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Abstract. The method of invariants is an approach to the problem of re-
constructing the phylogenetic tree of a collection of m taxa using nucleotide
sequence data. Models for the respective probabilities of the 4m possible vec-
tors of bases at a given site will have unknown parameters that describe the
random mechanism by which substitution occurs along the branches of a pu-
tative phylogenetic tree. An invariant is a polynomial in these probabilities
that, for a given phylogeny, is zero for all choices of the substitution mecha-
nism parameters. If the invariant is typically non{zero for another phylogenetic
tree, then estimates of the invariant can be used as evidence to support one
phylogeny over another.

Previous work of Evans and Speed showed that, for certain commonly used
substitution models, the problem of �nding a minimal generating set for the
ideal of invariants can be reduced to the linear algebra problem of �nding a
basis for a certain lattice (that is, a free Z-module). They also conjectured
that the cardinality of such a generating set can be computed using a simple
\degrees of freedom" formula. We verify this conjecture. Along the way, we
explain in detail how the observations of Evans and Speed lead to a simple,
computationally feasible algorithm for constructing a minimal generating set.

1. Introduction

The method of invariants is a probability{based technique for inferring phyloge-
netic relations among a group of taxa using nucleotide sequence data. The essential
idea behind the method is the following. Suppose that we have aligned DNA se-
quence data for a m taxa. For a given position in the sequence we have a stochastic
model for the base each taxon exhibits at that position. That is, we have a model
giving the 4m joint probabilities

pB1:::Bm
:= PfY1 = B1; : : : ; Ym = Bmg;

where Yi is the base observed for the ith taxon and Bi is one the four possible bases
A;G;C; T . The model typically involves a putative phylogenetic tree and other
unknown parameters that describe the random mechanism by which substitution
of bases has occurred through time along the branches of the tree. An invariant is
a polynomial function in the 4m variables pB1:::Bm

, (B1; : : : ; Bm) 2 fA;G;C; Tgm.
For a particular phylogeny, it is zero for all choices of the substitution mechanism
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parameters. If the invariant is typically non-zero for other phylogenies, then es-
timates of the value of the invariant can be used as evidence for or against the
putative phylogeny.

Invariants were �rst introduced by Cavender and Felsenstein 1987 and Lake 1987.
Substantial work has been done on the construction of linear invariants (see, for
example, Fu 1995, Fu and Li 1992, Hendy and Penny 1996, Nguyen and Speed
1992 and Steel and Fu 1995). As to results on non-linear polynomial invariants,
Sz�ekely et al. 1993 extend the Fourier analytic approach of Evans and Speed to
groups other than the groupZ2�Z2 that arises with 4 bases. Ferretti and Sanko�
1993, 1995 and Ferretti et al. 1994 present an \empirical" approach to �nding
invariants by enlightened trial{and{error. Steel et al. 1993 apply spectral analysis
techniques to tree reconstruction and construct all the invariants for the Kimura's
3ST model. Counting formulae for invariants are obtained for certain models in
Felsenstein 1991, Steel et al. 1993 and Steel and Fu 1995.

In algebraic parlance, the collection of invariants form an ideal: the sum of two
invariants is an invariant, and the product of an invariant and any polynomial is
also an invariant. More speci�cally, the ideal of invariants is nothing other than
the elimination ideal for the set of model probabilities fpB1:::Bm

g viewed as a set of
functions of the parameters describing the substitution mechanism; that is, the ideal
of invariants is the totality of algebraic relations between these functions. When the
model can be parametrised so that the model probabilities pB1:::Bm

are polynomials
in the substitution mechanism parameters, then there are standard algorithms using
Gr�obner bases that, in principle, produce a basis (that is, a minimal generating set)
for this ideal (see, for example, Chapter 3 of Cox et al. 1992). In practice, however,
such procedures appear to be computationally infeasible for a \generic" elimination
ideal problem involving the number of polynomials and variables encountered with
just 4 taxa. In order to proceed, it is therefore necessary to uncover structure that
is speci�c to this particular instance of the elimination ideal problem.

Evans and Speed 1993 used some discrete Fourier analysis to develop a procedure
for building a basis of the ideal of invariants when the substitution mechanism is
given by the Kimura three{parameter model and two special cases of it, the Kimura
two{parameter model and Jukes{Cantor model (see Section 2 below for de�nitions).
They showed that the problem could be reduced to one of �nding a basis for a
certain lattice (that is, a free Z-module). Unfortunately, they did not make it
su�ciently clear that the latter problem is just one of linear algebra that can be
e�ciently solved using Gaussian elimination. A subsidiary aim of this paper is to
give explicit algorithms for constructing invariants. These algorithms have been
implemented in Mathematica and can be obtained from the authors upon request.

Evans and Speed also noted that, in the particular examples they computed,
there is a basis of the ideal of invariants with cardinality the same as the number
of \degrees of freedom" in the model obtained by an informal parameter counting
argument. The main aim of this paper is to establish that this observation is true
in complete generality.

The plan of the rest of the paper is as follows. We �rst give a brief review of
the models and related terminology in Section 2, then introduce the algorithms of
constructing all independent invariants in Kimura and Jukes-Cantor models with
both arbitrary and uniform distributions in Section 3. Proofs of Evans and Speed's
conjectures are included in the subsequent Sections.
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2. Models

In this section we describe the models which are amenable to the Fourier ap-
proach of Evans and Speed and for which we can obtain the number of algebraically
independent invariants.

Let T be a �nite rooted tree. Write � for the root of T, V for the set of vertices
of T, and L � V for the set of leaves. We regard T as a directed graph with edge
directions leading away from the root. The elements of L correspond to the taxa,
the tree T is the phylogenetic tree for the taxa, and the elements of VnL can be
thought of as unobserved ancestors of the taxa. Enumerate L as (l1; : : : ; lm) and
V as (v1; : : : ; vn), with the convention that lj = vj for j = 1; : : : ;m and � = vn.

Each vertex v 2 V other than the root � has a a father �(v) (that is, there
is a unique �(v) 2 V such that the directed edge (�(v); v) is in the rooted tree
T). If v� and v! are two vertices such that there exist vertices v� ; v
 : : : ; v� with
�(v�) = v�; �(v
 ) = v�; : : : ; �(v!) = v� (that is, there is a directed path in T from
� to !), then we say that v! is a descendent of v� or that v� is an ancestor of v!
and we write v� � v! or v! � v�. Note that a vertex is its own ancestor and its
own descendent. The outdegree outdeg(u) of u 2 V is the number of children of u,
that is, the number of v 2 V such that u = �(v). To avoid degeneracies we will
always suppose that outdeg(v) � 2 for all v 2 VnL.

As far as we are aware, all the probability models proposed in the literature
for the bases exhibited by the taxa have the following general form. Let � be a
probability distribution on fA;G;C; Tg. We will refer to � as the root distribution,
and the probability �(B) is the probability that the common ancestor species at the
root exhibits base B. For each vertex v 2 Vnf�g, let P (v) be a stochastic matrix
on fA;G;C; Tg. We will refer to P (v) as the substitution matrix associated with
the edge (�(v); v). The entry P (v)(B;B0) is the conditional probability that the
species at vertex v exhibits base B0 given that the species at vertex �(v) exhibits
base B.

De�ne a probability distribution � on fA;G;C; TgV by setting

�((Bv)v2V) := �(B�)
Y

v2Vnf�g

P (v)(B�(v); Bv):

The distribution � is the joint distribution of the bases exhibited by all of the
species in the tree, both the taxa and the unobserved ancestors. The induced
marginal distribution on fA;G;C; TgL is

p(Bl)l2L :=
X

v2VnL

X
Bv

�(((Bv)v2VnL; (Bl)`2L));

where each of the dummyvariablesBv , v 2 VnL, is summed over the set fA;G;C; Tg.
The distribution p is the joint distribution of the bases exhibited by the taxa. No-
tice that � is the joint distribution of a fA;G;C; TgV{valued, tree{indexed Markov
random �eld with transition probability P (v)(i�(v); iv) at each v 2 V. The Markov
property may be stated as follows: for any two vertices v0 and v00, the base at v0

and the base at v00 are conditionally �{independent given the base at any vertex v
on the unique (undirected) path connecting v0 and v00.
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For the tree shown in Figure 1, V = f1; 2; 3; 4; 5g, � = 5, L = f1; 2; 3g, and

pB1B2B3
=

X
B4;B52fA;G;C;Tg

�(B5)P
(1)(B5; B1)P

(4)(B5; B4)P
(2)(B4; B2)P

(3)(B4; B3):
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Figure 1

The models of this form which appear in the literature usually take each sub-
stitution matrix to be the transition matrix at some point in time of a continuous
time Markov chain on the state space fA;G;C; Tg (which particular point in time is
possibly di�erent for each edge, and these variables constitute unknown parameters
in the model). We will be particularly interested in a sub-family of Markov chains
described in terms of the in�nitesimal generator matrix of the chain. Kimura 1981
presents such a model in which the in�nitesimal generator matrix is of the form

0
BB@

A G C T

A �(�+ � + 
) � � 


G � �(� + � + 
) 
 �

C � 
 �(� + � + 
) �

T 
 � � �(�+ � + 
)

1
CCA;

where �; �; 
 � 0. The value of the triple (�; �; 
) is possibly di�erent for each edge,
and these variables also constitute unknown parameters in the model. We will refer
to this model as the Kimura three{parameter model. If we further restrict the class
of allowable in�nitesimal generator matrices by imposing the extra condition that
� = 
 then we obtain the model considered by Kimura 1980. We will refer to this
model as the Kimura two{parameter model. Finally, if we require that � = � = 


we obtain the model considered in Jukes and Cantor 1969 and more explicitly in
Neyman 1971 , which we will refer to as the Jukes-Cantor model.

One key observation in Evans and Speed 1993 is that there is a group structure
inherent in these models. More precisely, the set of bases fA;G;C; Tg can be
identi�ed as an Abelian group, G , with the group operation de�ned by the following
addition table:

0
BB@

+ A G C T

A A G C T

G G A T C

C C T A G

T T C G A

1
CCA:
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This group is isomorphic to the Klein 4-groupZ2
L
Z2 (that is, the group consisting

of the elements f(0; 0); (0; 1); (1;0); (1; 1)g with the group operation being coordi-
nate wise addition modulo 2). One possible isomorphism is given by A $ (0; 0),
G$ (0; 1), C $ (1; 0) and T $ (1; 1). Then it is straightforward to check that the
in�nitesimal generator matrices is nothing other than the in�nitesimal generator
matrix for a random walk on the group.

In particular, the resulting substitution matrices are of the form P (v)(B;B0) =
�(v)(B0 � B) for some probability vector �(v) on G . Consequently, if (Zv)v2V is
a vector of independent G -valued random variables, with Z� having distribution

�, and Zv, v 2 Vnf�g, having distribution �(v), then p is the joint distribution of
(Yl)l2L , where

Yl :=
X
v�l

Zv:

The tool used in Evans and Speed 1993 to exploit this last remark is Fourier
analysis on G . LetT= fz 2 C : jzj = 1g denote the unit circle in the complex plane,
and regardTas an Abelian group with the group operation being ordinary complex
multiplication. The characters of G are the group homomorphisms mapping G into
T. That is, � : G !Tis a character if �(g1+g2) = �(g1)�(g2) for all g1; g2 2 G . The
characters form an Abelian group under the operation of pointwise multiplication
of functions. This group is called the dual group of G and is denoted by Ĝ . The
groups G and Ĝ are isomorphic. Given g 2 G and � 2 Ĝ , write hg; �i for �(g). One

may write Ĝ = f1; �;  ; � g, where the following table gives the values of hg; �i for

g 2 G and � 2 Ĝ :

0
BB@
(0; 0) (0; 1) (1; 0) (1; 1)

1 1 1 1 1
� 1 �1 1 �1
 1 1 �1 �1
� 1 �1 �1 1

1
CCA:

3. Algorithms

In this section we use the observations in Evans and Speed 1993 to give explicit
algorithms for constructing a basis of the ideal of invariants for the models intro-
duced in Section 2. We note that for any choice of substitution mechanisms and
any tree we always have the trivial invariantX

(Bl)l2L

p(Bl)l2L � 1 = 0:

We call this invariant the sum constraint.

3.1. Three{parameter Kimura model, arbitrary root distribution. We be-
gin with an explicit algorithm for constructing a basis for the ideal of invariants
for the three{parameter Kimura model with arbitrary root distribution. This al-
gorithm and algorithms given later in this section for other models are justi�ed by
the results in Evans and Speed 1993 .

We �rst need some notation. We call a vector (�l1 ; : : : ; �lm ) 2 Ĝ
m an allocation

of characters to leaves. Such an allocation of characters to leaves induces an allo-
cation of characters to vertices (�v1 ; : : : ; �vn) 2 Ĝ

n as follows. The character �vi
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is the product of the �lj for all leaves `j that are descendents of vi, that is,

�vi :=
Y
lj�vi

�lj :

In particular, if vi is a leaf (and hence the leaf li by our numbering convention),
then �vi = �li .

For example, in the 3 taxa case of Figure 1, write (l1; l2; l3) = (1; 2; 3) and
(v1; v2; v3; v4; v5) = (1; 2; 3; 4; 5) the allocation of characters to leaves (�;  ; � )
induces an allocation of characters to vertices (�;  ; � ; �; 1).

Let

f(�i;1; : : : ; �i;n); i = 1; : : : ; 4m � 1g

be an enumeration of the various allocations of characters to vertices induced by
the 4m � 1 di�erent allocations of characters to leaves other than the allocation
(1; : : : ; 1). De�ne 3n vectors fxv;� = (x(1)v;�; : : : ; x

(4m�1)
v;� ); v 2 V; � 2 f�;  ; � gg

of dimension 4m � 1 by setting

x
(i)
vj;�

:=

(
1, if �i;j = �;

0, otherwise;
(3.1)

for i = 1; : : : ; 4m � 1, j = 1; : : : ; n and � 2 f�;  ; � g.
Let f(a1;r; :::; a4m�1;r); r = 1; :::; kg be a basis of the null space of the real

vector space generated by fxv;�; v 2 V; � 2 f�;  ; � gg. Such a basis is read-
ily constructed using Gaussian elimination (see, for example, Section 2.1 of Cox
et al. 1992). It is apparent from the Gaussian elimination algorithm that for
r = 1; : : : ; 4m�1, each ai;r can be taken to be an integer and the greatest common
divisor of jai;rj, i = 1; : : : ; 4m � 1, can be taken to be 1. Under these conditions
the collection f(a1;r; :::; a4m�1;r); r = 1; :::; kg is also a basis for the lattice (that is,
the free Z-module)

f� 2Z4
m�1 :

4m�1X
i=1

�ix
(i)
v;� = 0; v 2 V; � 2 f�;  ; � gg:

The collection of polynomials consisting of the sum constraint and the k poly-
nomials

Y
fi:ai;r>0g

0
@E
2
4 mY
j=1

hYj; �i;ji

3
5
1
A
ai;r

�
Y

fi:ai;r<0g

0
@E
2
4 mY
j=1

hYj ; �i;ji

3
5
1
A
�ai;r

=
Y

fi:ai;r>0g

0
@ X
(B1;:::;Bm)2Gm

mY
j=1

hBj ; �i;jipB1:::Bm

1
A
ai;r

�
Y

fi:ai;r<0g

0
@ X
(B1;:::;Bm)2Gm

mY
j=1

hBj ; �i;jipB1:::Bm

1
A
�ai;r

; r = 1; : : : ; k;

is a basis for the ideal of invariants.
In the 3 taxa case of Figure 1, there are 15 vectors xv;� of dimension 63. The null

space of the real vector space generated by fxv;�g has dimension 48. An example
of an element of the null space is a 63 dimensional vector with one entry 1, two
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entries �1 and other entries 0, where the entry 1 corresponds to the allocation of
characters (�;  ;  ), and the two entries �1 correspond to the allocations (�; 1; 1)
and (1;  ;  ). The corresponding invariant is the quadratic polynomial

E [hY1; �ihY2;  ihY3;  i]� E [hY1; �i]E [hY2;  ihY3;  i]

=
X

(B1;B2;B3)2G3

hB1; �ihB2;  ihB3;  ipB1B2B3

�

8<
:

X
(B1;B2;B3)2G3

hB1; �ipB1B2B3

9=
;
8<
:

X
(B1 ;B2;B3)2G3

hB2;  ihB3;  ipB1B2B3

9=
; :

3.2. Three{parameter Kimura model, uniform root distribution. We now
consider the three{parameter Kimuramodel with a uniformdistribution at the root.
Now there will be two classes of invariants, linear invariants that arise because of
the uniform distribution at the root and non-linear ones similar to those that arise
in the arbitrary root distribution case and re
ect the dependence structure of the
model (see Theorem 6.1 of Evans and Speed 1993).

Given an allocation of characters to leaves (�l1 ; : : : ; �lm), the character allocated
to the root in the induced allocation of characters to vertices is

Qm

j=1 �lj . In order

that
Qm

j=1 �lj = 1, the characters �lj , j = 1; : : : ;m � 1, can be chosen arbitrarily

and then there is a corresponding unique choice of �lm . There are thus 4m�1

di�erent allocations of characters to leaves such that
Qm

j=1 �lj = 1.

If
Qm

j=1 �lj 6= 1, then a simple calculation shows that E[hY� ;
Qm

j=1 �lj i] = 0,
which corresponds to a linear invariantX

(B1;:::;Bm)2Gm

mY
j=1

hBj ; �lj ipB1:::Bm
:

The invariants corresponding to di�erent such allocations are algebraically inde-
pendent. There are a total of 4m � 4m�1 such invariants. In the abovementioned
three taxa example there are 43� 42 = 48 such invariants. A typical one is the one
derived from E[hY1 ; �ihY2;  ihY3; � i].

Now consider the allocations of characters to leaves (�l1 ; : : : ; �lm ) such thatQm

j=1 �lj = 1. There are total 4m�1 � 1 di�erent such allocations other than

(1; : : : ; 1). Reusing notation from Subsection 3.1, let

f(�i;1; : : : ; �i;n); i = 1; : : : ; 4m�1 � 1g

be an enumeration of the induced allocations of characters to vertices. De�ne
3(n � 1) vectors fxv;�; v 2 Vnf�g; � 2 f�;  ; � gg of dimension 4m�1 � 1 as in
Subsection 3.1 (notice that x�;� = 0 for � 2 f�;  ; � gg). Following exactly the
same algorithm described in Subsection 3.1 we can recover another collection of
algebraically independent invariants. Theorem 6.1 in Evans and Speed 1993 gives
that the union of these two collections and the sum constraint constitutes a basis
for the ideal of invariants.

3.3. Two{parameter Kimura model. In a Kimura two{parameter model with
arbitrary root distribution, the algorithm is similar to that in Subsection 3.1.
Let f(�i;1; : : : ; �i;n); i = 1; : : : ; 4m � 1g be an enumeration of the various allo-
cations of characters to vertices induced by the 4m � 1 di�erent allocations of
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characters to leaves other than the allocation (1; : : : ; 1). De�ne 2n + 1 vectors

fx�;� = (x(1)�;�; : : : ; x
(4m�1)
�;� ); � 2 f�;  ; � gg [ fxv;� = (x(1)v;�; : : : ; x

(4m�1)
v;� ); v 2

Vnf�g; � 2 f�;  gg of dimension 4m � 1 by setting

x
(i)
�;� = x

(i)
vn;�

:=

(
1, if �i;n = �;

0, otherwise;
(3.2)

for i = 1; : : : ; 4m � 1, � 2 f�;  ; � g,

x
(i)
vj;�

:=

(
1, if �i;j 2 f�; � g;

0, otherwise;
(3.3)

and

x
(i)
vj; 

:=

(
1, if �i;j =  ;

0, otherwise;
(3.4)

for i = 1; : : : ; 4m � 1, j = 1; : : : ; n� 1.
A suitable basis for the null space of the real vector space generated by fx�;�; � 2

f�;  ; � gg [ fxv;�; v 2 Vnf�g; � 2 f�;  gg gives rise to a basis for the ideal of
invariants in exactly the same way as in the algorithm of Subsection 3.1.

In a two{parameter Kimura model with uniform distribution, the algorithm is
similar to that for the three{parameter model in Subsection 3.2. We �rst distinguish
two cases,

Qm

j=1 �lj 6= 1 or
Qm

j=1 �lj = 1. In the later case, there are 2(n�1) vectors

of dimension 4m�1 � 1 de�ned in the same way as (3.3) and (3.4).

3.4. Jukes-Cantor model. The algorithms for Jukes-Cantor model are similar
to those in the abovementioned two models. Here, for example, the equivalent of
(3.1) is

x
(i)
�;� = x

(i)
vn;�

:=

(
1, if �i;n = �;

0, otherwise;
(3.5)

for i = 1; : : : ; 4m � 1, � 2 f�;  ; � g, and

x(i)vj :=

(
1, if �i;j 2 f�;  ; � g;

0, otherwise;
(3.6)

for i = 1; : : : ; 4m � 1, j = 1; : : : ; n� 1.

4. Statement of results

When we say that there are N algebraically independent invariants, we mean
that the ideal of invariants has a basis with N elements. Recall that our tree T
has n vertices and m leaves. Evans and Speed 1993 observed that for Kimura
three{parameter models with arbitrary root distribution, the marginal distribution
of leaves can take 4m di�erent values, the root distribution contributes 3 parame-
ters, and the substitution matrix for each edge contributes 3 parameters; and this
suggests that the number of \degrees of freedom" is 4m � 3n, and in all the ex-
amples they computed the number of algebraically independent invariants always
coincides with the number of degrees of freedom obtained from this informal param-
eter counting procedure. (Note that in order to identify invariants with elements
of an elimination ideal we are taking the sum constraint to be an invariant. This
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di�ers from the convention in Evans and Speed 1993 and so our counting di�ers by
one from their counting.) They conjecture that such a counting formula holds in
general. The following theorem veri�es this conjecture.

Theorem 4.1. Consider a Kimura three{parameter model with arbitrary root dis-
tribution. There are 4m � 3n algebraically independent invariants.

If the root distribution is uniform, then the root distribution does not contribute
any parameters. Moreover, if outdeg(�) = 2, then the contribution of the two edges
connected to the root would be the same as that of a single edge connecting the two
children of the root. For example, the tree in Figure 2 is equivalent to the tree in
Figure 3 in the sense that for the three{parameter Kimura substitution mechanism,
the class of possible probability vectors (pB1:::Bm

) that can be produced by the two
trees coincides when the distribution at the root 7 in Figure 2 and the distribution
at the root 6 in Figure 3 is taken to be uniform. In other words, if outdeg(�) = 2
in the uniform root distribution case, then the number of parameters contributed
by the substitution matrices for the two edges connected to the root is just 3. The
following counting formulae are therefore expected.
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Theorem 4.2. Consider a Kimura three{parameter model with uniform root dis-
tribution. If outdeg(�) = 2, then there are 4m � 3(n� 2) algebraically independent
invariants. If outdeg(�) > 2, then there are 4m�3(n�1) algebraically independent
invariants.

Similar counting rules apply for Kimura two{parameter models and Jukes{
Cantor models. They are formulated in Theorem 4.3 and Theorem 4.4.

Theorem 4.3. Consider a Kimura two{parameter model.
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(i) With arbitrary root distribution, there are 4m � 3 � 2(n � 1) algebraically
independent invariants.

(ii) With uniform root distribution and outdeg(�) = 2, there are 4m � 2(n � 2)
algebraically independent invariants.

(iii) With uniform root distribution and outdeg(�) > 2, there are 4m � 2(n � 1)
algebraically independent invariants.

Theorem 4.4. Consider a Jukes{Cantor model.

(i) With arbitrary root distribution, there are 4m � 3� (n� 1) algebraically inde-
pendent invariants.

(ii) With uniform root distribution and outdeg(�) = 2, there are 4m � (n � 2)
algebraically independent invariants.

(iii) With uniform root distribution and outdeg(�) > 2, there are 4m � (n � 1)
algebraically independent invariants.

5. Proof of Theorem 4.1

In this section the 4m � 1-dimensional vectors fxv;�; v 2 V; � 2 f�;  ; � gg are
as de�ned in Subsection 3.1. In a Kimura three{parameter model with arbitrary
distribution, the algorithm in Subsection 3.1 shows that the number of algebraically
independent invariants is the 1 plus the dimension of the null space of the real
vector space generated by 4m � 1-dimensional vectors xv;�. The latter dimension
is 4m � 1 minus the dimension of the vector space generated by the collection
fxv;�; v 2 V; � 2 f�;  ; � gg. Hence, Theorem 4.1 will follow if we can show that
this collection is linearly independent.

Lemma 5.1. The vectors fxv;�; v 2 V; � 2 f�;  ; � gg are linearly independent.

Proof. Suppose we have real numbers bj;�, j = 1; : : : ; n, � 2 f�;  ; � g, satisfying

X
�2f�; ;� g

nX
j=1

bj;�x
(i)
vj;�

= 0; i = 1; : : : ; 4m � 1:(5.1)

We need to establish that all the bj;� are zero. The proof will proceed by induction
on n, the number of vertices of T.

The case n = 1 is straightforward.
Suppose for some integer N � 1 that the assertion is true for all n � N and

consider the assertion for n = N + 1.
Choose any two leaves with a common father. (Note that such leaves exist by

our standing assumption that all vertices other than leaves have outdegree at least
2.) Without loss of generality and recalling our labeling convention, we may assume
that the leaves have been numbered in such a way that these leaves are l1 = v1 and
l2 = v2. Denote the common father by v�. Let v� = vj1 � vj2 � : : : � vjk = vn = �

be, in reverse order, the vertices along the directed path joining � to v�. That is,
�(vjp ) = vjp+1 for p = 1; : : : ; k� 1.

Consider � 2 f�;  ; � g. The instance of equation (5.1) that arises when the
index i corresponds to the allocation (�l1 ; : : : ; �lm) given by

�lj =

(
�, if j = 1;

1, otherwise;
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is

b1;� + bj1;� + : : :+ bjk;� = 0:(5.2)

The instance of equation (5.1) that arises when the index i corresponds to the
allocation (�l1 ; : : : ; �lm) given by

�lj =

(
�, if j = 2 ;

1, otherwise;

is

b2;� + bj1;� + : : :+ bjk;� = 0(5.3)

The instance of equation (5.1) that arises when the index i corresponds to the
allocation (�l1 ; : : : ; �lm) given by

�lj =

(
�, if j 2 f1; 2g,

1, otherwise,

is

b1;� + b2;� = 0(5.4)

(recall that �2 = 1).
Combining equations (5.2), (5.3) and (5.4) gives that b1;� = b2;� = 0.
Suppose that the leaves have been numbered so that the children of v� are

l1 = v1; : : : ; ls = vs. The argument we have just been through establishes that
bj;� = 0 for all j = 1; : : : ; s. (It also establishes that bj;� = 0 for all j = 1; : : : ;m,
but we will not use this fact.) Therefore, equation (5.1) reduces to

X
�2f�; ;� g

nX
j=s+1

bj;�x
(i)
vj;�

= 0; i = 1; : : : ; 4m � 1:(5.5)

Consider v 2 Vnfl1; : : : ; lsg and the character �v allocated to the vertex v

when the characters (�l1 ; : : : ; �lm) are allocated to the leaves. If l1; : : : ; ls are not
descendents of v (that is, if v� is not a descendent of v { we emphasise that vertices
are their own descendents), then �v is independent of �l1 ; : : : ; �ls . On the other
hand, if l1; : : : ; ls are descendents of v (that is, if v� is a descendent of v), then �v
only depends on �l1 ; : : : ; �ls through the value of

Qs

j=1 �lj = �v� . Moreover, as

�l1 ; : : : ; �ls vary, �v� ranges over all of f1; �;  ; � g. Consequently, the system of
equations (5.5) is just the system of equations (5.1) corresponding to a new tree
T� obtained by removing the leaves l1; : : : ; ls and the edges connecting them to v�.
Since the number of vertices of T� is N + 1 � s < N we can apply the inductive
assumption to conclude that bj;� = 0 for all j = 1; : : : ; n and � 2 f�;  ; � g. (Note
that T� satis�es our standing assumption that all vertices other than leaves have
outdegree at least 2.)

6. Proof of Theorem 4.2

For this section, the 4m�1 � 1{dimensional vectors xv;� are as de�ned in Sub-
section 3.2. In a Kimura three{parameter model with uniform distribution, the
algorithm in Subsection 3.2 shows that there are 4m � 4m�1 algebraically inde-
pendent linear invariants corresponding to the 4m � 4m�1 allocations of characters
to leaves satisfying

Qm

j=1 �lj 6= 1 and there are 4m�1 � 1 � dimspanfxv;�; v 2
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Vnf�g; � 2 f�;  ; � gg algebraically independent nonlinear invariants derived from
fxv;�; v 2 V; � 2 f�;  ; � gg. Therefore, the following two results establish Theo-
rem 4.2.

Lemma 6.1. Suppose that outdeg(�) = 2. Let v0 and v00 be the two children of
�. Then xv0;� = xv00;� for � 2 f�;  ; � g and the vectors xv;�; v 2 Vnf�; v00g; � 2
f�;  ; � g, are linearly independent.

Proof. Since 1 =
Qm

j=1 �jl = �v0�v00 it follows that �v0 = �v00 and hence xv0;� =

xv00;� for � 2 f�;  ; � g.
The proof of the second claim will proceed via an induction similar to that used

in the proof of Theorem 4.1. In order to verify the inductive step, assume that
n > 3. By interchanging the designations of v0 and v00, we can suppose that v0

is not a leaf. We can also assume that we have numbered the vertices so that
v00 = vn�1 and � = vn. Suppose that we have real numbers bj;�, j = 1; : : : ; n� 2,
� 2 f�;  ; � g, satisfying

X
�2f�; ;� g

n�2X
j=1

bj;�x
(i)
vj;�

= 0; i = 1; : : : ; 4m�1 � 1:(6.1)

Choose any two leaves that are descendents of v0 and have a common father.
Without loss of generality, we may assume that the leaves have been numbered in
such a way that these leaves are l1 = v1 and l2 = v2. Denote the common father by
v�. Let v� = vj1 � vj2 � : : : � vjk = v0 � � be, in reverse order, the vertices along
the directed path connecting � to v�. Choose a leaf v�� that is not a descendent
of v0 (and hence is a descendent of v00). Let v�� = vj01 � vj02 � : : : � vj0q = v00 � �

be, in reverse order, the vertices along the directed path connecting � to v��. Of
course, fv1; v2; vj1 ; : : : ; vjkg \ fvj01 ; : : : ; vj0qg = ;.

Consider � 2 f�;  ; � g. The instance of equation (6.1) that arises when the
index i corresponds to the character allocation (�l1 ; : : : ; �lm ) given by

�lj =

(
�, if j 2 f1; j01g,

1, otherwise,

is

b1;� +
kX
i=1

bji;� +

qX
i=1

bj0
i
;� = 0(6.2)

The instance of equation (6.1) that arises when the index i corresponds to the
character allocation (�l1 ; : : : ; �lm) given by

�lj =

(
�, if j 2 f2; j01g;

1, otherwise,

is

b2;� +
kX
i=1

bji;� +

qX
i=1

bj0i;� = 0(6.3)
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The instance of equation (6.1) that arises when the index i corresponds to the
character allocation (�l1 ; : : : ; �lm) given by

�lj =

(
�, if j 2 f1; 2g,

1, otherwise,

is

b1;� + b2;� = 0(6.4)

Combining equations (6.2), (6.3) and (6.4) gives b1;� = b2;� = 0. The inductive step
can now be completed as in Lemma 5.1.

The next lemma follows from similar considerations.

Lemma 6.2. If outdeg(�) > 2, then the vectors fxv;�; v 2 Vnf�g; � 2 f�;  ; � g g
are linearly independent.

7. Proofs of Theorem 4.3 and Theorem 4.4

The following lemmas are key to the proofs of Theorem 4.3 and Theorem 4.4.
We leave the details to the reader.

Lemma 7.1. Consider a Kimura two{parameter model and use the notation of
Subsection 3.3.

(i) Suppose that the root distribution is arbitrary. Then the vectors

fx�;�; � 2 f�;  ; � gg [ fxv;�; v 2 Vnf�g; � 2 f�;  gg

are linearly independent.
(ii) Suppose that the root distribution is uniform and that outdeg(�) = 2. Let v0

and v00 be the two children of �. Then xv0;� = xv00;� for � 2 f�;  g and the
vectors fxv;�; v 2 Vnf�; v00g; � 2 f�;  gg, are linearly independent.

(iii) Suppose that the root distribution is uniform and that outdeg(�) > 2. Then
the vectors fxv;�; v 2 Vnf�g; � 2 f�;  gg are linearly independent.

Lemma 7.2. Consider a Jukes-Cantor model and use the notation of Subsection
3.4.

(i) Suppose that the root distribution is arbitrary. Then the vectors

fx�;�; � 2 f�;  ; � gg [ fxv; v 2 Vnf�gg

are linearly independent.
(ii) Suppose that the root distribution is uniform and that outdeg(�) = 2. Let v0

and v00 be the two children of �. Then xv0 = xv00 and the vectors fxv; v 2
Vnf�; v00g g are linearly independent.

(iii) Suppose that the root distribution is uniform and that outdeg(�) > 2. Then
the vectors fxv; v 2 Vnf�g g are linearly independent.
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