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Abstract

We propose a method of analyzing collections of related curves in which the in-
dividual curves are modeled as spline functions with random coefficients. The
method is applicable when the individual curves are sampled at variable and ir-
regularly spaced points. This produces a low rank, low frequency approximation
to the covariance structure, which can be estimated naturally by the EM algo-
rithm. Smooth curves for individual trajectories are constructed as BLUP esti-
mates, combining data from that individual and the entire collection. This frame-
work leads naturally to methods for examining the effects of covariates on the
shapes of the curves. We use model selection techniques—AIC, BIC, and cross-
validation—to select the number of breakpoints for the spline approximation. We
believe that the methodology we propose provides a simple, flexible, and compu-
tationally efficient means of functional data analysis. We illustrate it with two sets
of data.

1 Introduction

In recent years there has been an increasing interest in non-parametric analysis
of data that is in the form of noisy sampled points from collections of curves.
Methodology focusing on the curves themselves as the objects of interest has
come to be known as “functional data analysis” (Ramsay and Silverman, 1997).
Noteworthy early work in functional data analysis includes non-parametric anal-
ysis of growth curves (Gasser, M¨uller, Köhler, Molinari and Prader, 1984). The
aims of the analysis include smoothing individual curves, estimating functionals
of individual curves, examining covariate effects on the shapes of the curves, and
the decomposition of each curve into a mean function and a few major modes of
variability. In this paper we present a methodology for analysis of collections of
curves that may be unequally and sparsely sampled.

We extend current methodology for analyzing repeated measures data via lin-
ear mixed effects models to a nonparametric setting. The formulation of Laird and
Ware (1982) was a key development; general expositions are provided in Diggle,
Liang and Zeger (1994), Jones (1993) and Vonesh and Chincilli (1977). A typi-
cal such mixed effects analysis represents each subject’s repeated measures as the
sum of a population mean function depending on time and other covariates, a low
degree polynomial with random coefficients, and white measurement noise. The
white noise model is sometimes broadened to include a stationary continuous time
process, such as the Ornstein-Uhlenbeck process, to account for autocorrelation;
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the process is usually chosen rather arbitrarily for convenience. The polynomial
random effects and the white noise or stationary process thus determine the co-
variance structure. The EM algorithm is typically used for estimation in these
mixed effects models (Laird and Ware, 1982).

In this paper we model the individual curves as spline functions with random
coefficients, consequently approximating the covariance function as a tensor prod-
uct of splines. This produces a low rank, low frequency approximation to the co-
variance structure like that accomplished via eigenfunction decomposition (Rice
and Silverman, 1991), without requiring the data to be regularly spaced and with-
out an artificial imposition of stationarity. The model also includes white mea-
surement noise. Estimation of the covariance structure is accomplished naturally
through the EM algorithm, and the resulting covariance kernel can be decomposed
into eigenfunctions. Smooth curves for individual trajectories are constructed as
BLUP estimates (Robinson, 1991), combining data from that individual and the
entire collection. Within this framework it is simple to examine covariate effects.
We use model selection techniques—AIC, BIC, and cross-validation—to select
the number of knots of the splines. We believe that the methodology we propose
provides a simple, flexible, and computationally efficient means of functional data
analysis.

The method is related to that of Brumback and Rice (1997), who also use
splines, but assume a particular form of the covariance kernel arising from smooth-
ing splines. As in Stone, Hansen, Kooperberg and Truong (1997) we have found
it convenient to use splines with a small number of knots, but other bases could be
used as well. In Besse, Cardot and Ferraty (1997), splines with a small number of
knots were used to smooth individual curves in a quite different way. In particular,
we do not fit each curve separately—indeed the data from an individual subject
may be too sparse to support such a fit.

The remainder of the paper is organized as follows: in section 2 we present the
general methodology. Section 3 contains applications to the gait data analyzed in
Rice and Silverman (1991) and an analysis of a sequence of CD4 counts similar
to that presented in Zeger and Diggle (1994). Section 4 contains some closing
comments.

2 Methodology

Let there bem subjects,ni observations at times 0≤ ti j ≤ T on the i-th subject,
andn = ∑m

i=1 ni observations in all. LetYi j = Yi (ti j ) be the outcome measured
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on the i-th subject at timeti j . To keep things simple initially, suppose that there
are no covariates other than time. The time series of measurements of an indi-
vidual subject is represented as the sum of a population mean function, a random
function, and white noise. We model the mean function and the random function
with splines. The mean function is

E(Yi (t)) = µ(t) =
p∑

k=1

βk B̄k(t), (1)

where{B̄k()} is a basis for spline functions on [0, T ] with a fixed knot sequence
(in our computations we use the B-spline basis and equally spaced knots). The
random effect curve for the i-th subject is similarly modeled as the spline function∑q

k=1 γik Bk(t). Here {Bk()} is a basis for a possibly different space of spline
functions on [0, T ] and theγik are random coefficients with mean 0 and covariance
matrix 0. Finally, incoporating uncorrelated measurement errorsεi j with mean
zero and constant varianceσ 2, our model is

Yi j =
p∑

k=1

βk B̄k(ti j ) +
q∑

k=1

γik Bk(ti j ) + εi j (2)

The approximate covariance kernel for a random curveY(t) is thus modeled
nonparametrically as

Cov(Y(s),Y(t)) =
q∑

k=1

q∑

l=1

0kl Bk(s)Bl (t) + σ 2δ(s − t), (3)

whereδ() is the Dirac delta function. Viewing this as an approximation, low
frequency components of the covariance kernel are captured in the first term and
the remainder is approximated by the second term.

Now (2) is a classical linear mixed effects model and the vector of observations
on the i-th subject can be expressed as

Yi = Xiβ + Ziγi + εi . (4)

The covariance matrix ofYi is Vi = Zi0ZT
i + σ 2 I . We can thus use the method-

ology that has been developed for mixed effect models in this nonparametric con-
text. Estimation of the parametersβ, σ 2, and the covariance matrix0 is ac-
complished by the EM algorithm (Laird and Ware, 1982). The BLUP estimate
(Robinson, 1991) of the spline coefficients of the random effect for subjecti is

γ̂i = 0̂ZT
i (Zi 0̂ZT

i + σ̂ 2 I )−1(Yi − Xi β̂). (5)
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The corresponding estimate of an individual trajectory is then the smooth curve

Ŷi (t) =
p∑

k=1

β̂k B̄k(t) +
q∑

k=1

γ̂ik Bk(t). (6)

This estimate combines information from the entire sample and from the individ-
ual subject in that it uses the population covariance structure to estimate the spline
coefficients and shrinks the curve toward the population mean. We note that this
estimate is well defined even when the observations on a particular subject are too
sparse to support an ordinary least squares fit.

There is not a simple analytic connection between the covariance matrix0

and the eigenstructure of the covariance kernel (3). However the first term of
(3) can be evaluated on a fine grid using the estimate0̂, and the eigenvectors
of the resulting matrix can be evaluated numerically. The projection ofYi on a
particular eigenfunction can be determined by evaluating (6) on the same grid
and then forming the inner product with the corresponding eigenvector. It can be
useful to plot these scores against each other or against covariates.

An alternative form of eigenanalysis is based on the eigenvectors of0. The
trajectory (6) is then decomposed by expressingγ̂i as a linear combination of
those eigenvectors.

For practical application, the number and locations of the knots for the splines
corresponding to the mean function and the random effects have to be specified.
We have not found this difficult to establish in a seemingly satisfactory way, since
in the examples we have examined so far the results are rather insensitive to the
specification; a relatively small number of equispaced knots has generally been
sufficient. For objective guidance we have resorted to model selection criteria.
Specifically, we have cross validated the Gaussian log likelihood, which is the
sum of the contributions from the individual curves:

`i = −ni

2
log(2π) − ni

2
log detVi − 1

2
(Yi − µi )

T V−1
i (Yi − µi ) (7)

Here, µi = (µ(ti 1), . . . , µ(tini ))
T . The cross-validated log likelihood finds a

balance between the last term above, which decreases with complexity of the co-
variance function, and the second term, which increases. In the examples which
follow, we also use AIC and BIC which give results qualitatively comparable to
those obtained by cross validation, and are faster to compute.

We now discuss the incorporation of covariates. First, fixed effects can be
included by adding columns to the design matricesXi in the usual way. More in-
terestingly, our framework provides for the examination of time-varying effects of
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time-independent random covariates in a natural way. Denoting such a covariate
by U , from (2)

E(Yi (t)|U = u) = µ(t) +
q∑

k=1

E(γik|U = u)Bk(t) + E(εi (t)|U = u). (8)

For a linear model,

E(γ |U = u) = 6γU 6−1
UU (u − E(U)), (9)

E(ε|U = u) = 6εU 6−1
UU (u − E(U)). (10)

The covariance matrices can be estimated from the data. For example, the natural
estimate of6γU is

SγU = 1

n

n∑

i=1

γ̂i (ui − ū)T (11)

whereγ̂i is given by (5). In this paper we only consider such linear estimates
for E(γik |U = u), but the possibility of using more sophisticated methods for
predicting the random spline coefficients by covariates is evident. In the case that
the covariate is categorical, this analysis simply amounts to averaging the spline
coefficients and the “errors,”ε , at each level of the covariate.

3 Examples

In this section we treat two examples. The first is that of Rice and Silverman
(1991) on human gait and the second is of time histories of CD4 counts.

3.1 Human Gait

These data were collected by the Motion Analysis Laboratory of Children’s Hos-
pital, San Diego and were used to illustrate eigenfunction analysis in Rice and
Silverman (1991). Full details are given in Olshen, Biden, Wyatt and Sutherland
(1989). Here we consider curves formed by the angles of the hip over gait cy-
cles of 39 children. Time is measured as a fraction of each individual’s gait cycle
beginning and ending at the point at which the heel strikes the ground, and the
numbers of observations ranged from 16 to 22 per cycle. In Rice and Silverman
(1991), the data were interpolated to give 20 equispaced points per cycle, a pro-
cedure which seemed reasonable, especially in light of the large signal to noise
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Figure 1: Model selection criteria for the number of breakpoints for the hip angle
curves.

ratio. Here we do not interpolate, but use the methods outlined in the previous
section.

Figure 1 shows the cross validated log likelihood, the AIC criterion, and the
BIC criterion of cubic splines for the mean function and random effects. For sim-
plicity we restricted them to have the same number of equally spaced breakpoints;
we count breakpoints to include those at 0 and 1, so a pure cubic has two break-
points, for example. The cross validation function and the AIC criterion are rather
flat in the region from six to about fifteen breakpoints, whereas the BIC criterion
drops more rapidly after reaching a maximum at eight breakpoints. The high sig-
nal to noise ratio supports a fairly high dimensional approximation (we also added
noise to the data and indeed the criteria then peaked at lower dimensions).

The covariance function estimated from ten breakpoints is shown in Figure 2,
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which shows high variability during the early and late cycle and strong correlation
between angles at these times. The estimated mean and the first two eigenfunc-
tions of the covariance function displayed in Figure 2 are shown in Figure 3 for
three, ten and twenty breakpoints. Under and over-smoothing is visually appar-
ent in the extreme cases, but qualitatively the results are strikingly similar. The
results for ten breakpoints is very similar to those obtained in Rice and Silverman
(1991) after interpolation. The first eigenfunction represents deviations from the
mean curve which are of the same sign throughout the cycle, with increased am-
plitude at the beginning and end of the cycle. The second eigenfunction portrays
a shift in amplitude which is not constant throughout the cycle. Here the major
effect of over-fitting is roughness in the estimated eigenfunctions and in the cor-
responding covariance function near the boundaries. Other than this roughness,
the first eigenfunction (the smoothest) is estimated fairly consistently by the three
smoothings.

Choices of ten or twenty breakpoints give very similar estimates of the mean
curve whereas there is apparently noticeable systematic distortion when three are
used.

Finally, Figure 4 shows the BLUP smoothing (6) of a single curve for three,
ten, and twenty breakpoints. The most striking feature of this figure is the jagged
curve near the endpoints produced by overfitting with 20 breakpoints. This is due
to the contribution from the eigenfunctions as shown in Figure 3 and discussed
above. The choice of three breakpoints oversmooths the data.

3.2 CD4 Counts

As a second example we consider sequences of CD4 counts from 463 homosexual
men from the Multi-Center AIDS Cohort Study who seroconverted between 1984
and 1993; see Kaslow, Ostrow, Detels, Phair, Polk and Rinaldo (1987) for details
of the study design and methods. Since HIV destroys CD4 cells, their counts are
a standard method of measuring disease progression. In contrast to the previous
example, individual curves are sparsely and irregularly sampled. The number of
observations per subject ranged from 1 to 16 over follow up periods ranging up to
94 months after becoming HIV positive. In contrast to the gait data, the observa-
tions are noisy and sparse and, other than a decreasing trend, dynamical features
are not visually apparent. Covariates include age at the time of seroconversion
and smoking status (recorded as ever smoked or never smoked during the study,
and hence time-independent). Similar data were analyzed by Zeger and Diggle
(1994), using a semi-parametric model, and by Fan and Zhang (1997) to illustrate
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Figure 2: Covariance function for a hip cycle estimated with ten breakpoints.
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Figure 3: Estimates of the mean function (top panel) and the first two eigenfunc-
tions of a hip cycle by splines with three, ten, and twenty breakpoints.
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the use of a particular functional linear model.
Based on AIC and BIC scores, we used four equally spaced breakpoints for

cubic spline functions for the mean and random effects. The mean function is
shown in Figure 5 along with the individual trajectories. The covariance function
is shown in Figure 6; it is clearly non-stationary with high variability at early and
late times. Variability at early times may be in part due to lack of precision in
identifying the actual date of seroconversion.
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Figure 5: Estimated mean function and individual trajectories of 463 sequences
of CD4 counts

It can be useful to single out unusual individual cases, but this can be difficult
when it is nota priori clear what is meant by “unusual” and when direct visual
examination of the data is complicated by irregular sampling, substantial noise,
and a large number of curves. Eigenfunction analysis of the covariance kernel
(3) provides one possible approach, but here we consider another, based on the
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Figure 6: Estimated covariance function of CD4 counts
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BLUP estimates of the random spline coefficients,γ̂i , (5) and their estimated co-
variance matrix0̂. We first consider choosing individual trajectories with large
Mahalanobis distances,γ̂ T 0̂−1γ̂ . Figure 7 shows the measurements of two such
subjects along with their BLUP smooths. These subjects are unusual because their
CD4 counts are high overall (compare to Figure 5).
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Figure 7: CD4 counts for two subjects with large Mahalanobis distances and the
corresponding BLUP smooths

We next consider the eigenfunction decomposition of0̂, shown in Figure 8.
Since the covariance matrix is that of spline coefficients with respect to a B-spline
basis, the eigenvectors are difficult to interpret directly, so we show the splines
corresponding to them. That is, ifξ is an eigenvector, we display the “eigenspline”∑

ξk Bk(t). (Note that this eigendecomposition is an alternative to that shown for
the gait data above, where we found the eigenfunctions of the covariance function
(3).) The first eigenvector corresponds to an overall shift of CD4 level, the second
to a trend which is especially steep in the early months, the third to an initial
increase followed by a downward trend, and the fourth by a reversal of trend at
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about month 40. Figure 9 is a scatter plot of the scores of the cases on the second
and third eigenvector, the inner products of the BLUP estimates of the coefficients
with the respective eigenvectors. Figure 10 shows unusual cases as defined by
extreme scores. The first is unusual in having a high initial value followed by
a very rapid decrease. Unlike most of the cases, the second peaks at about 30
months and then decreases to a low level.
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Figure 8: Eigensplines of CD4 count curves, ordered left to right and across rows.

We examined the effects of age and smoking status. We standardized sub-
jects’ ages, which ranged from 18 to 64. Figure 11 shows the covariate “effect”
curve (8) resulting from modeling the dependence on age linearly as in (9) and
(10). (The assumption of linearity was informally checked by plotting age versus
BLUP estimates of spline coefficients.) Also shown are error bars found by the
bootstrap as in Hoover, Rice, Wu and Yang (1998) (subjects were sampled with
replacement 100 times; the error bars are the pointwise standard deviations of the
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Figure 10: CD4 counts and BLUP smooths for cases with the lowest score on the
second eigenvector (left) and the highest score on the third eigenvector (right).
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100 resulting estimates). The covariate effect is small, and even its sign cannot be
reliably determined. Smoking, on the other hand, is associated with a increased,
but possibly declining, level of CD4. As noted in Zeger and Diggle (1994), this
may be due to healthier men continuing to smoke.
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Figure 11: The “effect” curves and one standard deviation error bars found by a
bootstrap for age (left) and smoking status (right).

4 Concluding Remarks

We have provided a simple yet flexible and powerful extension of classical lin-
ear mixed effects modeling to explicitly non-parametric models. By using a ba-
sis function approach, the classical conceptual and computational methodology
transfers directly to a non-parametric setting. The population mean function can
be estimated as well as smoothed individual trajectories. A flexible framework for
estimating association of covariates with changes in curve shapes is provided.
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We mention a number of points in closing. First, we note that bases other
than splines could clearly be used in this application of the method of sieves
(Grenander, 1981). One of the advantages of using a low dimensional approxi-
mation rather than penalyzing a high dimensional approximation or using kernel
smoothing is computational—we do not have to solve large linear systems. The
analysis of the CD4 counts reported in the previous section, including the boot-
straps, coded in Matlab, took about three minutes on a Sun Ultra 2. Model selec-
tion criteria are a key aspect of our methodology; they are seemingly effective, but
a clearer understanding of their properties in this context would be valuable. Our
approach to selecting a spline basis has been fairly crude—we have only allowed
equally spaced breakpoints. It might be possible to obtain finer resolution by at-
tempting to optimize breakpoint locations as in Stone et al. (1997), but at least for
exploratory work such as in our examples, it is not clear that gain would offset the
additional computational effort.

In our analyses we have explicitly decomposed the random trajectories into a
common mean function of time and random deviations from that mean, but we
would like to point out that it is not really necessary to do so. If each random
trajectory is simply modeled as a linear combination of basis functions with ran-
dom coefficients, the mean function is specified by the expected values of those
coefficients.

We have limited our attention to time independent covariates, but in principle
the methodology can be extended to time varying covariates. For example, we
might wish to predict the future course of a trajectory based on observation of it
up to the present. We plan to pursue this direction in future research.

We hope that the methodology we have presented will be useful in data mining
large collections of irregularly sampled random curves. By summarizing them as
BLUP estimates of coefficients with respect to some basis, standard multivariate
methods become applicable. Methods of outlier identification and clustering can
be applied, for example, or the coefficients could become inputs for classification
trees.
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