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ABSTRACT

This paper contains the technical foundations from stochastic differential geometry for the
construction of geometrically intrinsic nonlinear recursive filters. A diffusion X on a manifold
N is run for a time interval T, with a random initial condition. There is a single observation
consisting of a nonlinear function of X(T), corrupted by noise, and with values in another
manifold M. The noise covariance of X and the observation covariance themselves induce
geometries on M and N, respectively. Using these geometries we compute approximate but
coordinate-free formulas for the “best estimate” of X(T), given the observation, and its condi-
tional variance. Calculations are based on use of Jacobi fields and of “intrinsic location
parameters”, a notion derived from the heat flow of harmonic mappings. When any nonlin-
earity is present, the resulting formulas are not the same as those for the continuous-discrete
Extended Kalman Filter. A subsidiary result is a formula for computing approximately the
“exponential barycenter” of a random variable S on a manifold, i.e. a point z such that the
inverse image of S under the exponential map at z has mean zero in the tangent space at z.
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2 Overview

1 Overview

The purpose of this paper is to develop the necessary geometric and probabilistic machinery with
which to construct the Gl Filter algorithm presented in the companion paper, Darling [3]. The results

can be summarized as follows.

1.1 State Process

Section 5.1 below explains how a diffusion process X, with C3 coefficients, on a manifold N induces,
through its covariance structure, a semi-definite metric [].CJon the cotangent bundle, a connection I’
on the tangent bundle (actually I' may not be unique), and a (possibly degenerate) Laplace-Beltrami
operator A such that the generator of X can be written in intrinsic form as L =& + EA for some vector
field &.

Given x, ON, let {x,0<t<& be the solution of the ODE associated with the vector field &, started
at x,. In other words, x, = @,(x) , for 0<t<9, where {@,0<t<& isthe flow of the vector field &
on N.

Using the exponential map associated with I, we set up a random initial condition X, =exp, (UO) ,
0
where U is a random variable in T, N , with covariance 0T, NO T, N . Then we run the diffu-
0 0 0

sion during the time interval [0, g] , to obtain a state process { X, 0<t<& .

1.2 Observation

Now we take a nonlinear, noisy observation of the final value X . To be precise, we are given a c?
function Y:N - M, where M is a Riemannian manifold of dimension q. Let B (y) O TyM a TyM be
the inverse metric tensor at y [0 M, which can be interpreted as the covariance of a random vector in
TyM . The observation Y/ is of the form:

Y, = eXPy; (x,) V,OM,

where V, is a mean-zero random vector in Tq; (X )M , whose covariance is B (y) when Y (X5) =y,
5

but which is otherwise independent of U, and of the state process.

1.3 Intrinsic Approximation of the Conditional Distribution

Consider the random vector U 0 Z, 0T NOT, M given by
o) ) Xo W (x5)

_ -1 _ -1
Ug= exp, . (Xs) , Z5= EXPY; (x5) (V) -

Our main result - Theorem 6.3 - presents intrinsic (i.e. codrdinate-free) approximations to E [UE‘ZE)]
and Var (Ué‘Z ), valid up to O (y ) where Z, the noise covariance ofX and the observation
covariance are taken to be O (y ), for some small y, and HE [Ugl H =0 (y ) Since Brownlan scal-
ing implies that O (y ) = O (9) , the remainder terms in our approximations are O (d ) The form
of the expression for Var (U5‘Zé) is quadratic in Z, unlike the non-intrinsic linear formula given in
the Extended Kalman Filter.
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1.4 Exponential Barycentres

In the light of the recursive nature of a filter, we want to use Y to estimate the initial value for the dif-
fusion X, = X5, ,, for 0t <39, started at a point X’ = exp, . (Uy) where

= 0@y, | =0

for tensor fields T of type (1, 3) ; in other words, x,' needs to be our best approximation to X, given
Y - Our other major result is Theorem 3.2 (the Exponential Barycentre Formula), which implies that

we should choose

AII

, A~ 1
X0 {H- é Z ijk (X5) H2
ijik

where {=E[U ‘ZE)] s= Var(Ua‘Zé) R:,kE Oi ai and R is the curvature tensor on N.

09
Cox

2 Curvature and the Exponential Map

The purpose of this section is to build some geometric machinery which will enable us to find asymp-

totic expansions for the first and second moments of a random variable of the form

-1
ZEexpy (equJ (Xé)l"l) DTyM,

2
where X is a diffusion process on a manifold N, y:N - M is a C° map, and n is a random variable

in TLIJ (Xa)M'

2.1 Geometric Notation

If {V(t),0<t<1} is a vectorfield along a C2 path {y(t),0<t<1} on a manifold M with a tor-
sion-free connection, with local connector I' (.) , then the covariant derivative of V along y is repre-

sented in codrdinates by

L=vier () (vOy) m

Recall that V is said to be parallel along y if (1) is identically zero, and y is said to be a geodesic if
Oy'/0t is identically zero. For more information, see, for example, do Carmo [4] and Darling [1]. Let
us recall the formula for the curvature tensor R in terms of the local connector:

R(u,v)w =Dl (v) wOu) =Dl (u) (wOv) +IF (F(wOu) Ov) =T (T (wOv) Ou), (2)

where R, I, DI (v) are short for R (y), T (y),Drl (y) (v) , respectively, and y OM, u,v,w [ TyM .

This expression is alternating in u and v.
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2.2 Lemma
Suppose W is a vector field along a geodesic {b (t),0<t<1} and Z= %_\;l/ Suppose b' = V, and
IVI, IWI, 1Zl are all O (y) att = 0, for some small number y. The non-intrinsic expansion in local

codrdinates for the tangent vector W (1) UT, (1) M, in terms of tangent vectors in T, (0) M, is:

DW 1DW 1DW 1 DWD
W= EMH ot 26t +6at3 +2R%V’W ot \’D * @)
t=0
(- FD[W+Z+%%Z—} OVE+T (M (VD [W+2]) OV) —%DF(W+Z) vownl|l  +owY.
t=0
Proof: We see from (1) that
W'_%W—Z—F(b) (WO b,
o0owo _ 0OZ
300~ 3t - (b) (ZOb"),
[l 2 2
AHI'WH _ O OZ ) DDZDbH
ot atZD ot
The second and third equations can be rewritten, by (1), as
62W 0z 0
Y =5 () (20b") == {T (b)) (WD b")}
oW _ 0%z oz ,.0 9 92
— = _2‘_r(b)DEDb'D_§{r(b) (ZOb'")} ——Z{F(b) (WoOb"}

ot

Using the geodesic equation b" +T (b) (b' 0 b") = 0,
%{ rb) WOb")} =Dr(b) (b)) (WDODb") +I'(b) (W' Ob") =T (b) (WOT (b) (b'0Ob"));

2

(T (b) (WObY} =2Dr (b)) (W Ob) + (W" Ob") =20 (W OT (' 0b) +O (v,
ot

writing I instead of " (b) in the last equation.Take a Taylor expansion at t = 0, and write I' instead

of I (b(0)), etc.:

W(1) = <0)+1Z‘”<0)+1th<0)+0(v)



Curvature and the Exponential Map 5

= (W+Z-T(WOV)} |,_,+O ()

+S{EE-r (ZOV) =D (V) WD V) =T (IZ-F (WD V)] OV) +F (WOT (VOV)))

t=0

0%z oz 0z

1 |
+5 05— 0VE-DI (V) (ZOV) T 55 -1 (Z0V) | DVEW(ZDF(VDV))B

+%{2r(zm F(VOV)) —2Dr (V) (ZOV) —rg[%—tz—r(zuw —F(ZDV)} mpva!

The terms involving one vector field are as in (3). Terms involving two vector fields are

1.00Z _ O 10z
—F(WDV)—F(ZDV)—ZFDEDVE— FD[W+Z+26JDV8.

Terms involving three vector fields are

—%DF(V) WOV +%r(r WoOVv) OVv) +%r(wmr(vmw)
+%{3r(r(zmw OV) +3M(ZOT(VOV)) =3Dr (V) (Z0OV)}
- —%DF(V) (VO [W+2]) +%r(r (VOV) O [W+2]) +%r(r (VO [W+2]) OV)

- %R (V.W+Z)V+T(F (VO [W+2]) OV) —%DF(W+Z) (VOV) .
All terms in (3) have now been obtained. O

2.3 Construction

If V'is a vector field along a c? path {y(€),0<e< L on a Riemannian manifold M, define a func-
tion b: [0, 1] x [0,1] - M by

b, (t) =b(t €) Eexpy(s)tV(S) . (4)
Thus for each €, b, is a geodesic with
b (0) =y(e), b, (0) =V(e). 5

Foreach €0 [0, 1] ,

J, (1) E%(t, ) .

is a “Jacobi field” along the geodesic b, with
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Jw)—y@),m(m (6)

The last identity follows from a well-known formula (see do Carmo [4], p. 68):

o 0pb 0

o,
5elde 0 - gear T () (b Do) = ¢

7
ot (7)
where b, ' is the vector field b /9t along b, . From do Carmo [4], p. 98, we have that for every vec-

tor field W, along b,

gOW, _ gOw,

st oe  oe ot T RUeb )W @

]

Taking W_=b_" and using the fact that b_ is a geodesic (i.e. —=£ = 0), we obtain from (7) and (8)
€ € € at

the Jacobi equation:

2_/ .
= 0. 9)
ot° )
Moreover J_ (1) = z' (€) , where z (¢) = exp, () V(e) OM.

In the following Proposition, only the case where V (0) = 0 will be needed in this paper; however the

general case may be needed for other filtering investigations.

2.4 Proposition
Suppose {V(€),0<e< T s a vector field along a C2 path {y(€),0<e< T on a Riemannian

manifold M, such that, |y'll, VI, ov , are all O (y) , for some small number y. Define
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7
_ -1
C(¢) =exp, (g (expy(s)V(s)) [ITy(O)M. (10)
Then we have the following intrinsic formulae, whose local expressions follow from (1) and (2):
1 4
T = {y+5L-ROVIV | OGS an
€=0
, D 0%v 1 Oy'm,, 2,00V O, . .0V 4
) = 03 F‘QR%V’E V-2REYyEV+ IR (/) [ +25Y +0(v); a2
€=0
O 2
Z(s) (0) = D—D +2Y V+REV EVDEV'+2§VD+R( V)D—+2 ZEH (13)
Do og® el oe“ D .
00O 2 O 2,00
v ROV, 2Y5, ROy, VOOV, 0y \ADV _lony DYVRA | 4oy
OO0 5¢20 de-0 0 de 3 0 45200 .
€=

Proof: Step I. Fix €, and apply Lemma 2.2 with W = J¢, using the initial conditions (6) and (9). Note
that (9) and the geodesic equation imply that

3

uJg o oJ
£ = —ROb,', b, +O (")
ot
Consequently
[l
By s OW, 10°W W+;D W+1RD\/W DWBVD
O 0t 252 648 2 ot
t=0

v+ =Y -2R (V,y) V- SREV, S¥EV+ 2REV, v + SYEV+ O (v

3¢ '+ 5el
, . Ov., 1 OV 4
:Y+§+§RE\/’§EV+O(V)~ (14)
The other terms in (3) contribute
—rg[ +_J 3+ B [ } Dr% +DVD(VDW +0o(vh (15)

Thus J, (1) = z'(¢) is approximated by the sum of (14) and (15).
Step Il. Now apply Lemma 2.2 again, this time to the Jacobi field K, along
Ce (t) = €XPy (0) t{(e) ,

with C (€) in place of V(€) and y (0) in place of y (€) . We obtain expressions analogous to (14)
and (15), namely:
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K () = T +3R@T)Z-T @ OV) +F (M (VOL) V) =307 (@) (VOV) +O(vY) . «e)

Since, by definition,
z(g) = eXpy(g)v(s) = eXpy(Q)Z (e),

it follows that
Jg(l) =z'(g) = Ks(l) ) 17)

Ate =0, (0) = V(0) . Let us adopt the working hypothesis that

y+2Xes | o0,
e=0

¢ =

where S is the sum of terms of third order. Combining (14), (15), and (16), we find

L0V, 1.0, OVO V.o, 1 ovg
"5t RV G =y G S+ REL + V00,

giving S = —%R(V, V')V This verifies (11).
0J

Step Ill. Apply Lemma 2.2 a third time, taking W = a—; . Using (7) and (8),

ow _ ooYao | o N

3t otlael T gear TRUebe) e ne)

2 J DJ
o°w _ 0,00 0,0
a2 "at{atmae% ot ' 9 at TR (g be) g
9%y 0 0J 0J
g £+ RG==, b, '), + R(Jb) +0o(vY

FRUeb) G RO

J J
= (R (b J) b} +2R (g b,) = +RE b/ +O (")

DJE DDJ
+2R(J b) 57 *R D'a— 'DJ +0(v"

o0, Do,
= —RDa— SDbS _REbe'EDbe —R(b )
oYe o, .0, o
= —RDa—:,JSDbE —R[ba,a—s‘c’gba +3R (J,. b, ) R[}be,—DJ +o(vh.
We used a—: = 0 here. Using the first Bianchi identity,
O , 0o

DDJg [l f ' € —
RDE’JSDbS +R(J£,b£)—a"t_—+R|:b£,¥Dje =0,
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2 oJ 0/
ow _ g , “Yed o,
? —R[bs,E-Dbs +4R (J, b ) +O(y)

(19)

Finally, using (18) and (19),

3 aJ aJ
ow _ E _ O ,_SD , N g 4
T = R Gk H AR U 5 +O W)

.0, 0o0Wdm
—R[bs,a%[,a—- b + 4R

JD I:JJ

[l
|:| [ |:|J
R[be 08 ¥ ob,' 4RD— b, D +O(y)

EI.I [I./

l—'at b, D at oy
ot’
Thus our initial conditions will be

W(0) = 68

FACE Mﬂe(y V)y';
68

O W O
L (0 = -REV, v +ar (v, V) 5L+ 0 (v
ot°
0 2
M(O) = ROV, VBV+4R5§_VVD rovh .
at 9e“U
By Lemma 2.2,
0J ,
¢ D_Y+D_.Y+R(y Viy' +3{-REV, SLEV+aR () 3 + (20)

(1) =
€ oe as

The curvature terms simplify to:
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OK
Step IV. With reference to Step Il, apply Lemma 2.2 a fourth time, taking W = _a_é_e . The expression

analogous to (20) is:
e =+ R@ G+ R@OT
oe 3 3 '
P (@ 03 +T (T OT) 0V) =3Dr (@) (Q02) +0 ().
oJ oK
From (17), it follows that -b--s (1) = 6—88 (1) . Take as a working hypothesis that

0
+TB +O(v4) (21
e=0

D LoV 2y
Z" (0) - 2
o0e

where T is a sum of third order (i.e. curvature) terms. Combining (11) and (20) - (21) gives

Oy, gV av DVI]
T+3 RD\/ 8+a DV+ 2Ry +5Y v +

720
' 2,00V av av
Ry V)y'+ RD\/ |]V+3R[,—a \/Da + 2R (y', )—a ;

1 Oy'0,, , 2500V 1wy + 200 v EY.

T+3REV, ZEaV+5 E,a—vD = FROVY +5R (V) 52
D\/ 2,0, 0v0, 1,0, 0

T = 3R(y,\V)y' + 3R (v, V) e + SREV, S¥Hy ~ SREY, SLHV.

Using the first Bianchi identity,

DVD, ogv o, oy 2V g,
REV, =2 =2V +Rige VAV +R (Y, V) 52 = 0; (22)
Lo s 2p v OV 2,00V, Oy'0
T = 2RO,y +ER (V) S - 2REEY v - 2REY, Sy,
DJ
Thus (12) is established. The proof of (13) i 25 . 0
oe

We conclude this section with two minor formulas we will need to implement the filter.

25 Lemma (Expansion of the Exponential Map in Local Coordinates)
On a manifold M with a torsion-free connection I, the expansion of the exponential map in local coor-

dinates is given in terms of the local connector T (.) as follows: for y 0 M DRq, v TyM DRq, tOR,

2 3
exp,tv = y +tv=5T (y) (vOV) + 2 [27 () (T (y) (vOv) Ov) =DF (y) (v) (vOW)] +O(t) (23
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Proof: The geodesic b (t) = expytv has the following properties. By definition b (0) = y and
b' (0) = v, and by the geodesic equation, b" +I (b) (b' 0 b") = 0, which implies that b" (0) is
I (y) (v Ov) . A further differentiation of the geodesic equation yields

b +Dr (b) (b)) (b' T b)) +T (b) (b" O b') +T (b) (b'0b") = 0,

and the last two terms on the left are the same by torsion-freedom. Now set t = 0 and substitute for
b' (0) and b" (0) to give the expression for b ®) (0) which appears as the coefficient of t3/6 in the
Taylor expansion (23). O

2.6  Corollary (Expansion of the Inverse Exponential Map)

-1
The corresponding expansion for exp, (z) , taking w=z -y, is:

w+ 3T () (wOw) +2[DT () (W) WOw) +T () (F() (wOw) Dw)] +O (Il . e

Proof: Let b (t) = exp, tv and h (z) = exp;1 (z) , sothat he b(t) = tv. Applying the chain rule
repeatedly,

Dh(b(t)) «b'(t) =v,
D%h (b(t)) (b'Ob") +Dh(b(t)) *b"(t) =0,
D3k (b () (b' 0b0 b') +3D%h (b (1)) (b" Ob') +Dh (b (1)) + b (1) = 0.
Now set t = 0, and substitute the expressions computed in the proof of Lemma 2.5:
Dh(y)v =v;
D*h(y) (vOv) =T (y) (vOv) = 0;
3
D h(y) (vOVd v)

=3 (y) (M (y) (vOv) Ov) =27 (y) (T (y) (vOv) Ov) =Dr (y) (v) (vOV)] .

Since h (y) = 0, we obtain (24) as the third order Taylor expansion of h at z. O

3 Application to Computation of Exponential Barycentres

Let us recall from Emery and Mokobodzki [5] that an exponential barycentre for a random variable Z
on a manifold N with a torsion-free connection I is a point z O N such that the random variable

exp;1 (Z) OT,N has mean zero.

3.1 Problem

The solution of the following problem is needed in order to update the Gl Filter in Darling [3]. We are

given a point x O N, and moments
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W=E[exp, (2)] OT,N, =Var(exp, (2)) OTNOTN. 25)

We would like to compute from these moments an exponential barycentre for Z, or at least a “good”

approximation.

3.1.a Notation

In the following theorem, the norm | . || is with respect to some reference metric for N, which need
0o 0 0 lin 0

not be related to the connection. Given the curvature tensor (2), the vector field R is
[Bxl. axlDaxk

denoted R, .
ij
3.2  Theorem (Exponential Barycentre Formula)
Suppose that the data (25) satisfy: Ml = O(y), |Z] = O (y2) , for some small number y. Define
- 1 i i’<}
z=expx{u—§ Z Riikpz . (26)
ik

Then

Elexp, (2)] = O(Y) an
In other words, z is an approximate exponential barycentre for Z. Also if T is a tensor field of type
(1, 3) (such as a curvature tensor), and if [E[T(n—-p,n—-k,n—-wW1] =0 (y4) , where
e exp;1 (Z) OT N, then
[EIT (e} (2), &0, (2) exp, (2] | = O (v -
Remark: Lemma 2.5 gives a formula to compute the exponential barycentre z in local coérdinates.
Proof: Let {y(€),0<e< 1 be ageodesic on N with initial conditions:
y(0) =x,y"(0) =p-p,
where p = 3 Z R:/k“ Z/kDT N, sothat p = O(y )

Letn denote the random variable exp (Z) 0T, N, whose first and second moments are given by

(25), and define a random vector field V along y by the formula
-1
V(e) =exp, () { exp, (€M)} .
Now y (1) = z by (26), and V(1) = exp (Z) so to prove (27) it suffices to prove that

E[V(D] = 0. 28)

We may rewrite the definition in the form (cf. (10))
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L(e) =en = exp, (g (e, () V (6)} -

Now apply Proposition 2.4, noting that V (0) = 0, and since y is a geodesic, %—' = -D--y?' = 0.We
obtain: o€
LY,
(0) =n-y'(0) +O(y); (0) =0(y);
de°
M o0, 0va, o0, OVODV, 4
— (O = (R R g | row.
€=0
By Lemma 2.2, with V in place of W,
3 O
v, 10%, 1,0, OVO
Vi = 5 6683+2RDV'6£DYD *
e=0
ov -, » = OV a1 ovao, 4
{-Tog; OYE+TH o' D 5200vE-30T gaen & Oyt | +0 (Y.
€=0

Taking expectations, and substituting,

E[V(D] = E[n-p+p+Z{-R(LMU-2R(LN) (11} +3R(Wm)n]+

E[-T (-0 0w +T (M0 @-1)) O -30r (1) (O W | +0 (Y.

The expected values in the second line vanish by linearity and the fact that E[n] = p . Also
E[R(,N) M = R (K M) = 0. Now the terms on the right cancel up to O (y4) , since

E[R(kmn] = 3 R,,kuE[nn 9 =3p.
ij, k
Thus (28) is established. As for the assertion about the tensor T, let W be the random vector field
along y given by W=T (V,V,V) . Then W (0) = 0, W(1) = T (exp, (2),exp, (2),exp, (2)),
and

S0 = {THL VVE+ T 55 _ouh =00

0w cov oV DV OV DV 0V 4 _ oA
— (0) = {2T5, ae’VD +2THV, =% 520+ +2THV, =% ag +oyh = o(yh

08 £=0

3

OW o = ooV OV OV 4 NN — 4
e 0 =6{Tr5; 3¢ 3% 8_O+O(v) =6{T(N-wN-K,N-W} |, _,*O(Y)
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2
where we have used the fact that V(0) = 0 and D—;/ (0) =0 (y4) . Now apply Lemma 2.2 and the

assumption in the Theorem to deduce de

IE[W (D11 = O (v*

as desired. O
4 A Non-Gaussian Conditional Expectation Formula
4.1 Quadratic Forms in Multivariate Normal Random Vectors

Suppose that U, V, and Z are random vectors in RP , RY , and Rr, respectively, whose joint distribu-

0
Hz RCTH
w| |c s o

We allow Q and R, but not S, to be degenerate. According to a familiar result in probability, the con-

tion is multivariate Normal with

TE Z E
QA}D, M ON, 440
A S|O 0

U i o
ON
{\J p+q% Hy

ditional distribution of U given V = v is:
UIvON, (ATs ™ (v—p,),Q-ATsTA) . (29)

We shall study the following situation. Suppose A 00 L (Rp O Rp;Rr) andd OL (R;0 O Rp;Rq) are

symmetric bilinear forms, and X and Y are random vectors of the form:
X=Z+A(UDOU),Y=svV+0(UOU),

for Z, U and V as above. Assume moreover that each of |Ql], [[R], [IS] is O (y2) , for some small num-

bery.

4.1.a Definition
We shall say that W approximates E [X|Y] upto O (y4) if

E[h(Y=-E[Y]) O (W-X)] = 0(y"), (30)

for every h O ct (R:R") with max{ supth (1E supyHDh i =1.

4.2 Proposition

The conditional expectation E [X|Y] is approximated up to O (y4) (in the sense of (30)) by

W =E[X] +GY+p(YDY) —E[p(YOY)] ORP, 31

where Y=Y —E[Y] , and the coefficients G 0 L (R*:R") andp 0L (R% 01 R%:R") are given by

G=C'S™, p(yOy) = (A-GO) (A'syoA'sY) . (32)
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In the case where Z = U, Var (X]Y) is approximated up to O (y4) by

R-C's™'C = var(z|V) . (33)

Proof: Without loss of generality, we may take p,, = 0 and 4, = 0, s0 Y=Y -6(Q) . The strategy
of the proof will be to expand h (Y) in a Taylor seriesas h (V) +Dh (V) (B(UDOU-Q)) +..., so

that we can evaluate the left side of (30) as:
E[E[{h (V) +Dh(V) (B(UDOU-Q)) +..} O W=X) V1]
E[h(VIE[(W=X)|VI] +E[Dh(V) (B(UOU=-Q))E[(W=X)|V]] +.... (34)

Step 1. First we evaluate E[W —X|V] . Applying (29),
E[W-X|V] = E[X] —E[p(YOY)] +E[GY+p(YOY) -Z-A(UO U)|V]
= (A\=GB) (Q) —E[p(VOV)] + (G-C'sTHV
+E[(GO-A) (UOU) +p([V+8(UDU-Q)] O [V+6(UOU-Q)]) V]
= (G-C'SHV+p(VOV=S) - (\-G8) (E[UD U|V] -Q)

+2p(VOB{E[UD UM -Q ) +f(V),

4 . . .
where f; (V) refers to a linear function of a quadruple tensor product of normal random variables,

conditioned on V. Using (29) again, we see that
T-1 T-1
E[UDUV] =E[(U-A'S"V) DUM +A'STVOE[UM]
=0-A'sta+AstvoaTs My,
Inserting the values of G and p specified in (32), and taking H EATS_l,

E[W-X|V] =2p(VOO{HVOHV—E[HVOHV]}) +f5(V). (35)

Step Il. Calculating in a similar way,
E[B(UDOU-Q) O (W=X)[V] = Cov(8(UDIU),GY+p(YOY) =Z-A(UD U)|V)
= —Cov(B(UDIU),Z|V) +£,(V)

= —Cov(8(UDU),E[Z|U] |V) —E[Cov (8 (U T U),Z|U) V] +F1(V) .
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The last line follows from the identity “Var (X) = Var (E[X|U]) + E[Var (X|U)] “. The conditional
covariance in the second term is zero. By (29) E[Z|U] is a linear function of U, and since third

moments of U vanish by the normality assumption, we conclude that
4
E[6(UDU-Q) 0 W=X)IV] =1 (V).

Step lll. Let h be as in Definition 4.1.a. Inserting the results of Steps | and Il into (34),

E[h(Y) O (W=-X)] =

= E{h (V) 0{2p(VOO{HVOHV-E[HVOHV]} ) +fa(V)} +Dh (V) Of;(V) +f‘2‘(V)}

and this is O (y*) because h (V) = h(0) +Dh (0)V+O (y) , and third moments of V vanish by
the normality assumption. Thus we have verified that W approximates E [X|Y] upto O (y4) .

Step IV. It remains to check the covariance assertion (33). By analogy with Step I,
E[6(UOU-Q) O (W-X)O (W-=-X)|V] =E[6(UOU-Q)0Z1 Z|V] +fg(V) =

E[6(UDU-Q) OVar(Z|U)|V] +E[8(UDU—E[UDUIV]) DE[ZUIO E[Z|U] V] +5(V)

where the last line follows from a generalization of “Var (X) = Var (E [X|U]) + E [Var (X|U)] “.
However E[Z|U] = U, and Var(Z|U) = 0 under the assumption that Z = U. Thus

E[6(UOU-Q) O (W=X)T (W=X)[V] =, (V). (36)
We also have
E[(W=X) 0 (W=X)|V] = Var(GY+p(YOY) —~Z-A(UD U) |V)
= Var (-Z|V) +fe (V)
=R-C'sT'C+fa (V). (37)
In view of the results of Step Ill, it suffices to show that
> T~-1 4
E{h(Y) O{(W=X) DO (W=X) - (R-C'S C)}} = 0(yh.

We substitute the Taylor expansion for h (Y) , condition on V inside the expectation, and apply (36)
and (37), to obtain (33). O
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5 Intrinsic Approximation of a Diffusion Process

5.1 Geometry Induced by a Diffusion Process

Consider a (possibly degenerate) Markov diffusion process { X,,0<t<& on N ORP, written in local

codrdinates as

. . p . .
dX; = b'(X,)dt + Zo;.(Xt)dW’,i: 1,2 ...p, (38)
j=1
where Zbi% is a vector field on RP ,0(x) = (0 (x)) D L (Rp T Rp) and W is a Wiener process in
R’ We assume for simplicity that the coefficients b 0 are C with bounded first derivative. Such a
O induces a C semi-definite metric [].0on the cotangent bundle, which we call the diffusion vari-

ance semi-definite metric, by the formula

p
i, k ik i k
@x]dx Q= (0 I (x))" = )3 0/'. (x) 0 (x) . (39)
j=1
This semi-definite metric is actually intrinsic: changing coérdinates for the diffusion will give a differ-
ent matrix (0/'.) , but the same semi-definite metric. The p X p matrix ( (o o) ") defined above
induces a linear transformation a (x) :TXEN - T,N, i.e. from the cotangent space to the tangent

space at x, namely
a (x) (dx) =Y (o o) "0/ 0x;. (40)

Let us make a constant-rank assumption, i.e. that there exists a rank r vector bundle E -~ N, a sub-
bundle of the tangent bundle, such that E, = range (0 (x)) OT,N for all x O N . Darling [2] pre-
sents a global geometric construction of a canonical sub-Riemannian connection [0 for [].[0 with
respect to a generalized inverse g, i.e. a vector bundle isomorphism g:TN — TLN such that

ax)+g(x)ca(x) =a(x.

In local codrdinates, g (x) is expressed by a Riemannian metric tensor (g,) , such that if

o= (o), then
Zcx"grsas' =a’. @1
r,s

The local connector T (x) O L (TXRP O TXRP;TXRP) ford  can be written in the form:

2g (I (x) (uOv)) Ov = Dig (v)lg (W) Xu) +DIg (w)lg (u)Av) =DIg (u)lg (V) Tw) ,  42)

where g (I' (x) (uOv)) is a 1-form, acting on the tangent vector w. This formula coincides with the
formula for the Levi-Civita connection in the case where [].0is non-degenerate; for more details, see
Darling [2].
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5.2 Intrinsic Description of the Process

he intrinsic version of (38) is to describe X as a diffusion process on the manifold N with generator
1
=E+=
L=¢ ZA (43)

where A is the (possibly degenerate) Laplace-Beltrami operator associated with the diffusion variance,

and & is a vector field, whose expressions in the local coérdinate system {xl, ...,xp} are as follows:
Z(G[b)"{D ZrUDk} JE = ;{b o1 (o[b)”rﬁ Dy, (a4)
i

where the Christoffel symbols { l':.} are related to the conector by

rt=dx [r(x)Da ai

Uncertainty about the initial value will be expressed by writing
Xo = exp, Uy, (45)

where U, is a random variable in T N, with covariance tensor £, U T N O T N, and the exponen-
0

tial map is taken with respect to the connection defined in (42).

53 Intrinsic Linearization About the Deterministic Solution

Let {x,,0<t<& be the solution of the ODE associated with the vector field &, started at the same
Xy as is mentioned in (45). In other words, x, = @,(x) , for 0<t<9d, where {@,0<t<Q@ isthe

flow of the vector field § on N. We may compute the following intrinsic quantities:

t ~1
1. =D(q* ) (x) UL (TXSN;TXtN) ; (46)
_ t t 0 o, "
n,= ZO+IO (o) *[|_stds = ZO+J’OTS (o [o) (x,) (1) dsO TXON O TXON; (47)
- _ _ oAt t, T t t. T N N
= =(e), N, = Iots(o [o) (x,) (1) ds+T15Z,(Tp) DTXt O TXt . (48)

5.4 Approximate Intrinsic Location Parameter

We recall from Darling [2] that there exists a vector in the tangent space TqJ (x )M which supplies a
5
codrdinate-independent replacement for the notion of expected value Y (X;) . This vector, denoted
I, s [W(X5)] ,is called the approximate intrinsic location parameter (AILP) of Y (X;) in the tan-
0 <=0

gent space T M . We here omit any discussion of how the AILP is derived from the study of man-

Y (Xa)
ifold-valued martingales, or its relation to harmonic mappings, but merely state the formula

s (WX = {000 () (59 + 0. [ 0005 () (M) = LT, () (@MY H - @)
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Here Ody denotes the second fundamental form of the map Y:N - M ; if N has connector I (.)

and M has connector T (.) , the formula for Ody (x) (v O w) can be written as

DAY (x) (vOw) =Dy ()T (x) (vOw) +T (y) (DY (x)v 0 DY (x)w) . (50)

In the particular case where Y is the identity, we obtain I, s [Xg] ,namely the AILP of Xy in the tan-
0“0

gent space 7XON , nomely
/ X = 1 Dd(p My) — ; 5|:|d(p drl
XO’ ZO [ 6] —2 { 6 (XO) ( 6) IOTt t (XO) ( t)} . (51)

5.5 A One-parameter Family of Diffusion Processes

Consider a family of N-valued diffusion processes {Xs, €>(0G onthetimeinterval [0,8] , where x*

has generator & + SZA/Z, realized in local co6rdinates by
t 2t t
X; = exp, (eUg) + [ & (X)) ds—¢ ¢ (X5)ds + Ioso(xj)dws. (52)
We use the notation
_1
C(x) =35I (x) (0(x) Do (x)) .

In the case € = 0, the solution is deterministic, namely {x,, 0<t<g . Differentiating with respect to

€, and using Lemma 2.5, gives formulas for

2
A oX; N X;

= — , 2 = ,

‘oo €=0 ! 682 _
e=0

namely (see Darling [2])
t tt 0 t t ot
A, = T0U0+TOIOTSG(XS) dW, = TOUO+J’OTSG(XS) dw, (53)

t tot 2
Az,t = =T, (xg) (UgO Up) +IOTS{ [D7E (xg) (A,OA) —2L(x)]ds+2Da(x) (A)dW} , (58
where TZ is as given in (46). A natural object is the process {Q,,0<t<¢& given by
_ .0 0 _ 0O t 0 0~ 0 t 0 O
Q,=(t,A) O (t,A) = DU0+J'0Tso(xs) dW 0 DU0+J’0rso(xs) dW 0 TXON O TXON. (55)
With reference to (47) and (48), taking W,=A 0N, we have

0 —
Var(t,A) = E[Q] =M, Var(A) = E[W] ==,. (56)
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5.6 Proposition
Let u(g) =exp, (X3) . Then u' (0) = A4, and
)

535
u" (0) = Odes(xq) (Qp) _.roTt Od@, (xg) (dM,) +Hj,

in the notation of (46), (47), and (55), where

Hy=201(0 W, - Od OA, 016 (x,) dW

5= Ion { AC (x) dW, =0d@, (xo) (1A D 1,0 (x)dW)}
Moreover
E[u' 0) +3u" (0)} =15 [Xd
2 X Zg '

Proof: It follows immediately from Corollary 2.6 that u’ (0) = Ay and

u"(0) = A, 5+T (xg) (AgOA) .

Now W.=A 0N satisfies

dW, = {DE (x) W, +W,(DE(x)) + (300) (x)} dt+0(x)dW, A, N ,00(x)dW,.

(57)

(58)

(59)

Copying the structure of calculations presented at the end of the proof of the main result of Darling

[2], it follows that

d{ (@5_,) .0da, (xg) (Q)} — @ 5_4) 0dP, (x5) dQ, = %{ (@5_) 0de, (xg)} Q) dt

= ([0 (x) + ZLTT (1 | (9 +70T () [DE (x) W+ ¥, (0F (x)) 1} ot

= {Tszi (x) +%{T?r (x)} } (¥)
+TT (%) [dW, =0 (x) dW, O A, A, 0 6 (x,) dW, - (0 [b) (x) d]

= 2[D%E (x) (W) —TT (x.) (000 (x))] dt +d(TT (x) (W) —2TT (x) (A, 00 (x)dW,)

Since Od@, = 0, it follows upon integration from 0 to  that in TXBM ,

1@y (xg) (@) =2 (95_)). (000, (xg)) 42, =

LI IDE () (W) =T (%) (000 (e))] dt+T (x5) (Wg) ~ToT (xg) (W)
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- ZIZ °r (x) (A, 00 (x)dW,) .

. ¢]
Since (®5_,), = T,, we have

Ay s+ T (x5) (AsOAg) = (60)

o
T

lo

SLID%E (x) (W) =22 (x)]ds +2D0 (x.) (A)dW} +T (xg) (Vs —Tol (xg) (W)

o o
= 2f, 4T (x) (A, 00 (x)dW,) +Da (x,) (A)dW} +0des (xo) (Q) IOTfDdcpt (xo) 92, .
However from (55),

dQ. = 2(P°A) 0% (x) dW. « °(0 o oT,
¢ = 2(A) Ot o(x)dW, [ (olb) (x) (T,) dt,
and for e O Rp, (1) implies that

M (x) (N,O0o(x)e) +Do(x,) (A)e = D/\tc (x)e.

and (57) follows. Note that E [0d@5(x,) (Q5)] = 0dgs(xy) (M5) , and so (59) follows from (51)

and (57). 0
6 Intrinsic Estimation of a Diffusion Using a Single Observation
6.1 Observation of the Process

We are given a C3 function Y:N - M, where M is a Riemannian manifold of dimension g. Let
B(y) O TyM O TyM be the inverse metric tensor at y 0 M, which can be interpreted as the covari-

ance of a random vector in TyM . Consider a single observation Y; of the form:

Y, = eXPy; (x,) V,OM,

where V; is a mean-zero random vector in TqJ (X )M , whose covariance is B (y) when Y (X5) =y,
5

but which is otherwise independent of U, and the Wiener process W.

6.2 Orders of Magnitude of Noise Terms

We shall suppose that, for some small number y, the tensor fields a =0 [0 (see (40)) and B3 (see Sec-
tion 6.1) satisfy

a(x) = Yooy (x), 0<t<8; B(W(xg)) = Y By(W(xg) (61)

where o, is some other semi-definite metric, and [30 another metric. Also assume that, with respect

to the metric g appearing in (41), the distribution of U, = exp;1 (X) satisfies:
0
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[ELUJ | = O, |5g =[Var (U | = O(¥) , [EIT(Up U Ul | = 0¥, 2

for arbitrary tensor fields T of type (1, 3) of norm 1.

6.3  Theorem
Consider the random vector U0 Z 0T NOT M given by
o o X Y (x5)

X5

-1 1
Us= exp, (X5) , Z5= XPy; (x5) (Y - (63)

(i) Under the assumptions (61) and (62), the joint distribution of U 5 and Z 5 satisfies

U
E|_% =
ZB
where the expressions in (64) are approximate intrinsic location parameters (see Section 5.4), =5 is

given by (48), and J =Dy (xg) .

I IX
o 21"l +o(vh; (64)
2 [0 (Xp)]

(i) E [UE‘ZB] is approximated up to O (y4) (in the sense of (30)) by
I s [Xg +GZs+p(Z50Z5) —E[p(Z50 Z5)] , (65)
o “0

where %5 =Z5— lXo 5, [W(X5)], and GOL (TYBM;TxaN) is analogous to the Kalman gain, namely
- To= T -1
G==4 [U=¢ +B(W(xx))] . (66)
p(z0z) = %{ [ —GJ] 0@y (xg) (1967 0 15Gz) —GOdW (x;) (Gz 0 G2)} 67)

Z Z — 4
Elp(Z50Z5)] =p(GJ=5) +O(y) .
(iii) Var(Ué‘Zé) is approximated up to O (y4) by (I-GJ)=;5.
(iv) If 05 denotes the difference between Uy and (65), and if T is a tensor field of type (1, 3) on N of
norm 1, then
coon T 4
[E1T(Us, Us, Ua)1| = 0 (v . 8

Proof: Step I. We continue to study the family of N-valued diffusion processes {Xs, €=0 given by
(52), whose first and second derivatives with respect to € were presented in (53) and (54). As for the

third derivative,
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_ _ U w t
Ny, =— = 0, + 0, +J’ODE (x,) (/\3’ Jds
=0
u. - . W, . L
where O is a trilinear function of Uy, and ©," is a sum of integrals whose expectation is zero at

€ = 0, and whose variance is O (y4) or higher order. We shall use the same symbols from line to

line, even though we may add or delete terms of each type as we go along. We obtain

_ ot U tt, W
N3t = 159, +J'OTSdG)s ,

which can be condensed to

UL W
N 5= 0p+09s - (69)

Step Il. Define a random path {x(€),0<e< L in N by x(€) EX;, and a random path
{y(e),0se<T inMbyy(g) =W (x(g)) . Both are thrice differentiable in €, and the derivatives of

y at € = 0 are given as follows.
y'(0) = JAGON, (0,JZ5)") (70)

for J=Dy (Xé) and =5 asin (48). With a further differentiation, and use of (1) and (50), we have

%(O) = 0dY (xg) (Ag 0 Ag) +Ju” (0) 0T, M,

U (X5)

for u(g) = exp;al (Xg) as in Proposition 5.6. Performing a further covariant differentiation, we find
from (53), (54), and (69) that

2
ay' u w 4
a—YZ(O) =0, +05 +O(y).
€

In particular,

2,
EF—Z(O)} =0(y".
o€

Step lIl. Let F be a smooth section of Hom (R¥;TM) (i.e. F(y) OL (Rq;TyM) forall y M) such

that F (y) F (y) T = B (y) , the observation covariance metric, and define a random vector field along

y by

V(¢) EsF(y(s))ZDTy(S)M, (71)

where Z is a Nq (0,1) random variable in R?, independent of U, and W. Our object of interest is the

random variable

4
¢ (¢) =expy (o) (expy(s)V(E)) DTY(O)M:
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since { (1) = Z5. By (71), V(0) = 0, and

2 2 3 2 3
Y Fpz+edz, LY = o7 By OV - 507 D7, 72)
oe €7 52 ¢ ¢ o o

noting that, by (1), SCZ = DF (y) (Y) Z+T () (F()ZDy')
According to Proposition 2.4, and the formulas of Step II, writing y5 for y (0) =4 (x5) ,

'0) = JJAg+Fly) Z+O (V") ;
" (0) = Ody (xz) (AgOAg) +Ju" (0) +2 (yé)Z+O(y)

O

; F(YG)Z+R(Y5) (UNg F(ys) Z) UNs+2F (v5) Z) +o(vh.
€

90 =0 +0) +3
Taking a third order Taylor approximation at € = 0, with { (0) = 0,

1., 1 u W
Z5=0(1) = J{Ns+5u" (0} +350dU (x5) (NsTAg) + O, + Oy (73)

0
e i%ﬁ(aﬂ* 5R(rs) Uy F (v Z2) UNg+2F (v 2) +O(y).

In the special case where | is the identity, and Z is suppressed, we have the analogous formula
1, u w 4
U6:A6+§“ (0) +0,+05 +O(y) . (74)
Step IV. We see from Proposition 5.6 that (74) can be written in the form
u

Ug = IXO’ zO[Xes] —E[A(A5ONS] + A5+ A (A5O N5 +hy, (75)

where the bilinear mapping A and the random vector hg are given, respectively, by
A(wOw) =20d Ow O 18
(wOw) =3 @5 (xg) (Tzw O T5w) ,

v
h6

55 0 0 u, W 4
2.[on {DAto (x,) dW,=0d@, (xo) (T,A,01,0(x)dW,)} +0, +O5 +O(y) .

Our assumptions in Section 6.2 imply that E [hg] =0 (y4) and Var (hg) =0 (y4) . It also follows
from (49), (59), (56), and (73) that

Z
Zg =1, 5 [W(X)] ~E[8(ATAD] +IAG+F(y) Z+8(Ag0 A) +hy, (76)

where 8 is the bilinear mapping given by
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8 (w0 w) E%de(xé) (wOw) +IA (wOw),

and likewise E [hg] @) (y4) and Var (hg) =0 (y4) . This depends in particular on the fact that

OVl s O(y) ate

0, and so

CF 4
vqrE%zE = oY,

The first moment formula (64) follows immediately from (75) and (76). We are now in a position to

apply Proposition 4.2. Observe that

L T

0 = =
Np+q%{j' d T5
0-- HU=5J=§ *+B(ys) |0

A5
INg+F(yg) Z

, (77)

I o |

and the matrices C and A of Proposition 4.2 are both the same here. According to (31), the condi-
tional expectation E [Ué‘Ze-)] is approximated up to O (y4) (in the sense of (30)) by an expression of
the form (65), with G given by (66), and

0(z0z) = (\-G6) (Gz [ Gz)
= {)\—G%de (xy) +/NF} (Gz0G2),

which can be expanded into the form (67). It follows from (77) that, up to O (y4) ,Elp (25 O 25)]
is given by p (GJ=5) . According to (33) and (77), Vor(Ué‘ZB) is approximated up to O (y4) by
- - T,,= T -1
== J (J=5J +B(y6)) J:6’
which simplifies to (/1 -GJ) =5.

Step V. It remains to verify (68). We see from (65) and (75) that Us is a random variable whose mean
is O (y4) , and which takes the form of a mean-zero Gaussian random variable S =A5—GZ5, plus

an O (y2) term. For any tensor field T of type (1, 3) on N of norm 1,

E[T (Us Us, Ug)] = E[T(S,S,5)] +O(y) .
However E[T (S,S,S)] = 0 sinceJ is mean-zero Gaussian, and (68) follows. O
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