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Abstract

For a probability distribution (ps,s € 9) on a finite set .5, call a random forest
F of rooted trees labeled by S (with edges directed away from the roots) a p-forest
if given F has m edges the vector of out-degrees of vertices of F has a multinomial
distribution with parameters m and (ps,s € 5), and given also these out-degrees
the distribution of F is uniform on all forests with the given out-degrees. The
family of distributions of p-forests is studied, and shown to be closed under various
operations involving deletion of edges. Some related enumerations of rooted labeled
forests are obtained as corollaries.

1 Introduction

Let F(S) denote the set of all forests of rooted trees labeled by a finite set S of size |S].
Each f € F(9) is a directed graph labeled by S, that is a subset of S x 5, such that each
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connected component of the graph is a tree with edges directed away from some root
vertex. The notation v —» w will be used instead of (v,w) € f to show that (v,w) is a

directed edge of f. For s € S and f € F(9) let f, :={t € S: s 1 t}, the set of children
of s in f. Note that for each forest f the f; are disjoint subsets of S as s ranges over S.
The number of children or out-degree of s in the forest f is |f;|. The number of edges of f
is |f| = 3, [fs], and the number of tree components of f is S| — |f|. The starting point of
this paper is the observation of [15] that for each probability distribution p = (ps,s € .S)
on S, and each 1 <m < |S] — 1, the formula

P(F=f)= (|S| B 1)_1 IT p*! (f € F(S): |f| =m) (1)

m SES

defines the probability distribution of a random forest F with m edges. This is a proba-
bilistic expression of the following multinomial expansion over forests [15, 18, 21], which
is an identity of polynomials in variables z,,s € S generalizing Cayley’s multinomial
expansion over trees [5, 19, 16]:

S M- ('S - 1) (Z )m 2)

feF(S):|f|l=m s€S m s€S

Definition 1 For a probability distribution p on S, and 1 < m < |S|—1, call a random
forest F with distribution (1) a p-forest with m edges, or a p-forest of k trees, where
k =S| — m. Call F a p-tree if k = 1. Call a random forest F a p-forest if F given
|F| = m is a p-forest with m edges for each 1 < m < |5|— 1.

Put another way, a random element F of F(5) is a p-forest if and only if the distribution
of F is given by the formula

P(F = f) = wg [ o (f € F(5)) (3)

SES

for some sequence of weights (w,,,1 < m < |[S| —1). If p is uniform on 5, a p-forest
with m edges has uniform distribution on the set of all rooted forests labeled by S with
m edges. Many exact combinatorial results and asymptotic distributions are known in
this case. See [15] for a review of such results and their applications to random graphs.
Here attention is restricted to exact distributional results for p-forests for a general
underlying probability distribution p. The main point is to present some properties of
p-forests which might prove useful in a variety of contexts. This study was suggested
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by recent applications of p-forests to the construction of partition-valued and measure-
valued coalescent processes [15, 6, 1]. See [16] regarding the connection between p-forests
and the model of [4, 10, 20], for a random mapping from S to S with independent images
with distribution p, and [16, 17] for the relation between p-forests and random subsets
with distributions generated by Hurwitz’s [9] binomial expansions. See also [2, 11, 14, 12]
concerning other models of random trees and forests and their applications.

The following characterization of of a p-forest follows easily from Definition 1. Here

m—1

and throughout the paper, the notation (x),, := [, (x —7) is used for falling factorials.

Proposition 2 [16] A random element F of F(S) is a p-forest if and only if both
(i) for each 1 < m < |S| =1, the conditional distribution of the out-degree count vector
(|Fsl, s € S) given |F| = m is multinomial with parameters m and (ps,s € S), and
(i) for each vector of counts (fs,s € S) with 3_, fs = m, the conditional distribution of
F given (|Fs| = fs for all s € S) is uniform over the set of (|S| — 1) /(Ilses fs!) forests

with the given out-degrees.

For any random rooted forest F labeled by S with a fixed number m of edges,
the vector of out-degree counts (|F;|,s € ) is subject to the constraint 3, |F,| = m.
Therefore, the expectation of |Fs| equals mp, for some probability distribution p on S.
By the previous proposition, for any given p and m this is achieved by a p-forest with m
edges. The paper [16] recorded some basic features of p-forests, such as the distribution
of the random set of roots of a p-forest of k trees, and the conditional distribution of a
p-forest given its set of roots. In particular, the root R of a p-tree 7 has distribution p,
and R is independent of the unrooted tree derived from 7. Several natural constructions
of a p-tree for general p are reviewed in [16, §3]. Starting from a p-tree, one construction
of a p-forest is given by the following proposition:

Proposition 3 [15] A p-forest of k trees is obtained by deleting k — 1 edges picked
uniformly at random from the |S| — 1 edges of a p-tree.

The main results of this paper are the following three theorems, each of which de-
scribes a different way in which the family of distributions of p-forests is closed under
operations involving deletion of edges. For a forest f € F(S) and a subset B of 9, the
restriction of f to B is the forest f% € F(B) defined by f? := f N (B x B). For a prob-
ability distribution p on S and a subset B of 5, let pg := > ,cp ps. For B with pg > 0,
let p(- | B) denote the probability distribution on B obtained by conditioning p on B.



Theorem 4 Let p be a probability distribution on S with 0 ¢ S, let 0 < pg < 1, and let
P’ be the probability distribution on {0} U S defined by py = po and pl, = (1 — po)ps for
s€ S, sop=p(-]5). Let T' be a p'-tree labeled by {0} U S and conditioned to have root
0, and let F be the restriction of T' to S. Then F is a p-forest with the same distribution
as if each edge of a p-tree were deleted independently with probability pg.

This result is easily verified by direct calculation, or by application of [16, Th. 23]
with 0 U S substituted for S and R = {0}. The next theorem is proved in Section 2:

Theorem 5 (Projection rule for p-forests) For B a non-empty subset of S and F a
p-forest labeled by S, the restriction FP of F to B is a p(-| B)-forest. The distribution
of |[FB| on 0,...,|B| —1 is determined by pg and the distribution of |F| via the falling
factorial moments

BUFP) = BB = oty (=012, (1

To be explicit, these factorial moments determine the distribution of |F?| via the sieve
formula [3, p. 17]:

|B|-1 ’ B
PIFF =)= 3 ()(—Ww 0<0<|Bl-1) 5)

-, I rl

Corollary 6 (Projection rule for uniform forests) Suppose that F has uniform distri-
bution on the set of all ("2'__11)|S||5|_k forests of k rooted trees labeled by S, for some

1 <k <|S|. Then for each non-empty subset B of S the conditional distribution of FP
given that FB has j components is uniform on the set of all forests of j rooted trees la-
beled by B. That is to say, each forestf € F(B) with j tree components is the restriction
to B of the same number of forests in F(S) with k tree components.

This number of forests, which depends only on |B|, |S|, j and k, can be read from (4)
and (5) with pg = |B|/|S|. Underlying the above results is a simple formula, presented
in Section 3, for the probability that a p-forest contains a specified set of edges. A
straightforward calculation with this formula yields easily the following generalization of
Proposition 3:



Theorem 7 Suppose that F is p-forest. Given F, let each edge s 2t be marked red
with probability rs, indepedently as (s,t) ranges over all directed edges of F. Let Fred
denote the forest of red edges so obtained, and let p, := Y cgpsrs. Then Frea is a p'-
forest, where pl. := pyrs/p., and given F has m edges the number of edges of Frea has a
binomial(m, p.) distribution.

In particular, if F is a random tree with uniform distribution on the set of all rooted
trees labeled by S, then Fiq obtained by the above construction is a p'-forest with p/,
proportional to r,.

2 The Projection Rule.

This section establishes a series of lemmas which combine to yield a proof of Theorem
5. Suppose throughout that F? is the restriction to B of F, a p-forest labeled by S, for
some B C S with |B| = b and |S| = n. To avoid trivialities, it is assumed throughout
that pg > 0. When convenient, as in the next lemma, it may be also be assumed (without
loss of generality) that S = [n]:={1,...,n} and B = [b] for some b € [n].

Lemma 8 Conditionally given |F;| = f; for all © € [n], the random set Fy of children of

1 has uniform distribution over all subsets of size f1 of {2,...,n}, and for each2 <1 <n
given also the subsets F; of [n] for all j < i, the random set F; has uniform distribution
over all subsets of size f; of some subset of [n] of sizen —1— f1 —--+ — fi_1, this subset

of [n] being determined by the F; for j < ¢ and the constraint that F is a forest.
Proof. This can be read from the proof of [15, Thm. 1.6].

Lemma 9 For each g € F(B) and all vectors of non-negative counts (fi,1 € B) with
P(|F;| = fiforallie B) >0

— 1 — e fi)o—|gl-1 [T (6)

P(FB=g| |F|=f f lien) ="
(FP =g |F| = fi foralli € B) LS

Proof. The event FP = g is identical to the event that F; N B = g; for all i € B. For
B =1[b] C S =[n], Lemma 8 shows that conditionally given |F;| = f; for all ¢ € [b] there

are , )
n—1= 0 fy _ (n—1)!
ﬂgl ( o ) T (= 1= T, S (7)
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equally likely possible choices of the sets F; for ¢ € [b]. The number of these choices that
make the event (FP = g) occur is

s fn—b— I (- ) (n— )
}T( Frr — G )‘<n—b—z?ﬂ(fi—gi>>!ni;1<fi—gi>! ®)

where g; := |g;|, and the ratio of (8) to (7) simplifies to yield (6). To check the left-hand
formula in (8), observe that given choices of the F; have been made for ¢ < m in such
a way that |F;| = f; and F; N [b] = g; for all ¢ < m, the choice of the set F,, of size f,,
is subject firstly to the constraint that F is a forest, and secondly to the constraint that
FnN[b] = gn. This means that there f,, —g., elements of [n]—[b] to be chosen. The forest
constraint forbids the choice of any of the 77! f; children of vertices 1,...,m — 1 to be
chosen. But due to previous choices, 7! ¢; of these forbidden vertices are contained in
[b], so there are exactly 377! (f; — gi) forbidden vertices within [n] — [b], and the f,, — gn
vertices of F,,, N([n] —[b]) are chosen from an allowed set of n—b—3""7"(f; — g;) vertices.
Therefore, no matter what the F; for i < m such that |F;| = f; and F; N [b] = g; for all
i < m, the number of possible choices of F,, such that F,, N [b] = g,, is the mth factor
on the left side of (8). O

For the rest of this section let C's denote the total number of children in F of all
vertices in B:

Cp:=|FN(Bx58) =Y |~

seEB

Lemma 10 For each g € F(B) with j tree components and each ¢ with P(Cp = ¢) > 0,

1 =)y . |gs]
P(FP=g|Cp=c)= (n=1= 0o (c)o-; TI (}%) : (9)

(n - 1)6_1 seEB

Proof. Again, take S = [n], B = [b], and let C; := |F;| for ¢ € [n]. By application of

(6),

P(FP=g|Cg=0c)= %Ec (H(Ci)lgil) (10)

where F. denotes expectation relative to the conditional distribution of (Cy,...,Ch)
given C'g = ¢, which by Proposition 2 is a multinomial distribution with parameters ¢
and (p1/ps,...,ps/pe). But this expectation can be evaluated by a calculation with the
generating function of the multinomial distribution, and the result is (9). O
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Recall that for 1 <n < N and 0 < G < N the hypergeometic(n, N, G) distribution is
the distribution of the number of good elements that appear in a random subset of size
n picked from a set of G good elements and N — (& bad elements [7].

Lemma 11
(i) the distribution of Cp given |F| = m is binomial (m, pg);
(ii) given |F| and Cg = ¢, the distribution of |FP| is hypergeometic (b—1,n — 1, ¢).

Proof. Part (i) is immediate from Proposition 2. To obtain (ii), sum the expression
(9) over all forests g € F(B) with ( edges and simplify using the multinomial expansion
over forests (2) to see that

R = Al L ) e[ (i

which yields (ii). O

Proof of Theorem 5. Compare (9) and (3) to see that for each ¢ € [n — 1] the
conditional distribution of F? given Cp = c is that of a p(-| B)-forest, hence so is the
unconditional distribution of FZ. To compute the factorial moments of | F?| recall that

for indicator variables X;,2 € [ and r = 0,1,2,... there is the formula
2ier Xi
p(B) = 3 P - 1) (1)
r JCI:|J|=r

By standard applications of (11), for S,, with binomial(n,p) distribution and H,
with hypergeometric(n, N, i) distribution there are the formulae

(5)-Qp )0

By application of these formulae and Lemma 11, for F with m edges the binomial
moments of |FB| are

o) = (e[ en]) - e () - = ()

and (4) follows. O




Examples. By application of (4) and (5), assuming that F has a fixed number k of tree
components, so y, = (n — k)., for each B with |B| = b the restriction of F to B is a tree
with probability

— k)1 4

PUFP = b—1) = L Bmt e 13
(| | ) (n _ 1)6—1 Pp ( )

The restriction has two tree components with probability

- k)b—z _ (n - k)b—l _

P(|FB|l=b—-2)=(b—1 (71762—761 14
(72— b=y = oy (- et (1)
and so on. For p uniform, pg = b/n, and the above probabilities have combinatorial

k-1
labeled by [n]. To illustrate with (13), the number of forests of k trees labeled by [n]
whose restriction to [b] is a tree is

— k) (BT n—1
(n )b 1 _ n nn—k‘ (15)
(n—1)p-1 \n E—1
In particular, according to (15) for k& = 1, there are 8*~'n"~" rooted trees labeled by [n]

whose restriction to [b] is a tree. To check this, observe that such a tree is constructed
by a unique sequence of choices according to the following three step procedure, where

interpretations as fractions of the total number (”_1) n"*% of forests of k rooted trees

the numbers of choices in the first two steps are given by well known formulae of Cayley
[5]:

1) pick an unrooted tree labeled by [b], that is 5*=2 possible choices;

2) pick a forest of b unrooted trees labeled by [n], with one point of [b] in each tree,
that is bn" "' choices,

3) let the set of edges of an unrooted tree labeled by [r] be the union of the sets of
edges of these b+ 1 trees, and pick a root from [n], that is n choices.

The number of rooted trees labeled by [n] whose restriction to [b] is a tree is therefore

bb—2 (bnn—b—l) n — bb_lnn_b. (16)

For a survey of related enumerations see Moon [13].

3 The probability that 7 contains a particular set
of edges.

For a random forest F labeled by S, and a set of edges g C S x .59, it is a natural problem
to calculate P(F D g), the probability that F contains each edge in the set g. Obviously,
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this probability is zero unless g is a forest. Pemantle [14, Th. 4.2] found a determinant
formula for probabilities of this kind derived from a uniform random spanning tree of
a graph. In the model of random forests considered here, there is the following simpler
result:

Theorem 12 Suppose that F is a p-forest labeled by S with |S| = n. Then for each
rooted forest g labeled by S with r edges

p(Fog) = LW gy e (17)

(n—1), e

To illustrate this formula, for any two distinct s and s in S, the probability that F
contains a particular edge (s, s') is

ElF]

P(s 5 o) = (18)

and for distinct ¢ and ¢’ in S, with (s,s") # (#',t) and s’ # ¢/, the probability that F
contains both (s, s’) and (¢,1) is

_ BFIF - 1)
(n—1)(n—2)

Pspt- (19)

In particular, for such (s,s’) and (¢,%') the events (s 7 §') and (¢ 7 t') are independent
if F is a p-tree, and negatively correlated if F is a p-forest of k trees for k > 2.

Proof of Theorem 12. By conditioning on |F| it is enough to consider the case when
F has a fixed number m of edges. The left side of (17) in this case is a sum over all
forests f O g of P(F = f) defined by the product formula (1). Thus (17) can be read
from the following lemma, where the probabilities p, are replaced by variables x; not
subject to the constraints of a probability distribution:

Lemma 13 For each rooted forest g labeled by S and each integer m > |g|
m—lgl
Sl—1-—
S [ - (| | |g|) (H ngA) (Z ) | (20)
f:|f|=m fOg s€S m—= |g| seS seS

where the sum on the left is over all rooted forests f labeled by S with m edges containing

g.



Proof. It is enough to consider S = [n]. Let |g;| = ¢;. By a reprise of the argument
which yielded (8), the number of forests f labeled by [n] such that f contains g and
If;| = f; for all ¢ € [n] is

ﬁ(m—l—ziﬂfi—gi)):(n—l—lgl)( m — g| )
j=1 fj_g] m_|g| fl_glv"'vfn_gn
which gives the identity of coefficients of [, zf in (20). O

Examples. The special case of (20) when g is the trivial forest with no edges is the
basic multinomial expansion over forests (2). Take the x; =1 in (20) to deduce that for
every rooted forest g labeled by [n] with j tree components, and every 1 < k < j, the
number of rooted forests f labeled by [n] which contain g and have k tree components
is (ij) n/~*. For another proof of this enumeration, and various applications, see [15].
Alternative proof of (4). Since

FP= Y s D (21)

(s,t)EBxB

the general formula (11) gives for r =1,2,...,6—1

o7 - x> rrow (22)

" gCBxB:g|=r

The probability P(F 2 g) is zero unless g is a rooted forest with r edges, and for such
g this probability is evaluated by Theorem 12. Thus

p(7) -y B EER T ey

r geF(B):|g|=r (n - 1)T seB (n - 1)7°

where the second equality is due to (2). O

4 Random thinning of edges

There is one case where a substantial simplification occurs in the formulae (4) and (5).
Suppose that |F| has a binomial distribution with parameters m and ¢ for some ¢ € [0, 1].
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Then from (12) and (4), the distribution of |F?| has rth factorial moment

(1),
),
If m = n—1 this expression simplifies to (b—1),(¢pg)”, which is the rth factorial moment

of the binomial distribution with parameters b — 1 and gpg. This yields part (i) of the
following following corollary of Theorem 5. Both parts follow easily from Lemma 11.

E(|FP), = (m),q"p. (24)

Corollary 14 Suppose F is a p-forest labeled by S with |S| = n, and that the number of
edges of F has binomial(n — 1, q) distribution for some ¢ € [0,1]. Then for each B C S
with |B| = b,

(i) the restricted forest FP is a p(-| B)-forest whose number of edges | FP| has binomial (b—
L, qpg) distribution.

(ii) the number |FP| of edges of F in B x B, and the number of edges of F in B x B°

are independent, and the latter number has binomial(n — b, qpp) distribution.

Let 7 be a p-tree labeled by S, and let F be derived from 7 by retaining each
of the n — 1 edges of 7 independently with probability ¢. Call F a ¢-thinning of 7.
By application of Proposition 3, F is a p-forest, and |F| has the binomial (n — 1, ¢)
distribution supposed in the above corollary. To restate the corollary, the restriction to
B of a g-thinning of a p-tree has the same distribution as a gpg-thinning of a p(-| B)-
tree. Even for p uniform and ¢ = 1 this result does not seem evident without calculation.
Neither does the independence property (ii) seem obvious even in this case.

5 A moment identity.

In the setting of Lemma 11, there is the following expression for the distribution of |F5|:

S v I [Py [ O

where Cp has binomial (m,pg) distribution given that |F| = m. Compare (25), (5)
and (12) to see that the following moment identity (26) must hold for a binomially
distributed random variable Y, with some restrictions on x. But then the identity must
hold as stated, by straightforward extrapolations. As a check, the alternate proof given
below reduces the moment identity to a known identity for binomial coefficients.

11



Lemma 15 Let Y be a random variable with all moments finite. Then for all real x and
all non-negative integers a and b

S0 R CCUTAR I

Proof. By linearity of the expectation operator F, it suffices to prove the formula for a
constant random variable Y, say Y = y for some real . Then the formula reduces easily

T —y 2 fr—b— y—b)
= —1)/ . . . 27
(“);()(a—ﬂ)(J (27)
Replace © — b by x and y — b by —z to see that this amounts to
R (P [ 2
a o a—J 7

for all real # and z, which is a known identity for binomial coefficients (replace n by a,

by z—1and y by © — a in Gould [8][(3.2)]).

to
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