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Abstract

The (n � 1)th Bessel polynomial is represented by an exponential generating
function derived from the number of returns to 0 of a sequence with 2n increments
of �1 which starts and ends at 0.

AMS 1991 subject classi�cation. Primary: 05A15. Secondary: 33C10, 33C45.
It is well known [21, x3.71 (12)],[6, (7.2(40)] that the McDonald function or Bessel

function of imaginary argument

K�(x) :=
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�
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�� Z 1
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t��1e�t�(x=2)

2=t dt (1)

admits the evaluation

Kn+1=2(x) =

r
�

2x
e�x�n(x)x

�n (n = 0; 1; 2; : : :) (2)
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where

�n(x) :=
nX

m=0

�n;n�mx
m with �n;k :=

(n+ k)!

2k(n� k)!k!
: (3)

The Bessel polynomials

�n(x) and yn(x) :=
nX

k=0

�n;kx
k = xn�n(x

�1) (4)

have been extensively studied and applied: see the book of Grosswald [9] for a review.
Dulucq and Favreau [4, 5] gave a combinatorial model for the Bessel polynomials based
on the remark that

�n;k =

 
n + k

n� k

!
� (2k � 1) � (2k � 3)� � � � � 1

is the number of involutions of n+ k points with n� k �xed points and k matched pairs
of points forming 2-cycles. Their model is similar to a well known interpretation of the
coe�cients of the Hermite polynomials, which was extended to q-Hermite polynomials by
Ismail, Stanton and Viennot [12]. Dulucq [3] treats a q-analog of the Bessel polynomials.
See also Leroux and Strehl [13] for a model which interprets the coe�cients of Jacobi
polynomials, and Viennot [20] for other results in this vein.

The purpose of this note is to point out an alternative combinatorial model for the
Bessel polynomials, based on an exponential generating function derived from lattice
path enumerations. Call a sequence b = (b0; b1; : : : ; b2n) a lattice bridge of length 2n if

b0 = b2n = 0 and bi � bi�1 = �1 for every 1 � i � 2n. Let Bn denote the set of all
�
2n
n

�
lattice bridges of length 2n. For b 2 Bn let r(b) be the number of returns to 0 by b:

r(b) := #fi : 1 � i � 2n and bi = 0g:

Then for each n = 1; 2; : : : X
b2Bn

xr(b)

r(b)!
=

2n

n!
x �n�1(x): (5)

This formula can be read from [15, Corollary 9], which gives various probabilistic ex-
pressions of the formula in terms of random walks and Brownian motion. This approach
connects formula (5) to the integral representation (1) of Kn�1=2(x), and to formulae for
generalized Stirling numbers due to Toscano [18, 19].

For 1 � r � n let #n;r be the number of lattice bridges of length 2n with r returns
to 0:

#n;r := #fb 2 Bn : r(b) = rg: (6)
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Then (5) amounts via (3) to the formula

#n;r = 2n
r!

n!
�n�1;n�r (7)

which reduces to

#n;r = 2r
 
2n� r

n

!
r

2n � r
: (8)

This can be read from Feller [7, III.7, Theorem 4]. Let #+
n;r be the number of non-negative

lattice bridges of length 2n with r returns to 0. Then (8) is equivalent to

#+
n;r =

 
2n � r

n

!
r

2n� r
: (9)

By the well known bijection of Harris [10] between between plane trees with n vertices
and lattice excursions of length 2n, that is non-negative lattice bridges b of length 2n
with r(b) = 1, the number in (9) is the number of forests of r plane trees with n vertices
[14, (6.1)]. The particular case r = 1 of (8) is the standard enumeration

#n;1 = 2Cn�1 where Cn :=
1

n+ 1

 
2n

n

!
(10)

is the nth Catalan number [7], [17, Cor. 6.2.3]. The corresponding generating function
is well known to be

1X
n=1

#n;1w
n = 2

1X
n=1

Cn�1w
n = 1� (1� 4w)1=2: (11)

It was already noted by Carlitz [1] that a number of results involving the Bessel polyno-
mials acquire their simplest form when stated in terms of the polynomial x�n�1(x) which
features in (5). In particular, Carlitz gave the exponential generating function

1 +
1X
n=1

x�n�1(x)

2n
un

n!
= exp[x(1� (1� u)1=2)]: (12)

Formula (5) may be regarded as a combinatorial expression of the connection between
the Bessel polynomials and the Catalan numbers implied by (12) and (11), exploiting
(10) and the decomposition of a lattice path with r returns to 0 into its r excursions
away from 0. To express this in terms of generating functions, observe from (5) that
#n;r is the coe�cient of xr

r! in
2n

n! x�n�1(x). Symbolically, using the notation of [17],

#n;r =
�
xr

r!

�
2n

n!
x�n�1(x): (13)
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With similar notation, Carlitz's identity (12) can be restated as

�
xr

r!

�
2�nx�n�1(x) =

�
un

n!

�
(1 � (1� u)1=2)r: (14)

According to a classical expansion of Lambert [8, (5.70)]

[un](1� (1� u)1=2)r = 2r�2n
 
2n� r

n

!
r

2n � r
: (15)

Thus the form (14) of Carlitz's identity (12) can be read from (13), (8), and (15).
Alternatively, the lattice path representation (5) of the Bessel polynomials could be
deduced via (13) from (8), the form (14) of Carlitz's identity (12), and (15). See also
Roman [16, p. 78] and Di Bucchianico [2, p. 54] for closely related discussions based on
the consequence of (12) that the sequence of polynomials fn(x) is of binomial type.

Let

(z j�)n :=
n�1Y
i=0

(z � i�)

be the generalized factorial with decrement �, and let S(n; k;�; �) be the generalized
Stirling numbers de�ned by

(z j�)n =
nX

k=0

S(n; k;�; �)(z j�)k:

In particular, the S(n; k; 1; 0) and S(n; k; 0; 1) are the classical Stirling numbers of the
�rst and second kinds respectively. See Hsu and Shiue [11] for a recent review of the
properties of these generalized Stirling numbers. According to [11, (14)] the polynomials

Sn;�;�(x) :=
nX

k=0

S(n; k;�; �)xk

are determined for � 6= 0 by the generating function

1X
n=0

Sn;�;�(x)
tn

n!
= exp

"
x

�

�
(1 + �t)�=� � 1

�#
: (16)

Compare (12) and (16) for � = �2; � = �1 to deduce that for all n � 1

Sn;�2;�1(x) = x�n�1(x) (17)
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That is, from (3),

S(n; k;�2;�1) = �n�1;n�k =
(2n� k � 1)!

2n�k(k � 1)!(n� k)!
: (18)

This expression for S(n; k;�2;�1) is equivalent to a formula given without proof by
Toscano [18, (122)],[19, (2.11)] along with several other explicit evaluations of generalized
Stirling numbers. See also [15] for a probabilistic interpretation of the S(n; k;��;�1)
for arbitrary � > 1 which yields asymptotic evaluations of these numbers for large n and
k.
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