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Abstract

For a probability distribution (ps; s 2 S) on a �nite set S, call a random forest
F of rooted trees labeled by S (with edges directed away from the roots) a p-forest
if given F has m edges the vector of out-degrees of vertices of F has a multinomial
distribution with parameters m and (ps; s 2 S), and given also these out-degrees
the distribution of F is uniform on all forests with the given out-degrees. The
family of distributions of p-forests is studied, and shown to be closed under various
operations involving deletion of edges. Some related enumerations of rooted labeled
forests are obtained as corollaries.

1 Introduction

Let F(S) denote the set of all forests of rooted trees labeled by a �nite set S of size jSj.
Each f 2 F(S) is a directed graph labeled by S, that is a subset of S�S, such that each
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connected component of the graph is a tree with edges directed away from some root

vertex. The notation v
f
! w will be used instead of (v;w) 2 f to show that (v;w) is a

directed edge of f . For s 2 S and f 2 F(S) let fs := ft 2 S : s
f
! tg, the set of children

of s in f . Note that for each forest f the fs are disjoint subsets of S as s ranges over S.
The number of children or out-degree of s in the forest f is jfsj. The number of edges of f
is jf j =

P
s jfsj, and the number of tree components of f is jSj� jf j. The starting point of

this paper is the observation of [15] that for each probability distribution p = (ps; s 2 S)
on S, and each 1 � m � jSj � 1, the formula

P (F = f) =

 
jSj � 1

m

!�1 Y
s2S

pjfsjs (f 2 F(S) : jf j = m) (1)

de�nes the probability distribution of a random forest F with m edges. This is a proba-
bilistic expression of the following multinomial expansion over forests [15, 18, 21], which
is an identity of polynomials in variables xs; s 2 S generalizing Cayley's multinomial
expansion over trees [5, 19, 16]:

X
f2F(S):jf j=m

Y
s2S

xjfsjs =

 
jSj � 1

m

! X
s2S

xs

!m

: (2)

De�nition 1 For a probability distribution p on S, and 1 � m � jSj � 1, call a random
forest F with distribution (1) a p-forest with m edges, or a p-forest of k trees, where
k = jSj � m. Call F a p-tree if k = 1. Call a random forest F a p-forest if F given
jFj = m is a p-forest with m edges for each 1 � m � jSj � 1.

Put another way, a random element F of F(S) is a p-forest if and only if the distribution
of F is given by the formula

P (F = f) = wjf j

Y
s2S

pjfsjs (f 2 F(S)) (3)

for some sequence of weights (wm; 1 � m � jSj � 1). If p is uniform on S, a p-forest
with m edges has uniform distribution on the set of all rooted forests labeled by S with
m edges. Many exact combinatorial results and asymptotic distributions are known in
this case. See [15] for a review of such results and their applications to random graphs.
Here attention is restricted to exact distributional results for p-forests for a general
underlying probability distribution p. The main point is to present some properties of
p-forests which might prove useful in a variety of contexts. This study was suggested
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by recent applications of p-forests to the construction of partition-valued and measure-
valued coalescent processes [15, 6, 1]. See [16] regarding the connection between p-forests
and the model of [4, 10, 20], for a random mapping from S to S with independent images
with distribution p, and [16, 17] for the relation between p-forests and random subsets
with distributions generated by Hurwitz's [9] binomial expansions. See also [2, 11, 14, 12]
concerning other models of random trees and forests and their applications.

The following characterization of of a p-forest follows easily from De�nition 1. Here
and throughout the paper, the notation (x)m :=

Qm�1
i=0 (x� i) is used for falling factorials.

Proposition 2 [16] A random element F of F(S) is a p-forest if and only if both

(i) for each 1 � m � jSj � 1, the conditional distribution of the out-degree count vector

(jFsj; s 2 S) given jFj = m is multinomial with parameters m and (ps; s 2 S), and
(ii) for each vector of counts (fs; s 2 S) with

P
s fs = m, the conditional distribution of

F given (jFsj = fs for all s 2 S) is uniform over the set of (jSj � 1)m=(
Q

s2S fs!) forests
with the given out-degrees.

For any random rooted forest F labeled by S with a �xed number m of edges,
the vector of out-degree counts (jFsj; s 2 S) is subject to the constraint

P
s jFsj = m.

Therefore, the expectation of jFsj equals mps for some probability distribution p on S.
By the previous proposition, for any given p and m this is achieved by a p-forest with m
edges. The paper [16] recorded some basic features of p-forests, such as the distribution
of the random set of roots of a p-forest of k trees, and the conditional distribution of a
p-forest given its set of roots. In particular, the root R of a p-tree T has distribution p,
and R is independent of the unrooted tree derived from T . Several natural constructions
of a p-tree for general p are reviewed in [16, x3]. Starting from a p-tree, one construction
of a p-forest is given by the following proposition:

Proposition 3 [15] A p-forest of k trees is obtained by deleting k � 1 edges picked

uniformly at random from the jSj � 1 edges of a p-tree.

The main results of this paper are the following three theorems, each of which de-
scribes a di�erent way in which the family of distributions of p-forests is closed under
operations involving deletion of edges. For a forest f 2 F(S) and a subset B of S, the
restriction of f to B is the forest fB 2 F(B) de�ned by fB := f \ (B � B). For a prob-
ability distribution p on S and a subset B of S, let pB :=

P
s2B ps. For B with pB > 0,

let p(� jB) denote the probability distribution on B obtained by conditioning p on B.

3



Theorem 4 Let p be a probability distribution on S with 0 =2 S, let 0 < p0 < 1, and let

p0 be the probability distribution on f0g [ S de�ned by p00 = p0 and p0s = (1 � p0)ps for

s 2 S, so p = p0(� jS). Let T 0 be a p0-tree labeled by f0g[S and conditioned to have root

0, and let F be the restriction of T 0 to S. Then F is a p-forest with the same distribution

as if each edge of a p-tree were deleted independently with probability p0.

This result is easily veri�ed by direct calculation, or by application of [16, Th. 23]
with 0 [ S substituted for S and R = f0g. The next theorem is proved in Section 2:

Theorem 5 (Projection rule for p-forests) For B a non-empty subset of S and F a

p-forest labeled by S, the restriction FB of F to B is a p(� jB)-forest. The distribution

of jFBj on 0; : : : ; jBj � 1 is determined by pB and the distribution of jFj via the falling

factorial moments

E(jFBj)r =
E(jFj)r
(n� 1)r

(jBj � 1)r p
r
B (r = 0; 1; 2; : : :): (4)

To be explicit, these factorial moments determine the distribution of jFBj via the sieve
formula [3, p. 17]:

P (jFBj = `) =
jBj�1X
r=`

 
r

`

!
(�1)r�`

E(jFBj)r
r!

(0 � ` � jBj � 1): (5)

Corollary 6 (Projection rule for uniform forests) Suppose that F has uniform distri-

bution on the set of all
�
jSj�1
k�1

�
jSjjSj�k forests of k rooted trees labeled by S, for some

1 � k � jSj. Then for each non-empty subset B of S the conditional distribution of FB

given that FB has j components is uniform on the set of all forests of j rooted trees la-

beled by B. That is to say, each forest f 2 F(B) with j tree components is the restriction

to B of the same number of forests in F(S) with k tree components.

This number of forests, which depends only on jBj, jSj, j and k, can be read from (4)
and (5) with pB = jBj=jSj. Underlying the above results is a simple formula, presented
in Section 3, for the probability that a p-forest contains a speci�ed set of edges. A
straightforward calculation with this formula yields easily the following generalization of
Proposition 3:
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Theorem 7 Suppose that F is p-forest. Given F , let each edge s
F
! t be marked red

with probability rs, indepedently as (s; t) ranges over all directed edges of F . Let Fred

denote the forest of red edges so obtained, and let p� :=
P

s2S psrs. Then Fred is a p0-
forest, where p0s := psrs=p�, and given F has m edges the number of edges of Fred has a

binomial(m; p�) distribution.

In particular, if F is a random tree with uniform distribution on the set of all rooted
trees labeled by S, then Fred obtained by the above construction is a p0-forest with p0s
proportional to rs.

2 The Projection Rule.

This section establishes a series of lemmas which combine to yield a proof of Theorem
5. Suppose throughout that FB is the restriction to B of F , a p-forest labeled by S, for
some B � S with jBj = b and jSj = n. To avoid trivialities, it is assumed throughout
that pB > 0. When convenient, as in the next lemma, it may be also be assumed (without
loss of generality) that S = [n] := f1; : : : ; ng and B = [b] for some b 2 [n].

Lemma 8 Conditionally given jFij = fi for all i 2 [n], the random set F1 of children of

1 has uniform distribution over all subsets of size f1 of f2; : : : ; ng, and for each 2 � i < n
given also the subsets Fj of [n] for all j < i, the random set Fi has uniform distribution

over all subsets of size fi of some subset of [n] of size n� 1� f1� � � � � fi�1, this subset

of [n] being determined by the Fj for j < i and the constraint that F is a forest.

Proof. This can be read from the proof of [15, Thm. 1.6].

Lemma 9 For each g 2 F(B) and all vectors of non-negative counts (fi; i 2 B) with

P (jFij = fi for all i 2 B) > 0

P (FB = g j jFij = fi for all i 2 B) =
(n� 1�

P
i2B fi)b�jgj�1

(n � 1)b�1

Y
i2B

(fi)jgij: (6)

Proof. The event FB = g is identical to the event that Fi \ B = gi for all i 2 B. For
B = [b] � S = [n], Lemma 8 shows that conditionally given jFij = fi for all i 2 [b] there
are

bY
m=1

 
n� 1�

Pm�1
i=1 fi

fm

!
=

(n� 1)!

(n� 1�
Pb

i=1 fi)!
Qb

i=1 fi!
(7)
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equally likely possible choices of the sets Fi for i 2 [b]. The number of these choices that
make the event (FB = g) occur is

bY
m=1

 
n � b�

Pm�1
i=1 (fi � gi)

fm � gm

!
=

(n� b)!

(n� b�
Pb

i=1(fi � gi))!
Qb

i=1(fi � gi)!
(8)

where gi := jgij, and the ratio of (8) to (7) simpli�es to yield (6). To check the left-hand
formula in (8), observe that given choices of the Fi have been made for i < m in such
a way that jFij = fi and Fi \ [b] = gi for all i < m, the choice of the set Fm of size fm
is subject �rstly to the constraint that F is a forest, and secondly to the constraint that
Fm\[b] = gm. This means that there fm�gm elements of [n]�[b] to be chosen. The forest
constraint forbids the choice of any of the

Pm�1
i=1 fi children of vertices 1; : : : ;m� 1 to be

chosen. But due to previous choices,
Pm�1

i=1 gi of these forbidden vertices are contained in
[b], so there are exactly

Pm�1
i=1 (fi� gi) forbidden vertices within [n]� [b], and the fm� gm

vertices of Fm\([n]� [b]) are chosen from an allowed set of n�b�
Pm�1

i=1 (fi�gi) vertices.
Therefore, no matter what the Fi for i < m such that jFij = fi and Fi \ [b] = gi for all
i < m, the number of possible choices of Fm such that Fm \ [b] = gm is the mth factor
on the left side of (8). 2

For the rest of this section let CB denote the total number of children in F of all
vertices in B:

CB := jF \ (B � S)j =
X
s2B

jFsj:

Lemma 10 For each g 2 F(B) with j tree components and each c with P (CB = c) > 0,

P (FB = g jCB = c) =
(n� 1 � c)j�1

(n� 1)b�1
(c)b�j

Y
s2B

 
ps
pB

!jgsj

: (9)

Proof. Again, take S = [n]; B = [b], and let Ci := jFij for i 2 [n]. By application of
(6),

P (FB = g jCB = c) =
(n� 1� c)j�1

(n� 1)b�1
Ec

 
bY

i=1

(Ci)jgij

!
(10)

where Ec denotes expectation relative to the conditional distribution of (C1; : : : ; Cb)
given CB = c, which by Proposition 2 is a multinomial distribution with parameters c
and (p1=pB; : : : ; pb=pB). But this expectation can be evaluated by a calculation with the
generating function of the multinomial distribution, and the result is (9). 2

6



Recall that for 1 � n � N and 0 � G � N the hypergeometic(n;N;G) distribution is
the distribution of the number of good elements that appear in a random subset of size
n picked from a set of G good elements and N �G bad elements [7].

Lemma 11
(i) the distribution of CB given jFj = m is binomial (m; pB);
(ii) given jFj and CB = c, the distribution of jFBj is hypergeometic (b� 1; n� 1; c).

Proof. Part (i) is immediate from Proposition 2. To obtain (ii), sum the expression
(9) over all forests g 2 F(B) with ` edges and simplify using the multinomial expansion
over forests (2) to see that

P (jFBj = ` jCB = c) =
(n� 1 � c)b�`�1(c)`

(n� 1)b�1

 
b� 1

`

!
=

 
c

`

! 
n� 1� c

b� 1� `

! 
n� 1

b� 1

!�1

which yields (ii). 2

Proof of Theorem 5. Compare (9) and (3) to see that for each c 2 [n � 1] the
conditional distribution of FB given CB = c is that of a p(� jB)-forest, hence so is the
unconditional distribution of FB. To compute the factorial moments of jFBj recall that
for indicator variables Xi; i 2 I and r = 0; 1; 2; : : : there is the formula

E

 P
i2I Xi

r

!
=

X
J�I :jJj=r

P (\j2J(Xj = 1)): (11)

By standard applications of (11), for Sn;p with binomial(n; p) distribution and Hn;N;G

with hypergeometric(n;N;G) distribution there are the formulae

E

 
Sn;p

r

!
=

 
n

r

!
pr; E

 
Hn;N;G

r

!
=

 
n

r

!
(G)r
(N)r

: (12)

By application of these formulae and Lemma 11, for F with m edges the binomial
moments of jFBj are

E

 
jFBj

r

!
= E

 
E

" 
jFBj

r

!�����CB

#!
=

(b� 1)r
(n� 1)r

E

 
CB

r

!
=

(b� 1)r
(n� 1)r

 
m

r

!
prB

and (4) follows. 2
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Examples. By application of (4) and (5), assuming that F has a �xed number k of tree
components, so �r = (n� k)r, for each B with jBj = b the restriction of F to B is a tree
with probability

P (jFBj = b� 1) =
(n� k)b�1

(n� 1)b�1
pb�1
B : (13)

The restriction has two tree components with probability

P (jFBj = b� 2) = (b� 1)

 
(n� k)b�2

(n� 1)b�2
pb�2
B �

(n� k)b�1

(n � 1)b�1
pb�1
B

!
(14)

and so on. For p uniform, pB = b=n, and the above probabilities have combinatorial

interpretations as fractions of the total number
�
n�1
k�1

�
nn�k of forests of k rooted trees

labeled by [n]. To illustrate with (13), the number of forests of k trees labeled by [n]
whose restriction to [b] is a tree is

(n� k)b�1

(n� 1)b�1

 
b

n

!b�1  
n� 1

k � 1

!
nn�k : (15)

In particular, according to (15) for k = 1, there are bb�1nn�b rooted trees labeled by [n]
whose restriction to [b] is a tree. To check this, observe that such a tree is constructed
by a unique sequence of choices according to the following three step procedure, where
the numbers of choices in the �rst two steps are given by well known formulae of Cayley
[5]:

1) pick an unrooted tree labeled by [b], that is bb�2 possible choices;
2) pick a forest of b unrooted trees labeled by [n], with one point of [b] in each tree,

that is bnn�b�1 choices,
3) let the set of edges of an unrooted tree labeled by [n] be the union of the sets of

edges of these b + 1 trees, and pick a root from [n], that is n choices.
The number of rooted trees labeled by [n] whose restriction to [b] is a tree is therefore

bb�2 (bnn�b�1)n = bb�1nn�b: (16)

For a survey of related enumerations see Moon [13].

3 The probability that F contains a particular set

of edges.

For a random forest F labeled by S, and a set of edges g � S�S, it is a natural problem
to calculate P (F � g), the probability that F contains each edge in the set g. Obviously,
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this probability is zero unless g is a forest. Pemantle [14, Th. 4.2] found a determinant
formula for probabilities of this kind derived from a uniform random spanning tree of
a graph. In the model of random forests considered here, there is the following simpler
result:

Theorem 12 Suppose that F is a p-forest labeled by S with jSj = n. Then for each

rooted forest g labeled by S with r edges

P (F � g) =
E(jFj)r
(n � 1)r

Y
s2S

pjgsj
s : (17)

To illustrate this formula, for any two distinct s and s0 in S, the probability that F
contains a particular edge (s; s0) is

P (s
F
! s0) =

EjFj

(n� 1)
ps (18)

and for distinct t and t0 in S, with (s; s0) 6= (t0; t) and s0 6= t0, the probability that F
contains both (s; s0) and (t; t0) is

P ((s
F
! s0) \ (t

F
! t0)) =

E(jFj(jFj � 1))

(n� 1)(n � 2)
pspt: (19)

In particular, for such (s; s0) and (t; t0) the events (s
F
! s0) and (t

F
! t0) are independent

if F is a p-tree, and negatively correlated if F is a p-forest of k trees for k � 2.
Proof of Theorem 12. By conditioning on jFj it is enough to consider the case when
F has a �xed number m of edges. The left side of (17) in this case is a sum over all
forests f � g of P (F = f) de�ned by the product formula (1). Thus (17) can be read
from the following lemma, where the probabilities ps are replaced by variables xs not
subject to the constraints of a probability distribution:

Lemma 13 For each rooted forest g labeled by S and each integer m � jgj

X
f :jf j=m;f�g

Y
s2S

xjfsjs =

 
jSj � 1 � jgj

m� jgj

! Y
s2S

xjgsj
s

! X
s2S

xs

!m�jgj

: (20)

where the sum on the left is over all rooted forests f labeled by S with m edges containing

g.

9



Proof. It is enough to consider S = [n]. Let jgij = gi. By a reprise of the argument
which yielded (8), the number of forests f labeled by [n] such that f contains g and
jfij = fi for all i 2 [n] is

nY
j=1

 
m� 1 �

Pj�1
i=1 (fi � gi)

fj � gj

!
=

 
n � 1 � jgj

m� jgj

! 
m� jgj

f1 � g1; : : : ; fn � gn

!

which gives the identity of coe�cients of
Q

s2[n] x
fs
s in (20). 2

Examples. The special case of (20) when g is the trivial forest with no edges is the
basic multinomial expansion over forests (2). Take the xs � 1 in (20) to deduce that for
every rooted forest g labeled by [n] with j tree components, and every 1 � k � j, the
number of rooted forests f labeled by [n] which contain g and have k tree components

is
�
j�1
k�1

�
nj�k. For another proof of this enumeration, and various applications, see [15].

Alternative proof of (4). Since

jFBj =
X

(s;t)2B�B

1(s
F
! t) (21)

the general formula (11) gives for r = 1; 2; : : : ; b� 1

E

 
jFBj

r

!
=

X
g�B�B:jgj=r

P (F � g) (22)

The probability P (F � g) is zero unless g is a rooted forest with r edges, and for such
g this probability is evaluated by Theorem 12. Thus

E

 
jFBj

r

!
=

X
g2F(B):jgj=r

E(jFj)r
(n� 1)r

Y
s2B

pjgsj
s =

E(jFj)r
(n � 1)r

 
b� 1

r

!
prB (23)

where the second equality is due to (2). 2

4 Random thinning of edges

There is one case where a substantial simpli�cation occurs in the formulae (4) and (5).
Suppose that jFj has a binomial distribution with parameters m and q for some q 2 [0; 1].
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Then from (12) and (4), the distribution of jFBj has rth factorial moment

E(jFBj)r =
(b� 1)r
(n� 1)r

(m)rq
rprB: (24)

If m = n�1 this expression simpli�es to (b�1)r(qpB)r, which is the rth factorial moment
of the binomial distribution with parameters b� 1 and qpB. This yields part (i) of the
following following corollary of Theorem 5. Both parts follow easily from Lemma 11.

Corollary 14 Suppose F is a p-forest labeled by S with jSj = n, and that the number of

edges of F has binomial (n � 1; q) distribution for some q 2 [0; 1]. Then for each B � S
with jBj = b,
(i) the restricted forest FB is a p(� jB)-forest whose number of edges jFBj has binomial (b�
1; qpB) distribution.
(ii) the number jFBj of edges of F in B �B, and the number of edges of F in B �Bc

are independent, and the latter number has binomial (n � b; qpB) distribution.

Let T be a p-tree labeled by S, and let F be derived from T by retaining each
of the n � 1 edges of T independently with probability q. Call F a q-thinning of T .
By application of Proposition 3, F is a p-forest, and jFj has the binomial (n � 1; q)
distribution supposed in the above corollary. To restate the corollary, the restriction to

B of a q-thinning of a p-tree has the same distribution as a qpB-thinning of a p(� jB)-
tree. Even for p uniform and q = 1 this result does not seem evident without calculation.
Neither does the independence property (ii) seem obvious even in this case.

5 A moment identity.

In the setting of Lemma 11, there is the following expression for the distribution of jFBj:

P (jFBj = `) =

 
n � 1

b� 1

!�1

E

" 
n� 1 � CB

b� ` � 1

! 
CB

`

!#
(25)

where CB has binomial (m; pB) distribution given that jFj = m. Compare (25), (5)
and (12) to see that the following moment identity (26) must hold for a binomially
distributed random variable Y , with some restrictions on x. But then the identity must
hold as stated, by straightforward extrapolations. As a check, the alternate proof given
below reduces the moment identity to a known identity for binomial coe�cients.
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Lemma 15 Let Y be a random variable with all moments �nite. Then for all real x and

all non-negative integers a and b

E

" 
x� Y

a

! 
Y

b

!#
=

aX
j=0

(�1)j
 
b + j

j

! 
x� b� j

a� j

!
E

 
Y

b + j

!
(26)

Proof. By linearity of the expectation operator E, it su�ces to prove the formula for a
constant random variable Y , say Y = y for some real y. Then the formula reduces easily
to  

x� y

a

!
=

aX
j=0

(�1)j
 
x� b� j

a� j

! 
y � b

j

!
: (27)

Replace x� b by x and y � b by �z to see that this amounts to

 
x + z

a

!
=

aX
j=0

 
x� j

a� j

! 
z + j � 1

j

!
(28)

for all real x and z, which is a known identity for binomial coe�cients (replace n by a,
x by z � 1 and y by x� a in Gould [8][(3.2)]).
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