA)Ml_l- (37)

Add (35) and (37) and eliminate the factor of (po + pa + ps + pnt1) = 1 to obtain (36).
O

4 Random Mappings

Let S and T be two finite sets. Let M := (M;,t € T') be a collection of S-valued random
variables defined on Q. Then M : Q — ST, so M may be regarded as random element
of ST. To emphasise that viewpoint, call M a random mapping from T to S.

Definition 15 Call M a p-mapping from T to S if the M, are independent random
elements of S with common distribution p. That is

P(M = (s)) = Hpst for every (s;) € ST .

teT

For each subset B of ST the formula

Sp(es,s € S)i= > ] (38)

(St)EB teT
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defines a polynomial ¥p in commuting variables zs,s € 5, known as the enumerator
polynomial of B [25] [17, p. T1]. If M is a p-mapping from T to S then

P(M € B) =X5p(ps,s€S) (BCST). (39)

The addition and multiplication rules for enumerator polynomials [17, p. 72] then match
corresponding rules of probability. Any evaluation of the probability of an event defined
by p-mapping from T to S as a function of p = (ps,s € S) can be interpreted as an
evaluation of an enumerator polynomials, and vice versa. The probabilistic expression
often appears simpler than the combinatorial one, because replacing the variables x;
by ps subject to >, ps = 1 usually eliminates some factors of g := > xs. Compare
(40) and (41) below for a typical example. If an identity of enumerator polynomials in
variables p; subject to >_, ps = 1 is obtained by a probabilistic argument, the factors of
rg can always be recovered at the end by substituting p, = x5/xs in the probabilistic
identity and then multiplying both sides by :zj!ng. Repeated application of this method
allows the various identities (8)-(12) to be deduced from their probabilistic expressions.

4.1 Mappings from S to S

For a mapping m € 5%, let cyclic(m) be the set of cyclic points of m, and let F(m) be
the forest derived from m, as defined after Theorem 3. For r € S let T, be the set of
mappings m from S to S such that r is the unique cyclic point of m, or, equivalently,
F(m) € T(S,r), the set of trees labeled by S with root r. It is elementary and well
known [49],[24, (6.7)] that the restriction to T, of the map m — F(m) is a bijection
from T, to T(S,r). Cayley’s multinomial expansion (31) amounts via this bijection to
the following formula for the enumerator polynomial of the subset 7} of S°, obtained in
a different way by Francon[25, Prop. 3.1] from the Foata-Fuchs coding of mappings [24]:

|5]-2
Snieases)=ai(Te) ()
SES
Now let M be a p-mapping from S to S, and apply (39) to see that (40) amounts to
P(F(M) € T(S,r)) = p (res). (41)

found various equivalents and extensions of (41) by probabilistic arguments. See also [4].
Formula (41) is closely related to results of Burtin [12], Ross [51] and Jaworski [31]. To
make this connection, let D, be the digraph with vertex set S and {(M,,s),s € S<{r}}
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for its set of directed edges. So D, is derived from the functional digraph D(M) by first
deleting the edge leading out of r € S, then reversing the directions of the remaining
|S] <1 edges. Observe that

(F(M) e T(5,r) = (M, = )N (D, € T(5,7)).

and that if (M) € T(S,r) then D, = F(M). Since M, is independent of D,, and
P(M, =r) = p,, formula (41) is equivalent to

P(D, € T(S,r)) = p,. (42)
By definition, D, has |S| vertices and |S| <1 edges, so
(ﬁT eT(Sr) < (ﬁT is connected)
and (42) therefore amounts to the result of [12, 51] that
P(f?T is connected ) = p,. (43)

The above argument can of course be reversed to deduce the form (31) of Cayley’s
multinomial expansion from (43).

Proof of Lemma 12 (iv). Suppose that 7 is a p-tree. It follows immediately from the
definition of f?T that

P(D, =t) = P(T =t) for each t € T(S,r). (44)
It follows that o
dist(D, | D, € T(S,r)) = dist(7 |root(T) =r) (45)
and hence that
dist(F(M) | F(M) € T(S,r)) = dist(7 |root(7T) =) (46)
as claimed. O

The next lemma was suggested by arguments of Ross [51] and Jaworski [31].

Lemma 16 Let My be a p-mapping from A to S for some non-empty subset A of S.
Let D(My4) be the associated digraph with vertex set S and edge set {(a, M;),a € A},
and denote the range of M4 by M4(A) := {M;,s € A}. Then for each R C S <A

P[D(My) contains no cycles and Ma(A) C AU R] = pr(pr —I—pA)|A|_1. (47)
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Proof. The formula will be established in three steps.

Step L. Suppose that [A| = |S| <1 and R = 5 < A. Then (47) reduces to formula (42).
Step II. Suppose that R = S < A. Then the right side of (47) reduces to pr. If R
is empty the result is trivially true, with both sides of (47) equal to 0. So assume R
is not empty and let r be some arbitrary element of R. Define My : A — AU {r} by
MA(a) = My(a) if Ma(a) € A and MA(a) =7 if M4(a) € R. Then My is a p-mapping
from A to AU {r} for p, = p, for a € A and p, = pr. Since D(M4) contains no cycles
iff D(MA) contains no cycles, the conclusion follows from the result of Step I applied to
My.

Step III. General A and R. Let F4 g denote the event that D(M4) contains no cycles
and M4(A) C AUR). Then

P(Fap) = P(Ma(A) C AUR) P(Far| Ma(A) C AUR)

PR
PR+ pa
where P(F4r|Ma(A) C AUR) is evaluated by the result of Step Il applied to M4 given
M4(A) € AU R, using the fact that M4 given M4(A) € AU R is a p’-mapping from A
to AU R where p’ is p conditioned on A U R. O

= (pr + pa)A!

Proof of Theorem 3. Case (i) can be read from the proof of Proposition 3.7 of [25]
by the probabilistic interpretation (39) of enumerator polynomials. Case (ii) is implied
by the proof of Theorem 3 of Jaworski [31]. In view of (46), case (iii) can be read from
Theorem 13, and vice versa. Cases (i) and (iii) of the Theorem can also be obtained
probabilistic arguments similar to Jaworski’s proof of (ii). Following are details of this
approach in case (iii).

Fix A C [n]. Consider the conditional probability of the event (pred(0, M) = A)
given that cyclic(M) = {n+ 1}, where M is a p-mapping from S to S for S :=[0,n + 1].
Note that A is the complement of A relative to [n] not S, so A C [n]. From (41), the
conditioning event has probability p?_,, so the problem is to find the probability of the
event (pred,(M) = A, cyclic(M) = {n+1}). Let Mg be M with its domain restricted to
B C S. The event (predy(M) = A, cyclic(M) = {n+1}) is the intersection the following
four events

(I) the event that M4 has range AU {0} and D(M4) has no cycles, which by Lemma
16 has probability po(po + pa)A=1;

(IT) the event (My € AU {n + 1}), which has probability p,i1 + ps;
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(III) the event that M  has range AU {n + 1} and D(M;) has no cycles, which by
Lemma 16 has probability p,yi(payi + pa) Al

(IV) the event (M,,41 = n + 1), which has probability p,41.
Since these four events are determined by the restrictions of M to four disjoint subsets of
[0,n + 1], they are independent. The conditional probability in question is therefore the
product of these four probabilities, divided by the probability p?,, of the conditioning
event. 0

4.2 The random set of cyclic points

The following generalization of (41) gives the distribution of the random set of cycles of
a p-mapping:

Proposition 17 Let M be a p-mapping from S to S. Then the distribution of cyclic(M)
on 2% is determined by the formula

P(cyclic(M) = R) = |R|\(IT,er pr)pr (RCS9). (48)

Proof. With notation of Lemma 16, the event (cyclic(M) = R) is the intersection of

the events (Mg(R) = R) and (D(Mg:) contains no cycles ). The probability of the first
event is easily seen to be |R|!T],cp pr, while the probability of the second event is pr by
Lemma 16. Since the two events are independent, the formula (48) follows. O

The special case @ = 0 of (11) follows from the fact that formula (48) sums to 1 over
all subsets R of S for all probability distributions p on S. Sum (48) over all R with
|R| = k to see that for 1 < k < |S| the probability that a p-mapping M from S to S has

exactly k cycles is

P(|cyclic(M)| = k) = k! Y II(R)pr where II(R) :=T1,crp; (49)
\RI=k

and the sum is over all subsets R of S of size k. Jaworski [31, Theorem 2] found the
following alternative expression for the same probability:

P(leyclic(M)| = k) =k Y I(R)e(k+1)! > I(R) (50)
|R|=F |R|=k+1

which can evidently be recast as
P(|cyclic(M)| > k) = k! Y II(R). (51)

|R|=F
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As a check, the implied equality between the right sides of (49) and (50) is easily verified
directly.

See [51, 31] for further results about p-mappings. See [35, 2, 41] for results and further
references to the literature for uniform p. The case when all of the p, but one are equal
has also been studied in detail [55, 40, 8]. See also [12, 21, 28, 29, 6, 7, 9, 33, 5] regarding

various other models for random mappings.

5 Random Forests

The proof of Theorem 1 is based on the following lemma:

Lemma 18 For M a p-mapping from S to S the distribution of the associated random
forest F(M) is given by the formula

P(F(M) =1) = IR(f)I!( 11 pr) (H pfsf) (52)
)

reR(f seS

where R(f) is the set of roots of £, and f ranges over the set of all (|S|+ 1)I*I=' rooted
forests labeled by S.

Proof. For each given forest f the first factor is the number of permutations of R(f),
the second is the probability that the restriction of M to R(f) equals any particular
one of these permutations, and the third is the probability that the restriction of M to
S < R(f) is as dictated by f. O

Proof of Theorem 1. Compare (52) and (48) to obtain (1) for z, := p, with p; > 0
and Y, ps = 1. The usual substitution p, = z;/xg yields (1) for s > 0 with g > 0,
hence the polynomial identity. a

5.1 Distribution of the roots of a p-forest

Recall from Proposition 5 that the vector of out-degree counts C'Fj of a p-forest Fj has
a multinomial distribution with parameters n <k and (ps,s € S). This observation,
combined with the following corollary of Theorem 1, determines the joint distribution of
the random vector C'Fj, and the random set roots(Fy), whose marginal distribution was

described by formula (26).
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Corollary 19 Let Ry be the random set of roots of Fy, a p-forest of k trees labeled by
S, where 1 <k <n=|S|. Then for each possible vector of counts ¢ := (¢5,8 € S) with
Yo ¢s = n <k, the conditional distribution of Ry given C'Fy = ¢ is given by

1 -1
P(Ry=R|CFr=c)= (”@) i

rol) Tob (RC S with |R| = k).  (53)

Proof. Let F(S, R;c) be the set of all f € F(S, R) such that Cf = ¢. Then from (1)

cr(n <k <l)!

F(S, R;c)| =
|F( )| Moo

(54)
and (53) follows easily from (54) and (20) by canceling factorials. O

Let CpFy = Y sep CsFk, the number of vertices of Fj, that are children of some
vertex in B. As an immediate consequence of Proposition 5 there is the following analog
for a p-forest Fj, of the result of Clarke [16] regarding the binomial distribution of vertex
degrees in a uniform unrooted random tree:

dist(CpFy) = binomial(n <k, pg). (55)

As a check, formula (26) for P(R; = R) is recovered from (53) as the expectation of the
conditional probability, because the binomial(n <k, pr) distribution of CrFj has mean
(n & k)pr. The following lemma, which is easily checked directly, is a consequence of

formula (26):

Lemma 20 For 1 < k < n:=|S]| let Sy be the set of all subsets B of S with |B| = k.
For each non-negative function w = (ws,s € S) with ws > 0, the formula

-1
n <1 WR
k @1)

P(Ry=R) = ( (R € Sp) (56)

ws
defines the probability distribution of a random element Ry, of Sk.

Call this distribution of Ry, the distribution on Sy induced by w. According (26), for
a p-forest F, the unconditional distribution of Ry := roots(Fj) is the distribution on
Sk induced by p. According to (53), the conditional distribution of Ry given CF) = ¢
is then the distribution on S% induced by ¢. The probabilities of events determined by
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Ry with the distribution (56) induced by w, can be obtained by summation of (56) over
appropriate R € Sy, then applied to Ry := roots(Fy), either unconditionally with w = p,
or conditionally given C'F = ¢ with w = ¢. To illustrate, for each fixed subset A of S
with |A] = a, it is easily shown that for Ry with the distribution on Sy induced by w

PR A) = (n @1) ey [(n @a) oy 4 (n &a @1) (105 @wA)] e

kel wg k&a R A=

Take A = {r} and simplify to obtain (27). As a check on (27), take p;, = 1/n. Then
Fi. has uniform distribution on Fy(9), and roots(F;) has uniform distribution on Sj.
Obviously then P(r € roots(Fy)) = k/n, in agreement with (27) for p, = 1/n. The
formula (27) implies also the less obvious result that P(r € roots(Fy)) = k/nif p, = 1/n,
no matter what the p, for s # r. Similarly, (57) yields

Eel+e,
P t —e) =T
(r € roots(Fy) | CFr = ¢) v (58)
That is, by application of Proposition 5(ii):
Corollary 21 Among all forests f of k trees labeled by [n] with a given sequence of out-
degrees (cs,s € [n]), the fraction such that r is the root of some tree component of f
equals (k<14 ¢.)/(n<1).

As a check, take expectations in (58) and use the fact that ¢, is the given value of the
binomial(n <k, p,) variable C, with expectation (n <k)p, to see that the unconditional
probability of (r € roots(Fy)) is given by (58) with ¢, replaced by (n <k)p,, as in (27).

5.2 Conditioning on the set of roots.

The proof of Theorem 1 by comparison of (48) and (52) has the following immediate
corollary:

Corollary 22 Let F(M) be the random forest with roots(F(M)) := cyclic(M) derived
from a p-mapping M from S to S. For each 1 < k < |S| let F), be a p-forest of k trees
labeled by S. Then for each subset R of S with pr > 0 and |R| = k

dist(F(M) | cyclic(M) = R) = dist(Fy | roots(Fi) = R). (59)

If Fr denotes a random forest with the common distribution displayed in (59) , then for
each forest f labeled by S with roots(f) = R

P(Fr=f)=pi" [T pS. (60)

SES
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Formula (60) is a probabilistic expression of the polynomial identity (1). It is not
claimed, nor is it true for general p, that the distribution of F(M) given that M has k
cyclic points is the same as the distribution of Fj. By inspection of formulae (26) and
(48), this is true for p uniform on S, but false otherwise.

The following theorem lays out some facts regarding a random forest Fr with dis-
tribution (60), call it a p-forest with roots R. According to the above Corollary, these
facts apply both to a p-forest Fj given roots(Fy) = R, and to F(M) derived from a
p-mapping M given that cyclic(M) = R. For a forest f labeled by S with roots(f) = R,
and v € S &R let M,(f) € S be the mother of v in f, that is the unique s € S such

that s 45 v. For A C S the restriction of f to A is the forest f4 labeled by A whose
set of edges is the intersection with A x A of the set of edges of f. Write p(- | A) for the
probability distribution p conditioned on A.

Theorem 23 Let Fr be a p-forest labeled by S with roots R C S. Let Hy be the random
set of all children of the root vertices in Fr. Then

(i) the distribution of |H;| <1 is binomial(|S| < |R| <1, pr);

(ii) given |Hy| = m the restriction of Fp " of Fr to S <R, whose set of roots is Hy, is
a p(-| S < R)-forest of m trees labeled by S < R;

(iii) the distribution of H; is given by the formula

P(Hy = B) = pps Z7 81771 (B C s oR) (61)

(iv) for each non-empty B C S <R, conditionally given Hy = B the restricted forest
Fo s ap(-|S e R)-forest labeled by S < R with roots B, and this restricted forest is
independent of the random variables My(Fr),b € B, which are conditionally independent
with common distribution p(-| R).

Proof. These claims follow easily from formula (60). As a check, the formula in (iii) can
be read from Lemma 16, Proposition 17, and the representation of Fr as F(M) given
cyclic(M) = R for a p-mapping M. Thus P(Hy = H) = P(A)/P(cyclic(M) = R) where
A is the event that the restriction of M to S < R < H has no cycles and that M maps
H, to R and R to R. o

Corollary 24 For Fr a p-forest labeled by S with roots R C S,
P(rZ%s)=p,/pr (r€ R,s € S&R) (62)

and for all such r and s the event (r 7r s) is independent of the restriction of Fr to

S <R.
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Proof. As in Theorem 23, let H; be the random set of children of R in Fgr. Given
‘Hy = B say let X € B be the root of the subtree containing s in the restriction of Fpr
to S < R. There is a path from r to s in Fg if and only if Mx = r where Mx € R is
the mother of X in Fg. But according to part (iv) of Theorem 23, given the restricted
forest Fp T, which together with s determines X, the random variables M, for b € B are
independent with common distribution p(-| R). Therefore, the conditional distribution
of My given Fp ™ is p(-| R), as claimed. 0

Proof of Theorem 9

(i) This evaluation of P(r I g | € Ry) is obtained by conditioning on Ry = R and then
summing over the (Z:f) possible choices of R with r € R and s ¢ R. By application of
Corollary 8 and part (i), the terms of the sum are all equal, hence

n&<2\ p (nel - kel+ (nek)p, !
P<r@8|r€Rk>:(k<:>1)§_R(k<:>l) pR( n<(:>1 )p)

which reduces to (28).
(ii) This follows from (27) and (28) by elementary rules of probability. O

Direct Proof of Corollary 10. Without loss of generality, take S = [n],r = 1,5 = 2.
A forest f with a given out-degree sequence (¢, ..., ¢,) corresponds to a unique sequence

of choices of the sets J; := {j : ¢ 1 J} of sizes ¢; subject to the constraint that f is a
forest. As argued in [45], the set J; can be any subset of [n] <{1} of size ¢;. Given Jy,
the set .J, can be any subset of size ¢; of a set of permissible elements of size n &1 ¢
that is determined by .J;, and so on. So the number of such forests is

(n @1) (n &1 @a) . (” eleyis) Ci) - (nel)! (63)

¢ Co Cn ke T, ¢!

This is the identity of coefficients of [T, ;" in (2) for S = [n]. Consider now the number
f
of these forests f subject to the additional constraint that 1 € roots(f) and 1 54 2. In

selecting the sequence of sets J; := {j : ¢ LN 7} at each stage ¢ the additional constraint
reduces by exactly 1 the number of vertices from which it is permissible to choose J;.
So the number of forests f of k trees labeled by [n] with the given out-degree sequence
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f
(¢1,...,¢,) and such that 1 € roots(f) and 1 -4 2 equals

(n @2) (n =2 <:>cl) o (n &2 &30 ci) B (n <2)!

¢ Co Cn (k<2 T, !

The ratio of these two numbers yields the fraction (k<1)/(n <1). 0

5.3 Level sets

For a random forest f labeled by S let £,(f) denote the random subset of S defined by the
random set of all vertices of f at height A from the root. So Ly(f) = roots(f), and for each
h > 1 the set L(f) is the set of all children of vertices in £;_1(f). Repeated application
of Theorem 23 gives a simple formula for the joint distribution of (£;(Fr),1 < ¢ < h)
for any fixed h. In particular:

Corollary 25 Let Fr be a p-forest labeled by R U [n] with root set R, where R is a
finite set disjoint from [n] and pr > 0. Then for each sequence of m non-empty subsets
(Bp, 1 < h < m) whose union is [n],

P(LL(Fr) =By forall1 <h <m)= p|RB1|_1 H pfhh_ll. (64)
h=2

As usual, there is a corresponding identity of polynomials, in this case the following
variant of (12):

Sy BT = e+ g (65)
m=1 (Bi,....Bm) h=2

where the inner sum is over all ordered partitions (B, ..., By,) of [n].

5.4 Fringe trees

Consider now the distribution of the random set of vertices of the fringe tree of Fj with
root s for Fj, a p-forest labeled by S and s € S. After relabeling S by [0,n] := {0} U [n]
there is no loss of generality in supposing that S = [0, n] and that s = 0.

Theorem 26 Let Vo(Fi) C [n] be the set of non-root vertices of the fringe subtree of Fy
rooted at 0, for Fy a p-forest of k trees labeled by [0,n]. Then for A C [n]

rsE == () (0wt pa e e
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where A 1= [n] < A.

Proof. Let ¢, := (kfl)_l. From (19), the probability P(Vo(Fr) = A) is the sum
of P(Fr = £) 1= cop [T p$T over all forests £ of k trees labeled by [0,n] such that
Vo(f) = A. Regarding each f as a subset of [0, n]?, there are two kinds of f to consider.
(1) (0 ¢ roots(f), Vo(f) = A). Then f = vUgU {(5,0)} for some tree v labeled by A

with with root 0, some forest g of k trees labeled by A and some edge (7,0) with j € A,

P(Fk = f) = Cpk ( piciv) (H pchf) p;.
1€AQ €A

By application of (1) and (2), the sum of P(Fj =f) over these these f is

A @1) | 4|k

and

P(0 ¢ roots(Fi), Vo(Fr) = A) = ¢k Po(po ‘|'pA)|A|_1( by (P4 Pa (67)

(ii) (0 € roots(f), Vo(f) = A). Then f = v U g for some tree v € T(A,0), some forest g
of k&1 trees labeled by A. The probability of each such f is

P(Fr=1f)=cns ( piciv) (H pzczf)
1€ Ag =y

Summing over these f gives similarly

Al ST\ A
P(0 € roots(Fr), Vo(Fr) = A) = ¢ polpo + pa)=? (|k|<:>2 )pt“ll (=) (68)
Since (Zj) + (Z:;) = (kfl), addition of (67) and (68) gives (66). O

As a consequence of the above calculation there is the following curious formula: for
Vo(Fi) C [n] the set of non-root vertices of the fringe subtree rooted at 0 of p-forest of
k trees labeled by [0, n],

P(0 € roots(Fy) | Vol Fe) = A) = nk(j; (AC[n)) (69)

where 0/0 := 1.
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5.5 Distribution of tree components

Formulae for the distributions of variously defined tree components of a p-forest follow
easily from formulae (1), (2) and (19). In particular, there is the following corollary of
Theorem 1.

Corollary 27 Let p be a probability distribution on [0,n], and let 2 < k < n. For Fj
with the distribution induced by p on forests of k trees labeled by [0,n], let Wo(Fr) C [n]
be the random set of all vertices other than 0 in the tree component of Fi. containing 0.
Then the distribution of the random subset Wo(Fy) of [n] is given by the formula

P Fe) = 4) = (k 21)_ ('?'@1) (potpa) T (A ) A < meshe)
(70)

where A 1= [n] < A.

In Theorem 1, take S = R U [n], decompose the sum on the left side of (1) according
to the partition of S into tree components, factorize over blocks of the partition, and
apply Cayley’s expansion (31) over trees within each block, to see that (1) implies:

Corollary 28 (Hurwitz’s Multinomial Theorem [27]). Let R be some finite set disjoint
from [n]. Then there is the following identity of polynomials in |R| + n commuting
variables x5,s € RU [n]:

Z H z,(x, + SEBT)'BT|_1 = zp(er + 9‘/'[n])n_1 (71)

(Br) T€R

where the sum is over all |R|" choices of disjoint, possibly empty sets B,,r € R with
UTERBT == [n]

Note that (5) is the particular case k = 2 of (71). See also [25, 52] for related
combinatorial interpretations of this case, and see [53] for some extensions of (71). Part
(i) of the following Corollary spells out the probabilistic interpretation of Hurwitz’s
multinomial theorem in terms of p-forests. Part (ii) corresponds to another identity of
Hurwitz which can be read similarly from Theorem 1:

Corollary 29 Let Fgr be a p-forest labeled by S with roots R, where S := R U [n] and
R is disjoint from [n]. Forr € R let V,(Fgr) be the random subset of [n] defined by the

non-root vertices of the tree component of Fr containing r. Then
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(i) for each of |R|"™ possible choices of disjoint subsets (B,,r € R) whose union is [n]

P(V,(Fr) = B, for all r € R) = pi* T pe(pr + p, )P (72)

reR
(ii) for each subset B of R the mndom set VB(fR) .= UyenVi(Fr) has the Hurwitz
distribution H7 =" (pP) on 207 where pf = pB. P2y = prop, and p? = p, for s € [n].

For Vg(Fgr) defined as in the previous Corollary, there is the remarkably simple
formula

E(|Ve(Fr)|) = nps/pr (73)

because Vg(Fg) is the sum of the indicator variables 1(r 7% s) over all r € B and s € [n],
6

so formula (62) can be applied to compute:

E(|VB(Fr)|) ZZP rq,) 8) = anT/pR = npp/pr- (74)

reB s=1 reB

On the other hand, Corollary 29(ii) shows that (73) amounts to:

Proposition 30 Suppose that a random subset V of [n] has the Hurwitz H;*~*(p) dis-
tribution. Then the mean of the H '~'(p)-binomial distribution of |V| is

E([V])=n (pio) (75)

Po + Prt1

This formula can also be confirmed as follows. Differentiate Hurwitz’s formula (4) with
respect to = to obtain

S ylAl (@ 4 2y + 2 )T = n(e 4y 4 2" (76)

AC[n]

From the definition (16) of the H '~!(p) distribution,

Al popn _ il
BV = 3 AP S,
AC[n] (pO ‘I'pn-l-l)

and (75) follows by application of (76) with & = pg,y = pn41 and z; = p, for s € [n]. O

Formula (75) is a generalization of the known result [15] that the Abel A-t—!(z, y)-
binomial distribution has mean nx/(x + y). The proof of (75) just indicated via (74)
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provides a probabilistic explanation for this otherwise mysterious exception to the gen-
eral rule that moments of Abel-binomial distributions are not simple functions of the
parameters. See for instance [15] where a complicated expression is obtained for the
second factorial moment of the A *~!(z,y)-binomial distribution. In view of this diffi-
culty in the Abel case, it does not seem possible to simplity the Hurwitz sums for higher
moments of the H~"~!(p)-binomial distribution. For the H%~!(p)-binomial distribution,
the Hurwitz sum for the mean does not simplify even in the Abel case.

5.6 A Hurwitz multinomial distribution

Riordan [50] considers multinomial forms of Abel’s binomial theorem. See Berg and
Mutafchiev [8] for the appearance of an Abel-trinomial distribution in the context of
random mappings. Corollaries 28 and 29 show that the Hurwitz-multinomial distribu-
tion introduced in the following definition is a natural generalization of the the usual
multinomial distribution.

Definition 31 For a probability distribution p on [n]UR with pr > 0, where R is a finite
set disjoint from [n], say that a random vector of non-negative integers Ng := (N,,r €
R) has the Hurwitz H;'(p)-multinomial distribution if for all vectors of non-negative
integers ng := (n,,r € R) with 3, n, =n

P(Ng =ng)=pg' > [[p-(pr+p5, )" " (77)

(Br)reR

where the sum is over all n!/([], n,!) possible choices of disjoint subsets B, of [n] whose
union is [n] with |B,| = n,,r € R.

The fact that (77) defines a probability distribution over vectors of non-negative integers
ng := (n,,r € R) with >, n, = n amounts to Hurwitz’s multinomial formula (71).
According to Corollary 29, a random vector Np with this distribution is obtained by
defining N, to be the size of the tree rooted at r in a p-forest Fgr labeled by [n]U R
with roots R. The usual multinomial distribution with parameters n and (p,,r € R) is
recovered by taking p; = 0 for all s € [n]. In the corresponding forest Fr, each vertex
s € [n] is a leaf attached to a root My € R where the M, are independent with common
distribution p.

According to Theorem 23, in the more general model when p can assign positive
probability to [n], the restriction J—“IZ”L] of Fr to [n] clusters the elements of [n] into a
random number K of subtrees such that K <1 has binomial(n <1, pg) distribution.
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Given K the forest J—“IZ”L] formed by these subtrees is a p(- | [n])-forest of K trees labeled
by [n], and each of these subtrees is attached to a root picked independently from R
according to p(- | R). The size N, of the tree rooted at r is then the sum of the sizes of
those subtrees of FE] that happen to have r chosen as their root. From this construction
of a random vector Ng with the H'!'(p)-multinomial distribution it follows without
calculation that this family of multivariate distributions shares with the usual family of
multinomial distributions the following basic rule for merging of categories:

Theorem 32 Suppose that a random vector Ng has the H; ' (p)-multinomial distribu-
tion for some probability distribution p on RU [n]. Let W be a map from R to (), and let
Ng be the image of Ng after merging categories according to U, that is

Ng := (Z NA(¥(r) =q),q € Q) :

reER

Then Ng has the H; "' (p')-multinomial distribution, where p' is the probability distribu-
tion on Q U [n] defined by p’, = ps if s € [n] and

Py =2 p1((r)=q),q€Q.

reR

5.7 The range of paths in a random tree

Let U be an unrooted p-tree labeled by S. For each pair of vertices s,v € S there is a
unique path from s tov in Y. Let R, denote the range of this path, meaning the random
set all vertices along the path except s and v. By appropriate relabeling of vertices, to
describe the distribution of the random subset R, of S it is enough to consider the case
S:=[0,n+1],s =0,v =n 4+ 1, as in the following theorem.

Theorem 33 Let U be an unrooted p-tree labeled by S := [0,n + 1], and let R be the
random subset of [n] defined by the set of vertices of U on the unique path from 0 to n+1
in U. Then the distribution of R on 2" is given by the formula

P(R = A) = |A] (H pT) (bo+ ot +p4) (A C ) (78)

reA

Proof. As indicated by Meir and Moon [38] and Joyal [32], given R = A the unrooted
tree U induces a rooted forest F labeled by S with roots(F) = {0}U{n+1}UA. It follows
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from (34) for that for every A C [n] and every forest f with roots(F) = {0}U{n+1}UA

PR = 4.5 = 1) = Al (T ) TL¢ (79)

reA SES

Sum this formula over all f € F(S, {0} U{n + 1} U A) and apply (1) to obtain (78) O

The fact that formula (78) defines a probability distribution on 20l for each proba-
bility distribution p on [0,n + 1] yields the identity of polynomials (11). Note that there
is only one extra variable x in this identity rather than two variables & and y, because
of the way formula (78) depends on py and p,11 only through po + ppy1.

Consider now the special case py = p,41 = 0. Compare (78) and (48) to see that
in this case R has the same distribution as the random set cyclic(M) where M is a p-
mapping from [n] to [n], and p is regarded as a distribution on [n] rather than [0, n + 1].
Let F° denote the restriction to [n] of the rooted forest F derived from U as in Theorem
33. The assumption that py = p,4+1 = 0 implies that with probability 1 both 0 and
n+ 1 are leaves of U, that is vertices of degree 1. Therefore, the forest F° labeled by [n]
has the same set of roots R as F. Compare (79) and (52) to see that F° has the same
distribution as F(M ), the forest of tree components generated by the digraph of M.

To explain this coincidence, let U}, denote the restriction of ¢ to [n], which is an
unrooted tree labeled by [n] because 0 and n + 1 are leaves of U. Let {0, Ry} be the
edge of U connecting 0 to Ry € [n] and define {n + 1, Ry} similarly. It is easy to see
that Ry and R, are independent random elements of [n] with distribution p, independent
also of Up,) which has the distribution on U([n]) induced by p. Clearly, R is the range
of the path from Ry to Ry in Uy, where {R;} U {R;} is regarded as part of the path.
The coincidence is explained by Joyal’s [32] bijection m « (u,r,7;) between [n]Il and
U([n]) x [n] x [n], where for a mapping m : [n] — [n] the corresponding unrooted tree u
and pair of points (r1,73) € [n] x [n] are defined as follows. For m with and associated
forest of k trees F(m) rooted at k cyclic points of m let sq,...s; be these cyclic points
listed in increasing order; for 1 < i < k let 1y = m(sy),r2 = m(sk), and let u be the
unrooted tree whose edges are the edges of F(m) (with directions ignored) together with
{{m(s;),m(si4y1)},1 < i < k}. Then it is easily checked that M is a p-mapping form [n]
to [n] if and only if the corresponding triple (U}, R1, R3) is such that U, is an unrooted
p-tree labeled by [n], Ry and R, have distribution p, and these three random elements
are independent.

The following corollary spells out one implication of the above argument in terms of
a random rooted tree:
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Corollary 34 Let S be a finite set and let M be a random mapping from S to S with
the product distribution induced by p on S°. Let T be a rooted random tree with the
distribution on induced by p on T(S), let R :=root(T), let V be independent of T with
distribution p on S, and let H be the height of V in T, that is the number of vertices
on the path from R to V in T, not counting either R or V. Then H + 1 has the same
distribution as the number of cyclic points of M, as described by formulae (49) -(51) .

5.8 Spanning subtrees

The path joining two vertices in an unrooted tree u labeled by S is the subtree of u
spanning a two point subset of S. The proof of Theorem 33 extends easily to yield the
following generalization of that result:

Theorem 35 Let U be an unrooted p-tree labeled by S, let F' be a subset of S of size two
or more, and let Up denote the subtree of U spanning F'. Then for every unrooted tree
u labeled by a finite subset V(u) of S, such that the set of vertices of u of degree one is
contained in F,

PUp =u) = ( II pv”u_l) PV (u) (80)
veV(u)

where Dyu is the degree of vertex v in the tree u.

6 Percolation probabilities

Consider for two vertices s,v € S the probability that of the event (s 7 v) that s and
v lie in the same tree component of a random forest Fi with the distribution on Fy(.5)
induced by p. By a suitable relabeling, it suffices to find a formula for P(0 T + 1) in
the case S :=1[0,n+ 1] and 2 < k < n + 1. Recall that V,(f) is the set of vertices of the
tree component of f containing s. A now familiar argument yields

e n+1\"" Al a1\
PORn+= % (k @1) (Po + Prg1 + pa) ! (|k|<:>2 )@f' SR IV
AC[n]

|A|<n—k+1

where Ath term is P(Vo(Fi) = Vog1 (Fr) = {0} U {n + 1} U A). Similarly

P(0 Q ntl)= > (n ! 1) _l(po -l-pA)|A|( 4] )(p +1 -|-pA)|A|_k+2 (82)
AC[n] kel k&2

|A|<n—k+2
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where the Ath term is P(Vo(Fi) = {0} UA). Another expression for the same probability
is obtained by switching pg and p,41, since the Ath term is then P(V 41 (Fx) = {n +
1} U A). The consequent equality of polynomials in ps,s € S is a non-trivial identity,
even in the Abel case (17). So is the equality between either of these expressions and 1

minus the right hand expression in (81), where 1 should be replaced by (314} py )" ~++2

to
obtain the general polynomial identity. In a similar vein, there is the following theorem.

In comparing formulae (29) and (85), note that |S| here is n + 2 instead of n.

Theorem 36 For each probability distribution p on [0,n + 1] and each 1 < k <n+1
the formula

Q)= ([ ) (L 21) w4 p s+ 0 ) )

defines a probability distribution on the set 2" of all subsets of [n]; that is
Z Qp,k(A) =1 (84)
AC[n]

for all such p and k. Let V*(Fy) be the random set of all s € [n] such that there is a
directed path from 0 to s in Fy, which does not pass via n+ 1, for Fi a p-forest of k trees
labeled by [0,n + 1]. Then

(i) the distribution of V*(Fy) given [0 Ten 41 0r0¢ roots(Fx)] is Qpi(+);

(ii) the distribution of V*(Fy) given [0 7@ n+ 1 and 0 € roots(Fy)] is Qpr-1(-);

(iii) the unconditional distribution of V*(Fy) on 2" is the mizture of these conditional
distributions weighted by the probabilities of the conditioning events, which depend only
onn and k and not on p:

POV (A = 4) = 20, )+ S0 (k) )

Proof. The fact @, is a probability distribution on 2"l is a byproduct of the assertions
(i)-(iii), which are verified by application of the basic formulae (1) and (2). As a check,
the identity of polynomials (8) corresponding to (84) can be verified as follows. Starting
from the case m = 0 of (8) due to Hurwitz, replace y by y + 6, expand both sides in
powers of # by the elementary binomial formula, and equate coefficients of 6. a
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