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Abstract

The distribution of the sequence of ranked maximum and minimum values
attained during excursions of a standard Brownian bridge (Bbr

t ; 0 � t � 1) is
described. The height Mbr+

j of the jth highest maximum over a positive excur-

sion of the bridge has the same distribution as Mbr+
1 =j, where the distribution

of Mbr+
1 = sup0�t�1B

br
t is given by L�evy's formula P (Mbr+

1 > x) = e�2x
2

. The
probability density of the height Mbr

j of the jth highest maximum of excursions of

the reecting Brownian bridge (jBbr
t j; 0 � t � 1) is given by a modi�cation of the

known �-function series for the density of Mbr
1 = sup0�t�1 jB

br
t j. These results are

obtained from a more general description of the distribution of ranked values of a
homogeneous functional of excursions of the standardized bridge of a self-similar
recurrent Markov process.

Keywords: Brownian bridge, Brownian excursion, Brownian scaling, local time, self-
similar recurrent Markov process, Bessel process
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1 Introduction

Let Bbr := (Bbr
t ; 0 � t � 1) be a standard Brownian bridge, that is

(Bbr
t ; 0 � t � 1)

d
= (Bt; 0 � t � 1jB1 = 0)

where (Bt; t � 0) is a standard one-dimensional Brownian motion. See [35] for back-
ground. The random open subset ft : Bbr

t 6= 0g of [0; 1] is a countable union of maximal
disjoint intervals (a; b), called excursion intervals of Bbr, such that Bbr

a = Bbr
b = 0 and

either Bbr
t > 0 for all t 2 (a; b) ( a positive excursion interval) or Bbr

t < 0 for all t 2 (a; b)
(a negative excursion interval). Let

Mbr+
1 �Mbr+

2 � � � � > 0

be the ranked decreasing sequence of values supt2(a;b)B
br
t obtained as (a; b) ranges over

all positive excursion intervals of Bbr. Similarly, let

Mbr�
1 �Mbr�

2 � � � � > 0

the ranked values of � inft2(a;b)B
br
t as (a; b) ranges over all negative excursion intervals

of Bbr, and let
Mbr

1 �Mbr
2 � � � � > 0

be the ranked values of supt2(a;b) jBbr
t j as (a; b) ranges over all excursion intervals of

Bbr. One motivation for study of the sequence (Mbr
j ) is that this sequence describes

the asymptotic distribution as n ! 1 of the ranked heights of tree components of the
random digraph generated by a uniformly distributed random mapping of an n-element
set to itself [1]. Note that

Mbr+
1 = sup

0�t�1
Bbr
t ; Mbr�

1 = � inf
0�t�1

Bbr
t ; Mbr

1 = sup
0�t�1

jBbr
t j =Mbr+

1 _Mbr�
1 : (1)

The main purpose of this paper is to describe as explicitly as possible the laws of the
decreasing random sequences introduced above. In particular, we obtain the results
stated in the following two theorems. Some of the results of this paper were presented
without proof in [32].

Theorem 1 For each j = 1; 2; : : : the common distribution of Mbr+
j and Mbr�

j is deter-
mined by the formula

P (Mbr+
j > x) = e�2j

2x2 (x � 0) (2)
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while that of Mbr
j is determined by

P (Mbr
j > x) = 2j

1X
n=0

 �j
n

!
e�2(n+j)

2x2 (x � 0): (3)

Formula (2) amounts to the identities in distribution

Mbr+
j

d
=
Mbr+

1

j
d
=

1

j

r
"

2
(4)

for j = 1; 2; : : : where " denotes a standard exponential variable. The second identity
in (4) is L�evy's [25] well known description of the distribution of sup0�t�1B

br
t . Despite

its simplicity, the �rst identity in (4) does not seem obvious without calculation. The
case j = 1 of (3) is the well known Kolmogorov-Smirnov formula for the distribution
of Mbr

1 = sup0�t�1 jBbr
t j, which arises in the asymptotic theory of empirical distribution

functions [40, 12, 39, 26]:

P (Mbr
1 > x) = 2

1X
k=1

(�1)k�1e�2k2x2 = 1� �3
�
�
2 ;

2
�
ix2
�

(5)

where

�3(z; t) :=
1X

n=�1

ei�n
2t cos(2nz)

is the classical Jacobi theta function de�ned for t = <t+ i=t 2 C with =t > 0. Formula
(3) shows there is no relation as simple as (4) between the distribution of Mbr

j for j > 1
and that of Mbr

1 .
De�ne the intensity measure �M for the sequence (Mbr

j ) by

�M (A) = E
1X
j=1

1(Mbr
j 2 A)

for Borel subsets A of (0;1), and de�ne �M+ similarly in terms of (Mbr+
j ). Formula (2)

implies that these intensity measures �M and �M+ are given by the formula

�M (x;1) = 2�M+(x;1) = 2
1X
j=1

e�2j
2x2 = �3

�
0; 2

�
ix2
�
� 1 = �

�
2
�
x2
�
� 1 (6)

where for t > 0

�(t) :=
1X

n=�1

e��n
2t = �3 (0; it) : (7)
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Note the striking parallel between formulae (5) and (6). We now explain how formula
(6) is related to the formula of Chung [7] for the distribution of the maximumM� of a
standard Brownian excursion, that is

P (M� � x) = �( 2
�
x2) + 4

�
x2�0( 2

�
x2) (x > 0) (8)

where �0 is the derivative of �. Riemann [36] gave the formula

1

2
s(s� 1)

Z 1

0
t
s
2
�1(�(t)� 1)dt = 2�(s) := s(s� 1)��s=2�(s=2)

1X
n=1

1

ns
(<s > 1) (9)

and deduced from it and the classical functional equation

�(t) = t�1=2�(t�1) (t > 0)

that (9) de�nes a unique entire function � which satis�es the functional equation

�(s) = �(1 � s) (s 2 C ):

As shown by Biane-Yor [4], Chung's formula (8) for P (M� � x) is equivalent to the
following expression of the Mellin transform of M�:

E[M s
� ] =

�
�

2

� s
2

2�(s) (s 2 C ): (10)

See also [45, 3] for reviews of this circle of ideas and other interpretations of �(t) in the
context of Brownian motion.

These descriptions of the distribution of M� are related to our description (6) of
the intensity measure �M for the sequence (Mbr

j ) via the known result [42, 30] that the
intensity measure for the lengths of excursions of the bridge

�V (A) := E
1X
j=1

1(V br
j 2 A);

where V br
j is the length of the jth longest interval component of the random subset

ft : Bbr
t 6= 0g of [0; 1], is determined by the density

�V (dv)

dv
=

1

2v3=2
(0 < v < 1): (11)
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Indeed, by conditioning on the lengths of all the excursions of the Brownian bridge, and
using (11), the intensity measure �M has density at x > 0

�M(dx)

dx
=
Z 1

0

dv

2v2
f(x=

p
v) wheref(y) :=

P (M� 2 dy)
dy

For p > 1 this yields Z 1

0
xp�M(dx) =

E(Mp
� )

(p� 1)
by Fubini

=
�
�

2

�p=2 2�(p)

(p � 1)
by (10)

=
�
�

2

�p=2 Z 1

0
xp(2x�0(x2))dx

where the last equality is a simple transformation of (9). Hence by uniqueness of Mellin
transforms

�M(dx)

dx
= �4x

�
�0( 2

�
x2) (12)

which is equivalent to (6). This calculation allows any one of the three formulae (6), (10)
and (11) to be deduced from the other two.

Theorem 1 will be derived as a consequence of the next theorem, which characterizes
the law of the entire sequence (Mbr

j ). This result, along with a corresponding description

of the law of (Mbr+
j ), will be seen to be an expression of the fact that when each term in

one of these sequences is multiplied by a suitable independent random factor, the result
is the sequence of points of a simple mixture of Poisson processes. This key property is
a consequence of the Poisson structure of excursions of Brownian motion combined with
Brownian scaling.

Theorem 2 Let N be a standard Gaussian variable independent of the Brownian bridge
Bbr. Then the sequence (jN jMbr

j ; j = 1; 2; : : :) is Markovian, with one-dimensional dis-
tributions given by

P (jN jMbr
j � x) = (1 � tanh x)j (x � 0; j = 1; 2; : : :)

and inhomogeneous transition probabilities

P (jN jMbr
j � x j jN jMbr

j�1 = y) =

 
tanhx

tanh y

!j

(0 � x � y; j = 1; 2; : : :)
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Despite the simple structure of the sequence (jN jMbr
j ; j = 1; 2; : : :) exposed by this

result, the �nite-dimensional distributions of the sequence (Mbr
j ) appear to be rather

complicated. This is yet another instance where the introduction of a suitable random
multiplier provides a substantial simpli�cation, as we have recognized in a number of
other studies of homogeneous functionals of Brownian motion and self-similar Markov
processes ([35, Ch. XII Ex. (4.24)],[6, 34]). See also Perman-Wellner [26] and Jansons
[17] for further applications of this device.

The rest of this paper is organized as follows. In Section 2 we present a general
characterization of the distribution of ranked values of a homogeneous functional F
of excursions of the standardized bridge of a self-similar recurrent Markov process. We
choose to work at this level of generality in order to expose the basic structure underlying
both our previous work on ranked lengths of excursions [28, 30] and our present study
of ranked heights. Section 3 shows how the general results of Section 2 may be applied
to the heights of excursions of a Brownian bridge to obtain Theorems 1 and 2. Section
4 indicates how these results for a Brownian bridge may be generalized to the bridge of
a recurrent Bessel process. In Sections 5, 6 and 7 we return to the general setting of
Section 2 to consider excursions of the basic Markov process up to an inverse local time.
In particular Section 6 presents some generalizations of results of Biane-Yor [4] regarding
the maximum of a Brownian or Bessel excursion, and Section 7 generalizes some of the
results of Knight [21] and Pitman-Yor [30]. See also [8, 9] for some further applications
of the results of this paper.

2 Bridges and Excursions of a self-similar Markov

process.

Recall that for � 2 R a process B := (Bt; t � 0) is called �-self-similar [23, 24, 41, 38] if
B has the scaling property

(Bct; t � 0)
d
= (c�Bt; t � 0) for each c > 0, (13)

which generalizes the well known scaling property of Brownian motion for � = 1
2 . We

sometimes writeB(t) instead of Bt for typographical convenience. Suppose in this section
that B is a real or vector-valued �-self-similar strong-Markov process, with starting state
0 which is a recurrent point for B. It is well known that B then has a continuous
increasing local time process at 0, say (Lt; t � 0), whose inverse process (�`; ` � 0) is a
stable subordinator of index � for some 0 < � < 1. That is to say (�`) is an increasing
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��1-self-similar process with stationary independent increments, hence

E exp(���`) = exp(�`K��) (14)

for some constant K > 0.
For t > 0 let Gt := supfs : s � t; Bs = 0g be the last zero of B before time t and let

Dt := inffs : s � t; Bs = 0g be the �rst zero of B after time t. It follows easily from the
scaling property of B that for any �xed time T > 0, and hence for any random time T
which is independent of B, the process

Bbr
T (u) := G��T B(uGT ) (0 � u � 1) (15)

has a distribution which does not depend on the choice of T . Call a process with this
distribution a standard B-bridge, denoted Bbr. Intuitively,

Bbr d
= (Bu; 0 � u � 1 jB0 = B1 = 0):

Similar remarks apply to the process

Bex
T (u) := (DT �GT )

��B(GT + u(DT �GT )) (0 � u � 1) (16)

whose distribution de�nes that of a standard B-excursion, denoted Bex. Intuitively,

Bex d
= (Bu; 0 � u � 1 jB0 = B1 = 0; Bu 6= 0 for 0 < u < 1):

See [14, 29] and papers cited there for more about Markovian bridges and excursions.
Let (et; 0 � t � Ve) denote a generic excursion path, where Ve is the lifetime or length

of e. Let F be a non-negative measurable functional of excursions e, and let  > 0. Call
F a -homogeneous functional of excursions of B if

F (et; 0 � t � Ve) = V 
e F (V

��
e euVe; 0 � u � 1): (17)

In particular, we have in mind the following functionals F : length, maximum height,
maximum absolute height, area, maximum local time .... About areas, see [27] and
papers cited there.

Theorem 3 Let F be a -homogeneous functional of excursions of B, let F� := F (Bex)
for a standard excursion Bex, and suppose that E((F�)�=) <1, for � as in (14). Then
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the strictly positive values of F (e) as e ranges over the countable collection of excursions
of Bbr can be arranged as a sequence

F br
1 � F br

2 � � � � > 0:

Let �� be a random variable, independent of Bbr, with the gamma(�) density

P (�� 2 dt)=dt = �(�)�1t��1e�t (t > 0): (18)

Fix � > 0. Then the joint distribution of the sequence (F br
j ; j = 1; 2; : : :) is uniquely

determined by the equality in distribution

(�(����F
br
j ); j = 1; 2; : : :)

d
= (T �j ; j = 1; 2; : : :) where T �j :=

jX
i=1

"i="0 (19)

for independent standard exponential variables "0; "1; "2; : : :, and � is the function deter-
mined as follows by �; �;  and the distribution of F�:

�(x) :=
Z 1

0

����

�(1 � �)
t���1e��tP [F� > xt� ] dt: (20)

Remarks. In what follows we sometimes write ��(x) instead of �(x) to emphasize the
dependence of this function on �. It is evident from either (20) or (19) that ��(x) =
�1(x�). The function � plays a central role throughout the paper. Some alternative
formulae for � are presented in Corollaries 5 and 11. For the moment, we just note using
(20) and e��t � 1 that

��(x) � ���

�(1 � �)
E
h
(F�=x)

�=
i
<1 (21)

under the hypotheses of the theorem. The following lemma presents some preliminaries
for the proof of the theorem.

Lemma 4 Let T� be an exponential random variable with rate �, assumed independent
of B. Then
(i) the value LT� of the local time process at 0 at time T� has an exponential distribution
with rate K��;
(ii) Let Bbr := (Bbr

T�
(u); 0 � u � 1) be the bridge constructed as in (15) by rescaling the

path B over [0; GT�]. Then GT� is independent of Bbr, and GT�
d
= ��1��.
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Proof. To check (i), use

P (LT� > `) = P (�` < T�) = E exp(���`) = exp(�`K��):
The facts in (ii) are well known for B a Brownian motion or Bessel process. See e.g.
[2] and papers cited there. As their proofs rely only on the self-similarity and strong
Markov properties of B, they apply in the present setting too. 2
Proof of Theorem 3. For t > 0 let

(Fj(t); j = 1; 2; : : :) (22)

denote the ranked sequence of strictly positive values of F (e) obtained as e ranges over
the countable collection of excursions completed by B during the interval [0; t]. As
discussed in detail in Proposition 10 below, this sequence is a.s. well de�ned for t = �`
for any ` > 0, under the assumption that E((F�)�=) < 1. It follows easily that the
sequence is well de�ned for all t � 0 a.s., hence in particular for t = GT�. Using part (ii)
of Lemma 4, (15), and the scaling property (17) of F we �nd that

(����F
br
j ; j = 1; 2; : : :)

d
= (Fj(GT�); j = 1; 2; : : :): (23)

Now �x �, and to simplify the rest of the proof let the local time process be normalized
so that K�� = 1. According to part (i) of Lemma 4, this makes

LT�
d
= "0: (24)

By application of Itô's excursion theory, conditionally given LT� = ` the strictly positive
Fj(GT�) are the ranked points of a PPP(`e�), that is a Poisson point process with intensity
measure `e�, where e� is the measure on (0;1) whose mass on (x;1) is the function �(x)
de�ned by (20). To briey interpret the di�erent factors appearing in formula (20), the
measure

����

�(1 � �)
t���1dt

on (0;1) is the L�evy measure governing the PPP of jumps of the subordinator (�`);
these jumps form the lengths of excursions of B. The factor e��t is the chance that an
excursion of length t survives exponential killing at rate �. The factor P (F (Bex) > xt�)
is the chance, given that an excursion has length t, that its F -value exceeds x. See for
instance [16, 37, 28] for details of similar arguments. It follows that

(�(Fj(GT�)); j = 1; 2; : : : jLT� = `)
d
= (�j=`; j = 1; 2; : : :) (25)
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where the �j :=
Pj

i=1 "i are the points of a homogeneous Poisson process on (0;1) with
rate 1. Now (23), (24) and (25) combine to give (19). To see that the distribution of
(F br

j ; j = 1; 2; : : :) is uniquely determined by (19), it is enough to recover from (19) the

distribution of � :=
Pk

j=1 �jF
br
j for arbitrary non-negative �j and k = 1; 2; : : :. But

formula (19) determines the distribution of ���, hence that of log � +  log ��, where
� is independent of ��. But this in turn determines E exp(it log �) for all real t, hence
the distribution of �, because E exp(it log ��) does not vanish for any real t, due to the
in�nite divisibility of log �� which follows from Gordon's representation [15] of log �� as
an in�nite sum of independent centered exponential variables. 2

Corollary 5 The function ��(x) de�ned by (20) is also determined by the following
formula:

exp[�K��(1 + ��(x))] = E[exp(���1)1(F1(�1) � x)] (26)

where F1(�1) is the largest value of F (e) as e ranges over the excursions of B completed
by the inverse local time �1, and K is determined by exp(�K��) = E[exp(���1)].
Proof. As in the proof of Theorem 3, interpret K���(x) as the rate per unit local
time of excursions e with F (e) > x, with an excursion of length t counted only with the
probability e��t that it survives killing at rate �. From the de�nition of K, the rate of
killed excursions is K��. So K��(�(x) + 1) is the rate of excursions e such that either
F (e) > x or e is killed. Formula (26) displays two expressions for the probability that
there is no excursion e in the interval [0; �1] such that either F (e) > x or e is killed.
The �rst expression derives from the Poisson character of the excursion process, and the
second is obtained by conditioning on (�1; F1(�1)). 2

The next lemma gives another description of the distribution of the sequence (T �j )
appearing in formula (19).

Lemma 6 For a sequence of random variables (T �j ; j = 1; 2; : : :) the following two con-
ditions are equivalent:
(i) T �j =

Pj
i=1 "i="0 for independent standard exponential variables "0; "1; "2; : : :;

(ii) The sequence is Markovian with one-dimensional distributions

P (T �j � x) =
�

x

1 + x

�j
(x � 0) (27)

and inhomogeneous transition probabilities

P (T �j > y jT �j�1 = x) =

 
x+ 1

y + 1

!j
(0 � x � y; j = 2; 3; : : :): (28)
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Proof. Suppose (i). Then (27) is elementary, and (28) can be seen as follows. Regard
the (T �j ) as arrival times in a mixed Poisson process obtained by assigning a standard
exponential distribution to the arrival rate of a homogeneous Poisson process. Let

N�(t) :=
1X
j=1

1(T �j � t) (t � 0)

be the associated counting process. It is known [10, p. 532] that this process is an
inhomogeneous Markov counting process with transition intensity (n + 1)=(t + 1) for a
jump up by 1 at time t+ given N�(t) = n. Let

Nbirth(v) := 1 +N�(ev � 1); v � 0:

Then it is easily veri�ed that Nbirth is a Yule process with birth rate 1, that is a ho-
mogeneous Markov counting process with intensity n for a jump up at time v+ given
Nbirth(v) = n, started at Nbirth(0) = 1. Hence

T �0 := 0 and T �j = exp

0@ jX
k=1

~"k
k

1A� 1 (j = 1; 2; : : :);

where the ~"k := k log((T �k + 1)=(T �k�1 + 1)) are independent standard exponentials, and
(28) follows. Thus (i) implies (ii). Still assuming (i), it follows from the strong law
of large numbers that limj T

�
j =j = "�10 a.s., which allows "0 and hence the "i to be

recovered a.s. as product measurable functions of the sequence (T �j ). Since condition (ii)
determines the distribution of the sequence (T �j ), it follows immediately that (ii) implies
(i). 2

The particular mixed Poisson process involved here has been studied and applied
in a number of contexts [10]. The connection between this mixed Poisson process and
the Yule process (Nbirth(v); v � 0), exploited above, amounts to the result of Kendall
[18, Theorem 1] that the Yule process conditioned on "0 := limv!1 e

�vNbirth(v) is an
inhomogeneous Poisson process. By combining Theorem 3 and Lemma 6, we immediately
obtain:

Corollary 7 Fix � > 0. In the setting of Theorem 3, the sequencebF br
j := ����F

br
j (j = 1; 2; : : :)

is Markovian with one dimensional distributions

P ( bF br
j � w) =

 
�(w)

1 + �(w)

!j

(w > 0; j = 1; 2; : : :) (29)
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and inhomogeneous transition probabilities

P ( bF br
j � w j bF br

j�1 = z) =

 
�(z) + 1

�(w) + 1

!j

(0 � w � z; j = 2; 3 : : :) (30)

where � is the function de�ned by (20).

Corollary 7 provides a very explicit description of the �nite dimensional distributions
of the sequence ( bF br

j ) in terms of the basic function �. The joint density of any �nite
number of consecutive terms is available, and the dependence structure is simple. This
description determines in principle the �nite-dimensional distributions of the sequence
(F br

j ). Some features of this sequence, such as the distribution of a ratio of terms, can

be read directly from the two-dimensional distributions of the sequence ( bF br
j ). Other

features are harder to obtain explicitly.
Since E(�p� ) = �(p + �)=�(�), we �nd from (29) with � = 1 that for j = 1; 2; : : :

E(F br
j )p =

�(�)

�(p + �)

Z 1

0
pxp�1

 
�1(x)

1 + �1(x)

!j

dx (p > 0): (31)

Moreover the distribution of F br
j is determined by this Mellin transform in p provided

it is �nite for p in some open interval. The joint distribution of the (F br
j ) is not so

easy to describe. In particular, the sequence (F br
j ) does not necessarily have the Markov

property, as shown by the following example. We presume that (F br
j ) is typically not

Markovian, but do not see how to formulate a precise result to this e�ect.

Example 8 Lengths of excursions. Let V br
j be the length of the jth longest excursion

of Bbr. So V br
j = F br

j for F (e) = V (e) the length of excursion e. In this case  = 1,
F (Bex) = 1, and taking � = 1, formula (20) becomes

�(x) :=
Z 1

x

�

�(1 � �)
t���1e�tdt (32)

Since
P

j V
br
j = 1 almost surely, we �nd from (19) that

(V br
j ; j = 1; 2; : : :)

d
= (��1(T �j )=�; j = 1; 2; : : :) (33)

where � :=
P

j �
�1(T �j ). The distribution of the sequence (V br

j ) is the particular case
� = � of the Poisson-Dirichlet (PD) distribution with two parameters (�; �), which was
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studied in [30]. The formula for moments V br
j given by (31) in this case is a simpli�cation

of the instance � = � of Proposition 17 of [30] for PD(�; �). In the notation of [30],
the function �(x) in (32) is �(x) = ��(x)=(x��(1 � �)). The simpli�cation occurs
by an integration by parts, using the Wronskian identity displayed in equation (87)
of [30]. The construction of a sequence with PD(�;�) distribution displayed on the
right side of (33) is new. This representation is reminiscent of the representation of a
PD(�; 0) distributed sequence given in Corollary 9 of [30]. But we do not know of any
corresponding construction of PD(�; �) for general � > ��. Note that the sequence
(V br

j ) is not Markovian, because given V br
1 and V br

2 the next term V br
3 is subject to

the constraint V br
3 � 1 � V br

1 � V br
2 . While various explicit descriptions of the �nite

dimensional distributions of the sequence (V br
j ) can be read from results of [30], it is

not evident from any of these descriptions why multiplying the sequence (V br
j ) by an

independent gamma(�) variable yields a Markovian sequence.

3 Proofs of Theorems 1 and 2

Let B be a one-dimensional Brownian motion. Consider �rst

F (e) :=M(e) := sup
0�t�Ve

jetj; (34)

the maximum absolute value attained by excursion e, and write Mj(t) instead of Fj(t).
Then M1(t) = sup0�u�t jBuj for t > 0. According to a well known result of Knight [20],
which is derived from the perspective of Itô's excursion theory in [33], for `; x > 0 there
is the formula

logE[exp(���`)1(M1(�`) � x)] = �`
p
2� coth(

p
2�x) (35)

where (Lt) is normalized as the occupation density of B at 0 relative to Lebesgue measure,

so Lt
d
= jBtj for each �xed t, and K =

p
2. Combine (26) and (35) to see that for B

a Brownian motion, F = M , � =  = � = 1
2, the function �(x) in Theorem 3 can be

evaluated as
�(x) = coth(x)� 1 = 2=(e2x � 1): (36)

Since  = � = � = 1
2 there is the identity in distribution ����

d
= jN j where N d

= B1

has standard normal distribution. So for N independent of Bbr the identity (29) gives
for x > 0

P (jN jMbr
j � x) =

 
2=(e2x � 1)

1 + 2=(e2x � 1)

!j
=
�

2

e2x + 1

�j
(37)
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and we deduce Theorem 2. If instead we take

F (e) :=M+(e) := sup
0�t�Ve

et (38)

then �(x) in (36) is replaced by 1
2
�(x). This is clear from (20), because the sign of Bex

is positive with probability 1
2 and independent of M(Bex). Thus for x > 0

P (jN jMbr+
j � x) =

 
1=(e2x � 1)

1 + 1=(e2x � 1)

!j

= e�2jx: (39)

It is known [43] that for " a standard exponential variable independent of N

jN j
r
"

2
d
= 1

2
": (40)

Compare (40) and (39) to deduce (2), �rst for j = 1, then for j > 1 by scaling. This
argument appeals to the uniqueness of the jN j-transform, meaning that for positive
random variables X and Y , each independent of jN j,

jN jX d
= jN jY implies X

d
= Y (41)

as justi�ed in the proof of Theorem 3. To derive formula (3), expand the right side of
(37) as

P (jN jMbr
j � x) = 2je�2jx(1 + e�2x)�j = 2j

1X
n=0

 �j
n

!
e�2(n+j)x: (42)

If we regard the jN j-transform as a linear operator on measures on (0;1), say m! ~m,
and trust that this transform has reasonable properties, then formula (3) becomes evident
as follows. Denote by P+

k the distribution of Mbr+
k on (0;1). According to (37), (42)

and (2) the jN j-transform of the distribution Pj of Mbr
j is ~Pj =

P
n cn;j ~P

+
n+j for some

coe�cients cn;j. So it is reasonable to expect Pj =
P

n cn;jP
+
n+j , as asserted in (3). To

make this argument rigorous, it seems necessary to establish a uniqueness result for the
jN j-transform regarded as an operator on an appropriate class of signed measures, and
to justify switching the order of the jN j-transform and an in�nite summation. Rather
than that, we �nish the argument by appealing instead to the underlying probabilistic
relationship between the two sequences (Mbr

j ) and (Mbr+
j ). Due to the independence of

signs and absolute heights of excursions of Bbr,

Mbr+
j =Mbr

Hj
; Mbr�

j =Mbr
Tj

(j = 1; 2; : : :) (43)
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where Hj is the index of the jth head and Tj the index of the jth tail in a sequence of
independent fair coin tosses which is independent of (Mbr

j ). From (43) we obtain

P (Mbr+
j > x) =

1X
h=1

P (Hj = h)P (Mbr
h > x): (44)

Let k := j� 1 and m := h� 1 to deduce from (2) and the negative binomial distribution
of Hj that for k = 0; 1; 2; : : :

e�2(k+1)2x2 =
1X

m=0

2�m�1
 
m

k

!
P (Mbr

m+1 > x)

This relation can be inverted to yield (3) by application of the following lemma to the
sequences

bk := e�2(k+1)2x2; am := 2�m�1P (Mbr
m+1 > x)

for an arbitrary �xed x > 0.

Lemma 9 Let

bk :=
1X

m=0

 
m

k

!
am (k = 0; 1; : : :)

be the binomial moments of a non-negative sequence (am;m = 0; 1; : : :). Let B(�) :=P1
k=0 bk�

k and suppose B(�1) <1 for some �1 > 1. Then

am =
1X
k=0

(�1)k�m
 
k

m

!
bk (m = 0; 1; : : :)

where the series is absolutely convergent.

Proof. Let A(z) :=
P1

m=0 amz
m. Then k!bk is the kth derivative of A(z) evaluated at

z = 1, hence A(1 + �) = B(�) provided j�j < �1. It follows that for jzj < �1 � 1

A(z) = B(z � 1) =
1X
k=0

bk(z � 1)k =
1X

m=0

 
1X
k=0

(�1)k�m
 
k

m

!
bk

!
zm

where the series is absolutely convergent by consideration of A(2 + z) = B(z + 1). 2
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4 Applications to Bessel processes.

We �rst recall from [33] a generalization of Knight's formula (35). For P 0 the expectation
operator governing a recurrent di�usion process X on [0;1) started at 0:

P 0[exp(���1)1(M1(�1) � x)] = exp[�(g�(0) � P 0(e��Tx)g�(x))
�1] (45)

where M1(�1) is the maximum of X up to �1, an inverse local time at 0, the local time
process is normalized as occupation density relative to m, a constant multiple of the
speed measure of X,

g�(x) :=
Z 1

0
dt e��tP (Xt 2 dx)=m(dx)

is the �-potential density of X relative to m, and Tx is the hitting time of x by X. We
now take for X a self-similar di�usion B. As shown by Lamperti [24], self-similarity of
B implies that B is a power of a Bessel process. Thus we reduce to the case when B
is a BES(�), that is a Bessel process of dimension � started at B0 = 0, with 0 < � < 2
due to the recurrence assumption. Let P� denote the probability measure or expectation
operator governing B as a Bessel process of dimension � = 2(1��), and Bbr as a Bessel
bridge of the same dimension. Let the speed measure be m(dx) = x1�2�dx. Now �x �,
and compare (26) and (45) to see that the function ��;�(x) associated with the functional
F =M for the BES(�) di�usion for � = 2 � 2� is determined by

[K��(1 + ��;�(x))]
�1 = g�;�(0)� P�(e

��Tx)g�;�(x) (46)

and the following well known evaluations. In terms of the modi�ed Bessel functions I�(x)
and K�(x): (see e.g. [5, p. 115]):

g�;�(x) = 2�(1 � �)�1(
q
�=2)��x�K�(

p
2�x); (47)

using K�(y) � (1=2)�(�)(y=2)�� as y # 0 this implies

[K��]�1 = g�;�(0) = �(�)�(1 � �)�12����; (48)

P�(e
��Tx) =

(
q
�=2x)��

�(1� �)I��(
p
2�x)

: (49)

Substitute these formulae in (46), use

2K�(y) = �(�)�(1 � �)(I��(y)� I�(y)) (50)

and simplify to obtain
��;�(x) = h�(

p
2�x)� 1 (51)

where h�(x) := I��(x)=I�(x).
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Bessel Bridges For the ranked heights Mbr
j of excursions of a standard Bessel bridge

we deduce from (29) that for 0 < � < 1 corresponding to 0 < � < 2 the P� distribution
of Mbr

j is determined by the formula

P�(
q
2��M

br
j � x) = (1 � h��(x))

j (x > 0; j = 1; 2; : : :) (52)

where it is assumed that under P� the random variable �� has gamma(�) distribution
and is independent of Mbr

j . The previous formula (37) is the special case of this result
with � = 1

2
; � = 1. For j = 1 formula (52) determines the distribution of the maximum

of a standard BES(�) bridge for 0 < � < 2. Kiefer [19] found an explicit formula for
the distribution of the maximum of a standard BES(�) bridge for all positive integer
dimensions �. See [6] for an alternative approach to formula (52), and [34] for further
developments.

5 Evaluations at time �1

Recall that (�`; ` � 0) is the inverse of the local time process at 0 for the self-similar
Markov process B, with the local time process normalized so that (14) holds for some
constants � 2 (0; 1) and K 2 (0;1). Thus the L�evy measure of (�`) is K�(1 � �)�1��,
where for � > 0 we let �� denote the �-�nite measure on (0;1) with

��(x;1) = x�� (x > 0): (53)

Proposition 10 Let F be a -homogeneous functional of excursions of B. For ` > 0
let F` denote the random set of values of F (e) obtained as e ranges over the countable
collection of excursions of B away from 0 which are completed by time �`. Then F` is
the set of points of a PPP with intensity

`CF��= where CF =
K

�(1 � �)
E(F �=

� ) (54)

with F� := F (Bex) for a standard B-excursion Bex. If E(F
�=
� ) = 1 then F` is almost

surely dense in (0;1), whereas if E(F
�=
� ) < 1 then F` = fFj; j = 1; 2; : : :g where

F1 > F2 > : : : > 0 almost surely, with

Fj = (`CF )
=��

�=�
j (j = 1; 2; : : :) (55)

where �j =
Pj

i=1 "i for i.i.d. standard exponential variables "i.
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Remark. The de�nition of �j and "i involves both ` and F , but this dependence is
suppressed in the notation as we regard both ` and F as �xed.
Proof. The Poisson character of F` is an immediate consequence of Itô's description of
the PPP of excursions of B up to time �`. The intensity measure is computed as follows.
First, for F = V , the lifetime of an excursion, with  = 1, the random set F` is the
collection of jumps of the process (�u; 0 � u � `), say fVjg where Vj is the jth longest
duration of an excursion of B up to time �`. It is well known that the Vj are the ranked
points of a PPP with intensity measure `K�(1��)�1��, which for ` = 1 is also the L�evy
measure of the subordinator (�u; u � 0). Next, for a general -homogeneous functional
F let eFj denote the value of F (e) for the excursion e of B whose length is Vj . Let Bex

j

denote the standard excursion obtained by rescaling the excursion of length Vj to have
length 1. Then eFj = V 

j F (B
ex
j ) (56)

where, due to the Poisson character of the Itô excursion process, and the self-similarity
of B, the Bex

j are independent copies of Bex, and the sequence (Bex
j ) is independent of

the sequence (Vj). It follows easily that the intensity measure of F` is as speci�ed in
(54). The remaining assertions are implied by standard properties of Poisson processes.
Example. Let B be BM and let F (e) := M(e) be the absolute maximum of excursion
e. With the usual normalization of local time as occupation density relative to Lebesgue

measure, K =
p
2 and the lengths Vj form a PPP(

q
2=��1=2). It is well known [35, p.

485] that the rate of excursions whose absolute value exceeds x is x�1. So CM = 1, and
the ranked absolute maximaMj of excursions up to time �1 are the points of a PPP(�1).
By application of the previous discussion to this case with � =  = 1=2 we deduce the
formula of [4, p. 72 (2.f)] for the expected value of M�, the absolute maximum of a

standard Brownian excursion: E(M�) =
q
�=2.

6 Dual formulae

The main purpose of this section is to give an alternative expression for the basic function
��(x) in terms of the dual description of the excursion process obtained by conditioning
on F -values rather than on lengths. The formulae of this section generalize results of
Biane-Yor [4, x(3.3)] for F the maximum functional of a Brownian or Bessel excursions.

In the setting of Proposition 10, take ` = 1, and assume that the distribution of
F� := F (Bex) has a density, say

f(x) := P (F� 2 dx)=dx (x > 0):
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From (56), the (Vj; eFj) are the points of a PPP on (0;1)2 with intensity measure
�(t; x) dt dx where for t; x > 0

�(t; x) := K�� t
���1t�f(x=t) with K� :=

K

�(1� �)
: (57)

Integrate out t and make the change of variable x=t = w to con�rm the earlier claim
that the eFj are the points of a PPP whose intensity measure has density at x > 0 equal
to Z 1

0
K��t

����1f(x=t)dt = K�E(F
�=
� ) �


x�

�

�1 (58)

Assuming now that E(F �=
� ) <1, take x = 1 in (58) to see that the formula

g(t) := (E(F �=
� ))�1  t����1f(1=t) (59)

de�nes a probability density on (0;1). Now (57) can be recast as

�(t; x) = K�E(F
�=
� ) �


x�

�

�1x�

1

 g(t=x
1

 ): (60)

It follows that if bVj denotes the length of the excursion of B up to time �1 whose F -value
is Fj, the jth largest value of F (e) as e ranges over all excursions of B completed by
time �1, then bVj = F

1=
j

�Vj (61)

where the �Vj are independent random variables with common density g, independent
also of the Fj.

In terms of Itô's law of excursions n(de) de�ned on the space of excursion paths with
e := (et; 0 � t � V (e)), the density �(t; x) is the joint density of the n-distribution of
(V (e); F (e)). The density x ! t�f(x=t) then serves as the n-conditional density of

F (e) given V (e) = t, and the density t! x�
1

 g(t=x
1

 ) serves as the n-conditional density
of V (e) given F (e) = x. Put another way, f is the probability density of F�, the F -value
of an excursion of B that is either conditioned or scaled to have lifetime 1, while g is the
probability density of the lifetime �V of an excursion of B that is conditioned or scaled
to have its F -value equal to 1.

Note from (59) that

P ( �V 2 dt) = (E(F �=
� ))�1 t��P (F�1=� 2 dt) (62)

That is to say, for every non-negative Borel measurable function h

E[h( �V )] = (E(F �=
� ))�1E[F �=

� h(F�1=� )] (63)
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In particular, for h(x) = x�, there is the identity

E( �V �) = (E(F �=
� ))�1 (64)

Alternatively, we can take x = 1=t in (59) to express f in terms of g as

f(x) = E(F �=
� ) �1x�(�++1)=g(x�1=) (65)

Take h(x) = k(x�)x� in (63) and use (64) to see that for every non-negative Borel
measurable function k there is the identity

E[k(F�)] = (E( �V �))�1E[ �V �k( �V �)] (66)

Returning to consideration of the function ��(x) as in Theorem 3, we now deduce
the following corollary from that theorem:

Corollary 11 Let � denote the Laplace transform of the lifetime of an excursion con-
ditioned to have F -value 1, that is for �V with density g as in (59)

�(�) := E exp(���V ) =
Z 1

0
g(t)e��tdt (67)

and let

�(�) :=
Z 1

1

�


y�

�

�1�(y1=�) dy = � ��

Z 1

�

�(u)

u�+1
du (68)

which is the Laplace transform of the lifetime of the �rst excursion whose F -value exceeds
1. Then

��(x) = ����(1 � �)�1E(F �=
� )x��=�(x1=�): (69)

Proof. Recall from the proof of Theorem 3 that K����(x) is the rate of excursions e
with F (e) > x, counting only excursions that survive killing at rate �. This rate is the
product of two factors, the rate of excursions e such that F (e) > x, and the probability
that e(F>x) survives killing at rate �, where e(F>x) is the �rst excursion e such that

F (e) > x. By formula (54), the �rst factor equals K�(1 � �)�1E(F �=
� )x��=, while the

second factor is found by conditioning on F (e(F>x)) to be

E(exp(��V (e(F>x)))) = �(x1=�) (70)

and (69) results. 2
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Example. Suppose that B is a BM and let F (e) := M(e) be the absolute maximum
of excursion e. Now � =  = 1=2. According to Williams' decomposition of Brownian
excursions at their maximum [44], under Itô's law n given M = x the excursion decom-
poses into two independent BES(3) fragments, each stopped at its �rst hitting time of x.
So g in this example is the convolution g = g1 � g1 where g1 is the density of the hitting
time of 1 by BES(3), and f is the density ofM�, the maximum of the standard Brownian
excursion, so f is determined by di�erentiation of Chung's formula (8). According to
(65) in this case, these two probability densities f and g are related by

f(m) =
p
2�m�4g(m�2): (71)

Equivalently, from (66), if T = T1 + T 01 where T1 and T 01 are the hitting times of 1 by
two independent BES(3) processes starting from 0, then for every non-negative Borel
function k

E[k(M�)] =
q
�=2E[k(T�1=2)T 1=2]: (72)

This is the basic agreement formula of Biane-Yor [4, (2.f)], who also gave the instance of
(66) which determines the distribution of the maximum of the standard excursion of a
recurrent Bessel process B. The explicit forms of the functions � and � in this example
are recorded later in formula (87). See [45, 29, 3] for further developments. For other
homogeneous functionals F of a Brownian excursion besides F = M , for example the
area of an excursion, it is not evident how to provide such an explicit description of
the law of the excursion given F = 1. Still, formula (66) describes explicitly how the
distribution of the lifetime �V of such a conditioned excursion is related to the distribution
of F for a standard excursion of length 1.

7 The joint law of �1 and Fj(�1)

As a consequence of (61), the stable(�) random variable �1 has been represented as

�1 =
1X
j=1

F �
j
�Vj for � := 1= (73)

where the �Vj are independent copies of the lifetime of a B-excursion conditioned to have
F -value equal to 1, and the Fj are the ranked points of a PPP (c��) that is

Fj = c1=���1=�j (j = 1; 2; : : :) (74)
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where �j =
Pj

i=1 "i for i.i.d. standard exponential variables "i. Here � = �=, and

c = CF := K�(1 � �)�1(E �V �
1 )

�1 = K�(1 � �)�1E(F ��
� ):

Let us continue with the following slightly more general assumptions.
Assumptions. Let �1 be de�ned by (73) for �Vj independent copies of an arbitrary positive
random variable �V1 with E( �V �

1 ) < 1, and Fj constructed independently of the �Vj as in
(74), for arbitrary

� > 0; c > 0 and � = �� for 0 < � < 1.

Then the (�j ; �Vj) are the points of a PPP on (0;1)2 with intensity dxP ( �V1 2 dy),
hence the random measure

P
j 1(F

�
j
�Vj 2 � ) on (0;1) is Poisson with intensity measure

cE( �V �
1 )��( � ), and the distribution of �1 is stable with index �, with Laplace transform

E exp(���1) = exp(�c�(1 � �)E( �V �
1 )�

�) (75)

This is a particular case of a well known construction of stable variables [38]. The
following proposition records some features of the joint distribution of F1; : : : ; Fn involved
in the representation (73) of a stable(�) variable �1.

Proposition 12 With the above assumptions, let

�(�) := E exp(���Vj) (� � 0) (76)

and let functions � and  be de�ned as follows:

�(�) := ��
Z 1

�

��(u)

u�+1
du;  (�) := �(�) + �(1 � �)E( �V �

1 )�
�: (77)

Then for each n = 1; 2; : : : the following formulae hold:

E [exp(���1=F �
n ) jFn] = (�(�))n�1�(�) exp

h
�cF��n ( (�)� 1)

i
; (78)

E exp(���1=F �
n ) = (�(�))n�1�(�)( (�))�n; (79)

E [exp(���1) jF1; : : : ; Fn] =

0@ nY
j=1

�(F �
j �)

1A exp
�
�cF��n ( (F �

n�)� 1)
�
: (80)
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Proof. Let �j := F �
j , so the �j are the points of a PPP with intensity c��, and let

�j = c���
j = cF��j be the gamma variables de�ned implicitly by (74). Fix n and rewrite

the de�nition of �1 as

�1
�n

=
n�1X
j=1

�j

�n

�Vj + �Vn +
1X

j=n+1

�j

�n

�Vj (81)

and then apply [30, Lemma 24]. According to that lemma, conditionally given �n the
�j=�n for 1 � j � n � 1 are distributed like the order statistics of n � 1 independent
random variables W1; : : : ;Wn�1 whose common distribution is the restriction of ��(�)
to (1;1), while the �j=�n for n < j < 1 are distributed like the ranked points of a
PPP whose intensity is the restriction to (0; 1) of �n��(�), where �n = c���

n . Moreover,
the random vectors (�j=�n; 1 � j � n � 1) and (�j=�n; n < j <1) are independent.
From this description we obtain

E exp

0@�� n�1X
j=1

�j

�n

�Vj

1A =
�Z 1

1

�

x�+1
�(�x) dx

�n�1
= (�(�))n�1 (82)

and, as will be veri�ed below,

E exp

0@��X
j>n

�j

�n

�Vj

������ c���
n = x

1A = exp [�x( (�)� 1)] : (83)

Formula (78) follows from (82), (83) and the decomposition (81) of �1=�n into indepen-
dent components. Formula (79) now follows from (78) by integration with respect to the
distribution of �n = c���

n , and (80) can now be read directly from (81). To complete
the argument, it only remains to check (83). The previous discussion yields (83) with
�(�) instead of  (�)� 1, for the Laplace exponent �(�) de�ned as follows:

E exp(���(0;1]) =: exp(��(�)) (84)

where for a subinterval B of [0;1) we set

�B :=
1X
j=1

��j1( ��j 2 B) �Vj (85)

for ��j the points of a PPP with intensity �� independent of the �Vj. But �(0;1] and
�(1;1) are independent with sum �[0;1) which has a stable distribution with index �. By
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conditioning on the Poisson(1) distributed number of j such that ��j � 1 and applying
(82) we can compute

E exp(���[1;1)) =
1X

m=0

e�1

m!
�(�)m = exp(�(�)� 1)

and hence, reading the Laplace transform of �[0;1) from (75) with c = 1,

E exp(���(0;1]) =
E exp(���[0;1))

E exp(���[1;1))
=

exp(��(1 � �)E( �V �
1 )�

�)

exp(�(�)� 1)
= exp(1 �  (�))

as claimed. 2
Remarks.

(a) The proof shows that both �(�) and 1= (�) are the Laplace transforms of prob-
ability distributions on (0;1). In particular, we deduce from (82) that

�(�) = E exp(��U�1=� �V1) (86)

where U := (�1=�2)�� = �1=�2 has uniform distribution on (0; 1), and is independent
of �V1. So formula (79) shows that �1=�n is distributed as the sum of 2n independent
random variables, with n� 1 variables distributed like U�1=� �V1, one distributed like �V1,
and n distributed like �1 with E exp(���1) = 1= (�). Equation (83) shows that such
a �1 may be constructed as �1 :=

P
j>1

�j

�1

�Vj.

(b) When the distribution of �Vj is degenerate at 1, the functions �; � and  reduce
to

�(�) = e��; �(�) =
Z 1

1
e��x�x���1dx;  (�) = �(1 � �)�� + �(�):

The results of the proposition in this case all appear in [30, x2 and x4 ], with the notations
��(�) and  �(�) instead of �(�) and  (�). If �1 is the value at time 1 of a subordinator
(�`; ` � 0), a random variable X whose Laplace transform is 1= (�) can be constructed
as W := �S� where S is the least ` such that �` � �`� > 1. See [30] for various further
developments in this case, and an explanation of why the same distributions appear in
the work of Darling [11], Lamperti [22] and Wendel [42].

(c) With �1 the value at time 1 of the inverse local time at level 0 for a B a BM
started at 0, let �n :=M2

n be the squared height of the nth highest excursion of jBj up
to time �1, and let �Vn be the sum of two independent hitting times of 1 by a BES(3)
process. The functions �; � and  are then determined by

�(1
2
�2) =

�
�

sinh �

�2

; �(1
2
�2) =

�
�

sinh �

�
e�� ;  (12�

2) =
�

tanh �
: (87)
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Formula (79) in this instance simpli�es to

E

"
exp

 
�1

2�
2 �1
M2

n

!#
=

 
2�

sinh(2�)

!�
2

e2� + 1

�n�1
: (88)

For n = 1 this identity is due to Knight [21]. See also [31] for a number of other extensions
of Knight's identity. As shown by Knight [20], random variables with Laplace transforms
� and 1= can be constructed in this case as follows. Let T1 be the �rst hitting time of
1 by jBj, and let (G1;D1) be the excursion interval of B straddling time T1. Then � and
1= are the Laplace transforms of D1 �G1 and G1 respectively. Similar interpretations
of � and 1= can be given for a more general F , as indicated already in Corollary 11 in
the case of �. See also [33] for a study of similar Laplace transforms related to excursions
of a one-dimensional di�usion.

(e) It is immediately apparent from the de�nition (77) of � and  that these two
functions are solutions of the di�erential equation

�f 0(�)� �f(�) = ���(�) (89)

and that there is the Wronskian formula

�(�) 0(�) � �0(�) (�) = �K���1�(�): (90)

These remarks extend formulae (76) and (87) of [30]. Note in particular from (89) that
� is readily recovered from either � or  .
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