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Abstract

Duncan's Bayesian decision-theoretic multiple comparison procedure requires a

decision on the relative magnitudes of losses due to Type I and Type II errors. In

this paper, the relative losses are chosen so that the procedure results in weak con-

trol of familywise error at the .05 level, i.e. the probability that all hypotheses are

accepted is .95 when all hypotheses are true. Duncan's Bayesian formulation requires

prior distributions and speci�cation of associated hyperparameters for the variances
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of the population means and of the errors. With noninformative priors, the required

ratio of these values can be estimated from the sample. From a frequentist point of

view, this obviates the necessity for any prior speci�cation for these distributions.

However, Duncan's assumption of a prior normal distribution for the population

means is required and is retained. A simulation study then compares the modi�ed

method, with respect to Bayes risk and average power, to several frequentist-based

multiple comparison procedures for testing hypotheses concerning all pairwise com-

parisons among a set of means. Results indicate considerable similarity in both risk

and average power between Duncan's modi�ed procedure and the Benjamini and

Hochberg (1995) FDR-controlling procedure, with the same weak familywise error

control. Both risk and power of these procedures are close to the risk and power of

individual t-tests of the mean comparisons, and considerably superior on both mea-

sures to the properties of the best symmetric simultaneous testing procedure, based

on the range of normally-distributed observations.

1 Introduction

1.1 General overview

The purpose of this paper is to compare Duncan's Bayesian multiple comparison procedure

(Duncan, 1965; Waller and Duncan, 1969) with commonly-used non-Bayesian procedures.

The speci�c context is the testing of hypotheses concerning the di�erences among all means

in a one-way layout with samples from m populations Pj, with means �j , j = 1 � j � m.

It will be assumed that the population distributions are normal and that the sample means
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have equal variances �2

M around their true values �. (In many applications, �2

M equals

�2=r, where r is the number of replications, and error variance �2 is assumed equal for each

observation).

In the next part of the Introduction, Duncan's procedure will be described, and notation

appropriate for this study will be established. The remainder of the Introduction will

present some background on frequentist approaches to the multiple comparison problem

and compare them with Duncan's Bayesian approach. In Section 2, a modi�cation of

Duncan's Bayesian approach is suggested that will make it appropriate to compare the

procedure to selected non-Bayesian multiple comparison methods. Section 3 describes the

design of a simulation study comparing the methods; the results regarding error control,

Bayesian risk, and power are presented in Section 4. This is followed by a discussion of

these results in Section 5, and some concluding remarks in Section 6.

1.2 Duncan's Bayesian Decision-Theoretic Procedure

The di�erences among all pairs of means are designated �i, i = 1; : : : ; n, where n = m(m�

1)=2. The subscripts are chosen so that the corrresponding sample di�erences di are ordered

from largest to smallest, i.e. d1 � d2 � � � � � dn.

In addition to the standard non-Bayesian assumptions, it is assumed that the means �j,

j = 1; : : : ;m, are a random sample from a normal distribution. Without loss of generality

the mean of that distribution can be assumed to be zero, since only di�erences are of

interest; the variance will be designated � 2.

The hypotheses of interest are formulated as follows: For each di�erence �i, i = 1; : : : ; n,
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there is a pair of hypotheses:

Hi1 �i � 0; Hi2 �i � 0: (1)

The possible decisions are: Reject Hi1 (decide �i > 0), reject Hi2 (decide �i < 0), or reject

neither (make no decision). The loss functions are as follows:

Loss function if �i � 0

� Do not reject Hi1: Loss = 0

� Reject Hi1: Loss = k1j�ij

� Do not reject Hi2: Loss = k2j�ij

� Reject Hi2: Loss = 0.

If �i � 0, the loss structure is the same, with subscripts 1 and 2 interchanged above

on Hi (but not on k). Losses are then summed over the decisions on the two hypotheses,

giving:

Loss function if �i � 0

� Reject neither hypothesis: Loss = k2j�ij

� Reject Hi1: Loss = (k1 + k2)j�ij

� Reject Hi2: Loss = 0.

with appropriate modi�cations, interchanging subscripts 1 and 2 on Hi when �i > 0.

The loss over the whole procedure, testing the n pairs of hypotheses, is the sum of the

losses over the individual pairs.
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Let k = k1=k2. Note that k can be thought of as the ratio of the loss due to a Type

I error to the loss due to a Type II error in testing a single directional hypothesis. The

expected loss, or risk, equals

k2NULL + (k1 + k2)DIR (2)

whereNULL is the expected value of nonrejected di�erences andDIR is the expected value

of di�erences rejected in the wrong direction. Duncan (1965) showed that the procedure

minimizing the risk depends only on k and on the variance ratio � 2=�2

M .

The procedure involves testing each pair of hypotheses Hij using the corresponding

Student t-test: Accept both hypotheses (or reject neither{see interpretation in Section 1.3)

if

jtj �
q
	=(	 � 1) t

1
: (3)

Here 	 = (�2

M + � 2)=(�2

M ) = E(MSB)=E(MSW ), MSB and MSW are the between-

treatment and the within-treatmentmean squares, respectively, in a one-way layout analysis

of variance, t
1
is the value of z for which

�(z) + z�(z)

�(�z)� z�(�z) = k;

and � and � are the standard normal density and cumulative distribution functions, re-

spectively. If 	 = 1, no hypotheses can be rejected.

Note that this procedure and its proposed modi�cation are unrelated to Duncan's New

Multiple Range Procedure, which is incorporated in some computer packages. Since Duncan

has proposed other multiple comparison procedures, I shall refer to this Bayesian procedure

as DUB.
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1.3 Background for comparison of Non-Bayesian Procedures to

Duncan's Bayesian Procedure

For many years, the most widely-used criterion in evaluating non-Bayesian multiple hy-

pothesis testing has been control of the familywise error rate (FWE), i.e. the probability

of one or more rejections of true hypotheses (Type I errors) in the family of hypotheses

under consideration, at some small level �. Rejection of a hypothesis is a strong conclusion,

based on statistical evidence against its truth, while acceptance is a weak conclusion, signi-

fying only that the evidence is insu�cient to decide whether the hypothesis is true or false.

When the family consists of a small number of hypotheses, and the overall conclusions

depend on the joint outcome of the tests, the FWE criterion, assuring high probability

against error (only a Type I error is really an error from this point of view), seems reason-

able. However, when the family size is large, the conclusions typically are less dependent

on joint correctness, and in that case control of FWE may be unnecessarily stringent.

Recently, an alternative error-protection criterion has been proposed: the false discovery

rate (FDR) (Benjamini and Hochberg, 1995). The FDR is the expected proportion of

true hypotheses among those that are rejected, i.e. the expected value of Q=R, where Q

is the number of falsely rejected hypotheses (true hypotheses that are rejected), and R

is the total number of rejections. (When R = 0. the ratio is de�ned to be zero.) In

distinction to control of FWE, control of FDR implies that a certain number of errors

are permissible with high probability if they represent a su�ciently small proportion of the

strong conclusions reached. If the test statistics are independent and the FDR is set at �,
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an FDR-controlling method limits the FWE to � when all hypotheses are true (termed

weak control of FWE by Hochberg and Tamhane (1987)), and empirical evidence suggests

that this weak error control at level � holds also for comparisons among means in a one-way

layout using the Benjamini and Hochberg (1995) FDR-controlling method.

DUB is similarly based on an alternative criterion which permits some errors with high

probability providing that the bene�ts of doing so are su�ciently great. It has a Bayesian

decision-theoretic interpretation that is seemingly incommensurable with the error control

approaches based on both FWE and FDR.

There are four di�erences in the overall approach of Duncan, as compared to most

FWE- and FDR-controlling procedures, which must be addressed in order to achieve a

reasonable comparison:

1. As in all Bayesian approaches, prior distributions on the parameters are assumed.

2. Since the prior distribution of the means is assumed to be normal, there are no mean

di�erences of zero (with probability 1), so no point null hypotheses are true.

3. The magnitude of error is taken into account.

4. There is no concept corresponding to control of either FWE or FDR.

These four points are elaborated on below.

1. Most non-Bayesian procedures treat the true means as arbitrary �xed values. As

noted, Duncan assumes a normal distribution of true means. Furthermore, Duncan
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must make some assumption about the variance of this distribution (the mean is

irrelevant, as noted above), as well as the error variance.

2. Most non-Bayesian procedures test hypotheses that the true means equal zero, an

outcome with a priori probability zero under the Bayesian assumption. However,

since directional conclusions are usually desired, an alternative to formulating the n

null hypotheses �i = 0, i = 1; : : : ; n, is to formulate the 2n null hypotheses �i � 0 and

�i � 0, i = 1; : : : ; n as does Duncan. Note that this formulation makes sense whether

one believes that a di�erence of zero is possible or not. Recently, Williams, Jones,

and Tukey (1994) have investigated procedures under the assumption that the null

hypothesis is never true, using the directional formulation above, with the possibility

� = 0 omitted, and substituting the level �=2 for � in order to make the procedure

equivalent in size and power to those under the point null hypothesis formulation.

3. In most non-Bayesian formulations of hypothesis testing, the magnitude of departure

from the null hypothesis, while it determines power, has no formal representation in

the testing procedure. Nonetheless, in most situations it is more serious to fail to

decide a direction of di�erence when the di�erence is large, or to make a directional

error if the di�erence is large in the opposite direction. Duncan's procedure takes

both of these considerations explictly into account.

4. In Duncan's procedure, the ratio k(= k1=k2) is chosen to reect the relative serious-

ness of Type I and Type II errors. There is no obvious relationship between the choice

of k and the choice of the FWE. (But see Section 4.1.)
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2 Proposed Modi�cations of Duncan's Procedure

The following modi�cations and considerations, corresponding to the four points discussed

in the previous section, provide a basis for comparing the properties of Duncan's procedure

to those of frequentist-based procedures.

1. Duncan speci�es a prior distribution for 	 with a hyperparameter in such a way

that the posterior distribution is a linear combination of a prior value and a esti-

mate from the data. Note that a natural data-based estimate of 	 is the usual

F -ratio MSB=MSW . That estimate will be adopted in this comparison, making

prior assumptions on the relative variances of the true means and the sampling errors

unnecessary from a frequentist point of view. The criterion for rejecting a hypothesis

Hi will therefore be taken to be

F > 1 and jtj �
q
F=(F � 1) t1 (4)

where t1 is de�ned in Equation (3).

2. The n comparisons will be formulated as 2n directional hypotheses, as in (1).

3. The criterion for rejection in Duncan's case becomes more lenient as the variance of

the true means increases. While non-Bayesian procedures have no formal represen-

tation of the magnitude of overall mean di�erences, the Benjamini-Hochberg FDR-

controlling procedures, and the stepwise non-Bayesian FWE-controlling procedures,

implicitly share the property of making rejection of any �xed observed di�erence more
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likely as the overall set of di�erences increases in absolute magnitude.

4. The ratio k, instead of being �xed by relative error considerations as in Duncan's

procedure, will be chosen so as to make the traditional Type I error equal to � in

the complete null case. This makes it possible to compare the properties of the

procedure with non-Bayesian procedures with weak control of Type I error at the

same level. It necessitates di�erent choices of k for each value of m. Note that

in the directional formulation of Duncan, the loss when all pairwise hypotheses are

true is zero. By adjusting the ratio k to make FWE = :05 under the overall null

hypothesis, a loss is implicitly introduced for the traditional Type I error under the

usual nondirectional formulation of null hypotheses in pairwise comparisons. (Under

that traditional formulation, which is the basis of the FDR approach, directional

errors are often referred to as Type III errors.)

3 Description of the Study

In this study, Duncan's Bayesian procedure with criterion speci�ed in Equation (5) is

compared with non-Bayesian procedures when the true means are a sample from a normal

distribution. The sampling variance of a mean, �2

M , is set equal to 1 and assumed known;

this should provide a good approximation for situations in which �2

M is estimated with

large degrees of freedom. Therefore, instead of the ratio F in Equation (4), the criterion

with estimated error variance replaced by a known value is equivalent to

q
MSB=(MSB � 1) t1:; (5)

10



where MSB is computed as if treatment means were based on samples of size 1, and t1,

because �2

M is assumed known and equal to 1, is replaced by di=
p
2. The FWE is set at �

= .05 in the complete null case, thereby determining the value of t
1
and thus of k.

The procedures are compared on FWE, FDR, and average power (non-Bayesian con-

cepts), and Bayes risk as de�ned in Equation (2). Average power is the expected value of

the number of (false) hypotheses rejected divided by n, the number of false hypotheses. All

power results reported will be in terms of average power.

3.1 Procedures

The non-Bayesian procedures compared with DUB are as follows.

1. The ordinary t test for each di�erence, ignoring multiplicity and assuming a known

error variance �2

M = 1:

Reject Hi if jdij >
p
2z:025;

where z:025 is the upper .025 critical value on the standard normal curve. If Hi is rejected,

make a directional decision corresponding to the sign of di. This procedure is designated

SEP , since the hypotheses are treated separately without regard to their multiplicity, and

of course it does not control either the FWE or the FDR.

2. The single-stage procedure based on the distribution of the range

Reject Hi if jdij > qm;:05;

where qm;:05 is the upper .05 critical value of the range of m standard normal means.

(This is the Tukey (1953) studentized range test adapted to known variance.) If Hi is
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rejected, make a directional decision as in 1. This would be the optimal symmetric non-

Bayesian simultaneous procedure with .05-level FWE control. This procedure is designated

RANGE.

3. The FDR-controlling procedure in Benjamini and Hochberg (1995): Let pi be the

signi�cance probability of jdij. Then the pi are ordered from smallest to largest. Let j

be the largest subscript i for which pi � i�=n. If there is no such subscript, accept all

Hi. Otherwise reject all Hi with i � j. Make directional decisions as in the two methods

described in Points 1 and 2. This procedure is designated FDR1, to distinguish it from

other FDR-controlling procedures.

3.2 Conditions

All simulations were carried out using Splus on a Sun Ultra-1 workstation.

The number of means was varied from 2 to 100: See Table 1. (Although all procedures

are equal when there are two means, the various power and risk measures were computed

to assess the continuity between the cases of two and more than two means.) For each

number m of means, the value of t
1
was set to make the FWE in the null situation equal

to .05, so that each of the procedures (except SEP) provided weak control of the FWE at

level .05. The t1 values were approximated by simulating the null situation 100,000 times

and using a value of t1 to two decimal points that gave the FWE closest to .05. The

values of t1 and the corresponding values of k are given in Table 1.

For each number m of means, the variance � 2 was set to make the average power for

RANGE approximately .50. Power was then approximated for each of the procedures
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No of Means t1 k(risk ratio)

2 1.69 91

3 1.91 178

4 2.01 244

6 2.09 315

8 2.12 347

12 2.12 347

16 2.09 315

20 2.07 296

30 2.02 252

40 1.97 215

50 1.93 190

100 1.78 120

Table 1: Number of means, t1, and k
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based on 20,000 replications. Checks of other values of � 2 indicated that the comparative

powers of the procedures remained the same over a wide range of values of � 2. A number

of checks of the whole process at � = :10 indicated that the comparative powers of the

procedures behaved similarly at that FWE level.

4 Results

Results will be presented primarily in graphical form. Numerical values can be obtained

from the author.

4.1 Values of t1 and k for which null FWE = �

Let m equal the number of means. The values of t1 required to make the FWE of DUB

equal to .05 in the complete null case vary relatively little within the range m = 3 to

m = 50, increasing from 1.91 (for m = 3) to 2.12 (for m = 8 and m = 12) and then

decreasing to 1.93 (for m = 50). The values are moderately lower for m = 2 and m = 100.

If a single value t1 = 2 were to be used (corresponding to a constant value k of 237), the

FWEs would vary from .04 to .065 within the range m = 3 to m = 50 (and would be

approximately .025 and .022 for m = 2 and m = 100, respectively). Thus, a constant-risk-

ratio procedure, as required under the Bayesian formulation, would not be too di�erent

from non-Bayesian procedures in weak control of the FWE within a wide range of values

of m.

On the other hand, the risk ratio varies enormously as a function of t1, giving about a
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2:1 ratio for the highest to the lowest value within the range m = 3 to m = 50. Duncan had

suggested using a risk ratio of 100, which corresponds to t1 = 1:72; this gives approximately

the usual .05 level for comparing two means (more exactly, t
1
= 1:69 to the nearest two

decimals gives the closest approximation to .05 for two means). However, for more than

two means up to 50, a risk ratio of about 200 corresponds approximately to .05-level Type

I error control when all means are equal.

4.2 Average power, FWE, and FDR

Figure 1 shows estimated average power results for the four procedures, at levels for which

the average power of RANGE is approximately .50. Although the power of the other three

procedures is somewhat above that of RANGE even for 3 means, their power increases

rapidly relative to the power of RANGE as the number of means increases. The power

of SEP is higher than that of all others except at 50 and 100 means, where the power of

DUB is greater than that of SEP . The powers of DUB and FDR1 are highly similar

throughout, with the largest di�erence being about .03 when the number of means = 100.

Both DUB and FDR1 are also close to SEP in power throughout the span of means;

the largest di�erence between any pair of these is smaller than .04, while the di�erences

between RANGE and the three other methods are all greater than .24 when there are 100

means. (Note that, for 50 and 100 means, the critical value of t1 for DUB approaches

1.93 and 1.78, respectively, as F !1, while the critical value of jtj for SEP is 1.96. Thus,

DUB is more powerful than SEP for 50 and 100 means for a su�ciently large variance of

the population means. The same is true for DUB compared to FDR1, since the power of
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the latter must be smaller than that of SEP .)

Although the FWE is .05 for all procedures except SEP when the complete null hy-

pothesis holds, the power advantage of DUB and FDR1 over RANGE is achieved at the

cost of larger FWE when the complete null hypothesis is false. Figure 2 shows the esti-

mated FWEs for the four procedures. Since there are no true mean di�erences of zero

under the conditions of the simulation, FWE in this case equals the probability of one

or more directional errors. The results are similar but not identical to those for power.

The FWE of RANGE is far below that for the other procedures, never rising above .002.

SEP has the highest FWE except for 50 and 100 means, when the FWE of DUB is the

highest. DUB and FDR1 are very similar from 3 to 20 means, after which they diverge

somewhat with DUB having higher FWE levels; the largest di�erence is approximately

.12 when there are 50 means.

Because there are no true mean di�erences of zero, the FDR is the expected value of

the proportion of directional errors among the rejected hypotheses. Given average power

.50 for RANGE, this proportion is extremely small, below .004 for all procedures over the

whole span from 2 to 100 means.

4.3 Risk

Figure 3 shows estimated risk for the four procedures, with di�erences standardized to

have unit variance and setting k1 = 1, at levels for which the average power of RANGE

is approximately .50. The RANGE procedure obviously has much higher risk than all the

others, which again are very similar. The largest risk di�erence among the three other
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methods is smaller than .03, while the di�erences between RANGE and the three other

methods are all greater than .70 at 100 means.

The risk is composed of two terms, involving the quantities NULL and DIR (see

Equation (2)). Estimates of these quantities are plotted separately for the four procedures

in Figures 4 and 5, respectively. As would be expected, RANGE has the largest value of

NULL, since it is most likely to lead to a (false) failure to reject a hypothesis, while it has

the smallest value of DIR, since the probability of directional errors is smaller using the

more conservative RANGE than using the other methods. On the other hand, SEP , the

least conservative for small numbers of means, has the smallest value of NULL and the

largest value of DIR except for 100 means, where DUB has those properties.

4.4 Comparisons with minimum achievable risk

The minimumachievable risk could be attained if the value of 	, which might be considered

the \true" F -ratio, were known. The procedure which would result in the minimum risk

would involve substituting 	 for F in Equation (4); this procedure is designated MIN .

Figure 6 plots this minimum achievable risk and the risk under the three procedures DUB,

FDR1, and SEP ; the risk using RANGE is so much higher than these risks (see Figure (3))

that including RANGE in the �gure would make it impossible to see di�erences among

the other procedures. All three (DUB, FDR1, and SEP ) have risks very close to the

minimum risk; with at least three means, the largest di�erence between any of them and

the minimum is less than .04. For 100 means, the di�erence in risk between FDR1 and

minimum risk is about .02, between SEP and MIN about .009, and between DUB and
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MIN about .0008. Duncan (1965) suggested that there would be little loss in using F to

estimate 	 for 15 or more means; in fact, for 16 means and above, the di�erence between

the risk using DUB and the minimum risk is smaller than .001.

Figures 6 and 7 are plots of NULL and DIR of DUB, FDR1, and SEP , along with

NULL and DIR, respectively, of MIN . For small numbers of means, SEP has smaller

NULL and larger DIR than MIN , while the FDR1 method shows the opposite pattern.

The values of NULL and DIR of DUB are closest overall to those of MIN .

5 Discussion

The fact that DUB does about as well as the ideal minimum-risk procedure when the

number of means is as small as sixteen, although the estimate of 	 must be rather crude

with such a small number, provides support for using the empirical estimate of 	, thus

avoiding the necessity for postulating a prior distribution for that quantity. Furthermore,

the similarity of the risk values for DUB, FDR1, and SEP suggest that a number of

procedures with generally di�erent properties can achieve close to minimum risk.

A surprising result is the great similarity in both risk and power between DUB and

FDR1, which also share weak control of the familywise error. Although SEP has somewhat

better power than DUB and FDR1, the di�erence is relatively small when the average

power of the range is about .50, and the disadvantage of SEP is that it does not have even

weak control of FWE; in fact its familywise error rate increases sharply with the number

of means, reaching a value greater than .99 under the complete null hypothesis with 50 and

23



Number of Means

R
is

k

2 3 4 6 8 12 16 20 30 40 50 100

0
.3

5
0
.4

0
0
.4

5
0
.5

0
0
.5

5
0
.6

0

MIN
DUB
FDR1
SEP

Figure 6: Risk of MIN, DUB, FDR1, SEP

24



Number of Means

N
U

L
L

2 3 4 6 8 12 16 20 30 40 50 100

0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5
0
.5

0
0
.5

5

MIN
DUB
FDR1
SEP

Figure 7: Null Risk (NULL) of MIN, DUB, FDR1, SEP

25



Number of Means

D
IR

2 3 4 6 8 12 16 20 30 40 50 100

0
.0

0
0
4

0
.0

0
0
6

0
.0

0
0
8

0
.0

0
1
0

0
.0

0
1
2

0
.0

0
1
4

MIN
DUB
FDR1
SEP

Figure 8: Directional Risk (DIR) of MIN, DUB, FDR1, SEP

26



100 means.

The FDR1, then, is an approximately minimum-risk method with good power proper-

ties, and has the advantage over DUB of not depending for weak familywise error control

on an assumed normal distribution to generate the true mean values. It is also simple to

apply when sample sizes and/or error variances are unequal. The robustness of DUB to

moderate departures from normality have yet to be investigated, and it clearly would not be

robust against drastic departures. Lewis (1984) refers to Duncan's assumption of a "single-

cluster" model, although the normality assumption is more speci�c than that description

implies. In principle, the approach can be generalized to allow for other distributions of

the true mean values: See Berry and Hochberg (1998).

Furthermore, although DUB has the simple form of Equation (4) when means have

equal variances, the form is considerably more complex when variances are unequal, and

thus when sample sizes and/or error variances in the di�erent groups are unequal. Whether

simple approximate procedures would also weakly control FWE and be approximately

minimum Bayes risk without the equal-variance restrictions remains to be determined.

On the other hand, an argument in favor of DUB is that Duncan has proposed a rela-

tively simple con�dence interval method corresponding to it, although the frequentist error

properties of such intervals are not completely clear and must be investigated empirically.

No simple method for forming con�dence intervals corresponding to FDR1 has yet been

proposed.
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6 Conclusion

This study has shown that the Bayesian decision-theoretic method proposed by Duncan,

modi�ed to provide weak control of FWE and using an empirical estimate of the variance

of the population means, has good properties both from the Bayesian point of view, as a

minimum- risk method, and from the frequentist point of view, with good average power.

These conclusions hold providing the assumption of a normal distribution of treatment

means is satis�ed, degrees of freedom for error are large, and the treatment sample means

have equal variance around their true values. Although Duncan's loss function formulation

is similar to that of Lehmann (1957a, 1957b), it di�ers in making the loss depend not only

on the presence of a Type I or Type II error, but on the magnitude of departure from the

null hypothesis, thus on the presumed seriousness of that error for practical purposes. The

explicit dependence of the loss function on the magnitude of departures from null hypotheses

is often a desirable feature, and is not shared by most frequentist-based multiple comparison

procedures. Furthermore, even a completely Bayesian use of the method, keeping the risk

ratio of Type II to Type I errors �xed at about 200 as the number of means varies, would

approximately control the familywise error in the weak sense when the number of means is

between 3 and 50, and thus should have good frequentist properties.

On the other hand, the FDR1 procedure, proposed by Benjamini and Hochberg using

frequentist principles, has been shown to have approximately minimumBayes risk, In fact,

although very di�erent in derivation and in formulation, both power and risk properties of

FDR1 and DUB are remarkably similar, and both control FWE in the weak sense, under
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the conditions of this study.

These results hold when true means are generated from a normal distribution, when

they have equal variance, and when degrees of freedom for estimating variance are large.

It remains to be seen whether similar properties hold when these conditions are not met.

It is clear that DUB would break down under severe nonnormality. Whether it is robust

to moderate nonnormality remains to be determined. The Duncan formulation can be

generalized to produce methods for any speci�ed mean and error distributions. It may

be possible to extend the applicability of the Duncan approach by developing adaptive

methods, based on approximating the distribution of means and errors from the sample.

The robustness of the Duncan approach and/or possible modi�cations will be explored. If

successful adaptations can be achieved, some of the advantages in exibility of FDR1 over

DUB would be reduced.
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