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Abstract

This paper shows how the invariance of the arc-sine distribution on (0; 1) under
a family of rational maps is related on the one hand to various integral identities
with probabilistic interpretations involving random variables derived from Brow-
nian motion with arc-sine, Gaussian, Cauchy and other distributions, and on the
other hand to results in the analytic theory of iterated rational maps.

1 Introduction

L�evy[20, 21] showed that a random variable A with the arc-sine law

P (A 2 da) =
da

�
q
a(1� a)

(0 < a < 1) (1)
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can be constructed in numerous ways as a function of the path of a one-dimensional
Brownian motion, or more simply as

A = 1
2
(1� cos �)

d
= 1

2
(1� cos 2�) = cos2� (2)

where � has uniform distribution on [0; 2�] and
d
= denotes equality in distribution. See

[31, 7] and papers cited there for various extensions of L�evy's results. In connection with
the distribution of local times of a Brownian bridge [29], an integral identity arises which
can be expressed simply in terms an arc-sine variable A. Section 5 of this note shows
that this identity amounts the following property of A, discovered in a very di�erent
context by Cambanis, Keener and Simons [6, Proposition 2.1]: for all real a and c

a2

A
+

c2

1 �A
d
=

(jaj+ jcj)2
A

: (3)

As shown in [6], where (3) is applied to the study of an interesting class of multivariate
distributions, the identity (3) can be checked by a computation with densities, using (2)
and trigonometric identities. Here we o�er some derivations of (3) related to various
other characterizations and properties of the arc-sine law. For u 2 [0; 1] de�ne a rational
function

Qu(a) :=

 
u2

a
+

(1 � u)2

1 � a

!�1
=

a(1 � a)

u2 + (1� 2u)a
(4)

So (3) amounts to Qu(A)
d
= A, as restated in the following theorem. It is easily checked

that Qu increases from 0 to 1 over (0; u) and decreases from 1 to 0 over (u; 1), as shown
in the following graphs of Qu(a) for 0 � a � 1 and u = k=10 with k = 0; 1; : : : ; 10.
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Theorem 1 For each u 2 (0; 1) the arc-sine law is the unique absolutely continuous
probability measure on the line that is invariant under the rational map a! Qu(a).

The conclusion of Theorem 1 for Q1=2(a) = 4a(1 � a) is a well known result in the
theory of iterated maps, dating back to Ulam and von Neumann [38]. As indicated in [3]
and [22, Example 1.3], this case follows immediately from (2) and the ergodicity of the
Bernoulli shift � 7! 2� (mod 2�). This argument shows also, as conjectured in [15, p.
464 (A3)] and contrary to a footnote of [37, p. 233], that the arc-sine law is not the only

non-atomic law of A such that 4A(1�A)
d
= A. For the argument gives 4A(1�A)

d
= A

if A = (1 � cos 2�U)=2 for any distribution of U on [0; 1] with (2U mod 1)
d
= U , and

it is well known that such U exist with singular continuous distributions, for instance
U =

P1
m=1Xm2�m for Xm independent Bernoulli(p) for any p 2 (0; 1) except p = 1=2.

See also [15] and papers cited there for some related characterizations of the arc-sine law,
and [13] where this property of the arc-sine law is related to duplication formulae for
various special functions de�ned by Euler integrals. Stroock [37, p. 233] asked whether
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any of L�evy's arc-sine laws might be derived by �rst showing that the relevant Brownian

functional A satis�ed 4A(1�A)
d
= A. As far as we know this question is still open.

Section 2 gives a proof of Theorem 1 based on a known characterization of the stan-
dard Cauchy distribution. In terms of a complex Brownian motion Z, the connection
between the two results is that the Cauchy distribution is the hitting distribution on R

for Z0 = �i, while the arc-sine law is the hitting distribution on [0; 1] for Z0 =1. The
transfer between the two results may be regarded as a consequence of L�evy's theorem
on the conformal invariance of the Brownian track. In Section 4 we use a closely related
approach to generalize Theorem 1 to a large class of functions Q instead of Qu. The
result of this section for rational Q can also be deduced from the general result of Lalley
[18] regarding Q-invariance of the equilibrium distribution on the Julia set of Q, which
Lalley obtained by a similar application of L�evy's theorem.

2 Proof of Theorem 1

Let A have the arc-sine law (1), and let C be a standard Cauchy variable, that is

P (C 2 dy) =
dy

�(1 + y2)
(y 2 R): (5)

We will exploit the following elementary fact [33, p. 13]:

A
d
= 1=(1 + C2): (6)

Using (6) and C
d
= � C, the identity (3) is easily seen to be equivalent to

uC � (1 � u)=C
d
= C: (7)

This is an instance of the result of E. J. G. Pitman and E. J. Williams [28] that for a large
class of meromorphic functions G mapping the half plane H + := fz 2 C : Im z > 0g
to itself, with boundary values mapping R (except for some poles) to R, there is the
identity in distribution

G(C)
d
= ReG(i) + (ImG(i))C (8)

where i =
p�1 and z = Re z + iImz. Kemperman [14] attributes to Kesten the remark

that (8) follows from L�evy's theorem on the conformal invariance of complex Brownian
motion Z, and the well known fact that for � the hitting time of the real axis by Z, the
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distribution of Z� given Z0 = z is that of Re z + (Im z)C. As shown by Letac [19], this
argument yields (8) for all inner functions on H

+, that is all holomorphic functions G
from H

+ to H + such that the boundary limit G(x) := limy#0G(x+ iy) exists and is real
for Lebesgue almost every real x. In particular, (8) shows that

if G is inner on H + with G(i) = i, then G(C)
d
= C: (9)

As indicated by E. J. Williams [39] and Kemperman [14], for some inner G on H
+

with G(i) = i, the property G(C)
d
= C characterizes the distribution of C among all

absolutely continuous distributions on the line. These are the G whose action on R is
ergodic relative to Lebesgue measure. Neuwirth [26] showed that an inner function G
with G(i) = i is ergodic if it is not one to one. In particular,

Gu(z) := uz � (1� u)=z (10)

as in (7) is ergodic. The above transformation from (3) to (7) amounts to the semi-
conjugacy relation

Qu �  =  �Gu where (w) := 1=(1 + w2): (11)

So Qu acts ergodically as a measure preserving transformation of (0; 1) equipped with
the arc-sine law. It is easily seen that for u 2 (0; 1) a Qu-invariant probability measure
must be concentrated on [0; 1], and Theorem 1 follows.

See also [35, p. 58] for an elementary proof of (7), [1, 23, 24, 2] for further study of
the ergodic theory of inner functions, [16, 19] for related characterizations of the Cauchy
law on R and [17, 9] for extensions to Rn.

3 Further Interpretations

Since w 7! 1=(1 + w2) maps i to 1, another application of L�evy's theorem shows that
the arc-sine law of 1=(1 +C2) is the hitting distribution on [0; 1] of a complex Brownian
motion plane started at 1 (or uniformly on any circle surrounding [0; 1]). In terms of
classical planar potential theory [32, Theorem 4.12], the arc-sine law is thus identi�ed
as the normalized equilibrium distribution on [0; 1]. The corresponding characterization
of the distribution of 1 � 2A on [�1; 1] appears in Brolin [5], in connection with the
invariance of this distribution under the action of Chebychev polynomials, as discussed
further in the next section. Equivalently by inversion, the distribution of 1=(1 � 2A) is
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the hitting distribution on (�1; 1] [ [1;1) for complex Brownian motion started at 0.
Spitzer [36] found this hitting distribution, which he interpreted further as the hitting
distribution of (�1; 1][ [1;1) for a Cauchy process starting at 0. This Cauchy process
is obtained from the planar Brownian motion watched only when it touches the real axis,
via a time change by the inverse local time at 0 of the imaginary part of the Brownian
motion. The arc-sine law can be interpreted similarly as the limit in distribution as
jxj ! 1 of the hitting distribution of [0; 1] for the Cauchy process started at x 2 R. See
also [30] for further results in this vein.

4 Some generalizations

We start with some elementary remarks from the perspective of ergodic theory. Let
�(a) := 1 � 2a, which maps [0; 1] onto [�1; 1]. Obviously, a Borel measurable function
fy has the property

fy(A)
d
= A (12)

for A with arc-sine law if and only if

~f(1 � 2A)
d
= 1� 2A where ~f = � � fy � ��1: (13)

Let �(z) := 1
2
(z + z�1), which projects the unit circle onto [�1; 1]. It is easily seen from

(2) that (13) holds if and only if there is a measurable map f from the circle to itself
such that

f(U)
d
= U and ~f � �(u) = � � f(u) for juj = 1 (14)

where U has uniform distribution on the unit circle. In the terminogy of ergodic theory
[27], every transformation fy of [0; 1] which preserves the arc-sine law is thus a factor
of some non-unique transformation f of the circle which preserves Lebesgue measure.
Moreover, this f can be taken to be symmetric, meaning

f(z) = f(z):

If f acts ergodically with respect to Lebesgue measure on the circle, then fy acts ergod-
ically with respect to Lebesgue measure on [0; 1], hence the arc-sine law is the unique
absolutely continuous fy-invariant measure on [0; 1]. This argument is well known in
case f(z) = zd for d = 2; 3; : : :, when it is obvious that (14) holds and well known that f
is ergodic. Then ~f(x) = Td(x), the dth Chebychev polynomial [34] and we recover from
(14) the well known result ([3],[34, Theorem 4.5]) that

Td(1� 2A)
d
= 1 � 2A (d = 1; 2; : : :): (15)
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Let D := fz : jzj < 1g denote the unit disc in the complex plane. An inner function
on D is a function de�ned and holomorphic on D , with radial limits of modulus 1 at
Lebesgue almost every point on the unit circle. Let �(z) := i(1 + z)=(1 � z) denote the
Cayley bijection from D to the upper half-plane H +. It is well known that the inner
functions G on H

+, as considered in Section 2, are the conjugations G = � � f � ��1
of inner functions f on D . So either by conjugation of (9), or by application of L�evy's
theorem to Brownian motion in D started at 0,

if f is inner on D with f(0) = 0, then f(U)
d
= U (16)

where U is uniform on the unit circle. If f is an inner function on D with a �xed point in
D , and f is not one-to-one, then f acts ergodically on the circle [26]. The only one-to-one
inner functions with f(0) = 0 are f(z) = cz for some c with jcj = 1. By combining the
above remarks, we obtain the following generalization of (15), which is the particular
case f(z) = zd:

Theorem 2 Let f be a symmetric inner function on D with f(0) = 0. De�ne the
transformation ~f on [�1; 1] via the semi-conjugation

~f � �(z) = � � f(z) for jzj = 1, where �(z) := 1
2
(z + z�1). (17)

If A has arc-sine law then
~f (1� 2A)

d
= 1� 2A: (18)

Except if f(z) = z or f(z) = �z, the arc-sine law is the only absolutely continuous law
of A on [0; 1] with this property.

It is well known that every inner function f which is continuous on the closed disc is
a �nite Blaschke product, that is a rational function of the form

f(z) = c
dY

i=1

z � ai
1� aiz

(19)

for some complex c and ai with jcj = 1 and jaij < 1. Note that f(0) = 0 i� some ai = 0,
and that f is symmetric i� c = �1 with some ai real and the rest of the ai forming
conjugate pairs. In particular, if we take c = 1; a1 = 0; a2 = a 2 (�1; 1), we �nd that
the degree two Blaschke product

fa(z) := z
(z � a)

(1� az)
=

z � a

z�1 � a
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for a = 1 � 2u is the conjugate via the Cayley map �(z) := i(1 + z)=(1 � z) of the
function Gu(w) = uw � (1 � u)=w on H

+, which appeared in Section 2. For f = f1�2u
the semi-conjugation (17) is the equivalent via conjugation by � of the semi-conjugation
(11). So for instance

Qu �  � � =  � � � f1�2u where  � �(z) = �(1� z)2

4z
(20)

so that
 � �(z) = 1

2
(1� Re z) if jzj = 1;

and Theorem 1 can be read from Theorem 2.
Consider now a rational function R as a mapping from C to C where C is the Riemann

sphere. A subset A of C is completely R-invariant if A is both forward and backward
invariant under R: for z 2 C , z 2 A , R(z) 2 A. Beardon [4, Theorem 1.4.1] showed
that for R a polynomial of degree d � 2, the interval [�1; 1] is completelyR-invariant i�
R is Td or �Td. A similar argument yields

Proposition 3 Let f be a symmetric �nite Blaschke product of degree d. Then there
exists a unique rational function ~f which solves the functional equation

~f � �(z) = � � f(z) for z 2 C , where �(z) := 1
2(z + z�1). (21)

This ~f has degree d, and [�1; 1] is completely ~f-invariant. Conversely, if [�1; 1] is
completely R-invariant for a rational function R, then R = ~f for some such f .

Proof. Note that � maps the circle with �1 removed in a two to one fashion to (�1; 1),
while � �xes �1, and maps each of D and D � := fz : jzj > 1g bijectively onto [�1; 1]c :=
C n[�1; 1]. Let us choose to regard

��1(w) = w + i
p
1 �w2

as mapping [�1; 1]c to D . Then ~f := � � f � ��1 is a well de�ned mapping of [�1; 1]c to
itself. Because f is continuous and symmetric on the unit circle, this ~f has a continuous
extension to C , which maps [�1; 1] to itself. So ~f is continuous from C to C , and
holomorphic on [�1; 1]c. It follows that ~f is holomorphic from C to C , hence ~f is
rational. Clearly, ~f leaves [�1; 1] completely invariant.

Conversely, if [�1; 1] is completelyR-invariant for a rational function R, then we can
de�ne f := ��1 � R � � as a holomorphic map D to D . Because R preserves [�1; 1] we
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�nd that f is continuous and symmetric on the boundary of D . Hence f is a Blaschke
product, which must be symmetric also on D by the Cauchy integral representation of
f . 2

As a check, Proposition 3 combines with Theorem 2 to yield the special case K =
[�1; 1] of the following result:
Theorem 4 (Lalley [18]) Let K be a compact non-polar subset of C , and suppose that
K is completely R-invariant for a rational mapping R with R(1) = 1. Then the
equilibrium distribution on K is R-invariant.

Proof. Lalley gave this result for K = J(R), the Julia set of a rational mapping R, as
de�ned in any of [5, 22, 4, 18], assuming that R(1) =1 =2 J(R). Then K is necessarily
compact, non-polar, and completely R-invariant. His argument, which we now recall
briey, shows that these properties of K are all that is required for the conclusion.
The argument is based on the fact [32, Theorem 4.12] that the normalized equilibrium
distribution on K is the hitting distribution on K for a Brownian motion Z on C started
at 1. Stop Z at the �rst time � that it hits K. By L�evy's theorem, and the complete
R-invariance of K, the path (R(Zt); 0 � t � � ) has (up to a time change) the same law
as does (Zt; 0 � t � � ). So the distribution of the endpoint Z� is R-invariant. 2

According to a well known result of Fatou [22, p. 57], the Julia set of a Blaschke
product f is either the unit circle or a Cantor subset of the circle. According to Hamilton
[11, p. 281], the former case obtains i� the action of f on the circle is ergodic relative
to Lebesgue measure. Hamilton [12, p. 88] states that a rational map R has [�1; 1]
as its Julia set i� R is of the form described in Proposition 3 for some symmetric and
ergodic Blaschke product f . In particular, for the Chebychev polynomial Td it is known
[4] that J(Td) = [�1; 1] for all d � 2, and [25, Theorem 4.3 (ii)] that J(Qu) = [0; 1] for
all 0 < u < 1. Typically of course, the Julia set of a rational function is very much more
complicated than an interval or smooth curve [22, 4, 8].

Returning to consideration of the arc-sine law, it can be shown by elementary argu-
ments that if Q preserves the arc-sine law on [0; 1] and Q(a) = P2(a)=P1(a) with Pi a
polynomial of degree i, then Q = Qu or 1�Qu for some u 2 [0; 1]. This and all preceding
results are consistent with the following:

Conjecture 5 Every rational function R which preserves arc-sine law on [0; 1] is of the
form R(a) = 1

2(1 � ~f (1 � 2a)) where ~f is derived from a symmetric Blaschke product f
with f(0) = 0, as in Theorem 2.
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5 Some integral identities

Let (Bt; t � 0) denote a standard one-dimensional Brownian motion. Let

'(z) :=
1p
2�

e�
1
2z

2

; �(x) :=
Z 1

x
'(z)dz = P (B1 > x):

According to formula (13) of [29], the following identity gives two di�erent expressions
for the conditional probability density P (BU 2 dx jB1 = b)=dx for U with uniform
distribution on [0; 1], assumed independent of (Bt; t � 0):

Z 1

0

1q
u(1� u)

'

0
@ x� buq

u(1� u)

1
A du =

�(jxj+ jb� xj)
'(b)

: (22)

The �rst expression reects the fact that Bu given B1 = b has normal distribution with
mean bu and variance u(1 � u), while the second was derived in [29] by consideration

of Brownian local times. Multiply both sides of (22) by
q
2=� to obtain the following

identity for A with the arc-sine law (1): for all real x and b

E

"
exp

 
�1

2

(x� bA)2

A(1�A)

!#
= 2 eb

2=2�(jxj+ jb� xj): (23)

Now
(x� bA)2

A(1�A)
=
x2

A
+

(x� b)2

1 �A
� b2

d
=

(jxj+ jb� xj)2
A

� b2 (24)

where the equality in distribution is a restatement of (3). So (23) amounts to the identity

E

"
exp

 
�1

2

 
x2

A
+

y2

1�A

!!#
= 2�(jxj+ jyj) (25)

for arbitrary real x; y. Moreover, the identity in distribution (3) allows (25) to be deduced
from its special case y = 0, that is

E

"
exp

 
� x2

2A

!#
= 2�(jxj); (26)

which can be checked in many ways. For instance, P (1=A 2 dt) = dt=(�t
p
t� 1) for

t > 1 so (26) reduces to the known Laplace transform [10, 3.363]

1

2�

Z 1

1

1

t
p
t� 1

e��t dt = �(
p
2�) (� � 0): (27)
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This is veri�ed by observing that both sides vanish at � =1 and have the same derivative
with respect to � at each � > 0. Alternatively, (26) can be checked as follows, using the
Cauchy representation (6). Assuming that C is independent of B1, we can compute for
x � 0

E

"
exp

 
�1

2

x2

A

!#
= e�

1
2
x2E [exp(ixCB1)] = e�

1
2
x2E [exp(�xjB1j)] = 2�(x): (28)

We note also that the above argument allows (24) and hence (3) to be deduced from (23)
and (26), by uniqueness of Laplace transforms.

By di�erentiation with respect to x, we see that (25) is equivalent to

E

"
x

A
exp

 
�1

2

 
x2

A
+

y2

1�A

!!#
=

s
2

�
e�

1
2 (x+y)

2

(x > 0; y � 0): (29)

That is to say, for each x > 0 and y � 0 the following function of u 2 (0; 1) de�nes a
probability density on (0; 1):

fx;y(u) :=
xq

2�u3(1 � u)
exp

"
1

2

 
(x+ y)2 � x2

u
� y2

1� u

!#
: (30)

This was shown by Seshadri [35, xp. 123], who observed that fx;y is the density of
Tx;y=(1 + Tx;y) for Tx;y with the inverse Gaussian density of the hitting time of x by a
Brownian motion with drift y. In particular, fx;0 is the density of x2=(x2+B2

1). See also
[29, (17)] regarding other appearances of the density fx;0.

6 Complements

The basic identity (3) can be transformed and checked in another way as follows. By
uniqueness of Mellin transforms, (3) is equivalent to

u2

A"2
+

(1� u)2

(1 �A)"2

d
=

1

A"2
(31)

where "2 is an exponential variable with mean 2, assumed independent of A. But it
is elementary and well known that A"2 and (1 � A)"2 are independent with the same
distribution as B2

1. So (31) amounts to

u2

X2
+

(1� u)2

Y 2

d
=

1

X2
(32)
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where X and Y are independent standard Gaussian. But this is the well known result of
L�evy[20] that the distribution of 1=X2 is stable with index 1

2
. The same argument yields

the following multivariate form of (3): if (W1; : : : ;Wn) is uniformly distributed on the
surface of the unit sphere in Rn, then for ai � 0

nX
i=1

a2i
W 2

i

d
=

(
Pn

i=1 ai)
2

W 2
1

: (33)

This was established by induction in [6, Proposition 3.1]. The identity (32) can be recast
as

X2Y 2

a2X2 + c2Y 2

d
=

X2

(a+ c)2
(a; c > 0): (34)

This is the identity of �rst components in the following bivariate identity in distribution,
which was derived by M. Mora using the property (7) of the Cauchy distribution: for
p > 0  

(XY (1 + p))2

X2 + p2Y 2
;
(X2 � p2Y 2)2

X2 + p2Y 2

!
d
= (X2; Y 2): (35)

See Seshadri [35, x2.4, Theorem 2.3] regarding this identity and related properties of the
inverse Gaussian distribution of the hitting time of a > 0 by a Brownian motion with
positive drift. Given (X2; Y 2), the signs of X and Y are chosen as if by two independent
fair coin tosses, so (34) is further equivalent to

XYp
a2X2 + c2Y 2

d
=

X

a+ c
(a; c > 0): (36)

As a variation of (26), set x =
p
2� and make the change of variable z =

p
2�u in

the integral to deduce the following curious identity: if X is a standard Gaussian then
for all x > 0

E

 
x

X
p
X2 � x2

����� X > x

!
�

r
�

2
(x > 0) (37)

As a check, (37) for large x is consistent with the elementary fact that the distribution
of (x(X � x) jX > x) approaches that of a standard exponential variable "1 as x!1.
The distribution of (x=(X

p
X2 � x2) jX > x) therefore approaches that of 1=

p
2"1 as

x!1, and E(1=
p
2"1) =

q
�=2.

By integration with respect to h(x)dx, formula (37) is equivalent to the following
identity: for all non-negative measurable functions hs

2

�
E

"Z X

0

xh(x) dx

X
p
X2 � x2

1(X � 0)

#
= E

"Z X

0
h(x) dx 1(X � 0)

#
:
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That is to say, for U with uniform (0; 1) distribution, assumed independent of X,s
1

2�
E
h
h
�p

1� U2 jXj
�i

= E [ jXjh( jXjU)] :

Equivalently, for arbitrary non-negative measurable g

E
h
g
�
(1� U2)X2

�i
=
p
2�E

h
jXjh(X2U2)

i
: (38)

Now X2 d
= A"2 where "2 is exponential with mean 2, independent of A; and when the

density of X2 is changed by a factor of
p
2�jXj we get back the density of "2. So the

identity (38) reduces to

(1� U2)A"2
d
= U2"2

and hence to
(1� U2)A

d
= U2:

This is the particular case a = b = c = 1=2 of the well known identity

�a+b;c �a;b
d
= �a;b+c

for a; b; c > 0, where �p;q denotes a random variable with the beta(p; q) distribution on
(0; 1) with density at u proportional to up�1(1� u)q�1, and it is asumed that �a+b;c and
�a;b are independent.
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