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Abstract. If X is a symmetric L�evy process on the line, then there exists a
non{decreasing, c�adl�ag process H such that X(H(x)) = x for all x � 0 if and
only if X is recurrent and has a non{trivialGaussian component. The minimal
such H is a subordinatorK. The law of K is identi�ed and shown to be the
same as that of a linear time change of the inverse local time at 0 of X. When
X is Brownian motion,K is just the usual ladder times process and this result
extends the classical result of L�evy that the maximum process has the same
law as the local time at 0. Write Gt for last point in the range of K prior to t.
In a parallel with classical uctuation theory, the process Z := (Xt�XGt

)t�0
is Markov with local time at 0 given by (XGt

)t�0. The transition kernel and
excursion measure of Z are identi�ed. A similar programme is outlined for
L�evy processes on the circle. This leads to the construction of a stopping time
such that the stopped local times constitute a stationary process indexed by
the circle.

1. Introduction

Let X = (Xt;P
x) be a Brownian motion on the circle T thought of as the unit

interval [0; 1[ equipped with addition mod 1. Write `xt for the local time of X at
position x 2 Tup to time t � 0. It was shown in [Pit96] that there are stopping
times T such that the T{indexed process (`xT )x2Tis stationary under P0 (that is,

(`xT )x2Tand (`x+yT )x2Thave the same distribution for all y 2 T). The discrete
state{space analogue of this question for Markov chains that are equivariant under
the action of a group acting on the state{space was considered in [EP97].

Motivated by a construction in [EP97], we de�ne as follows a particular stopping
time T for X with the property that (`xT )x2Tis stationary. For n 2 N put

Tn0 := infft � 0 : Xt = 0g

Tnk+1 := inf

�
t � Tnk : Xt =

k + 1

2n

�
; k � 0:

Note that Tn2n is increasing in n, and it is not hard to see that T := supn T
n
2n is �nite

P0{a.s. (for example, if one constructs X by wrapping a linear Brownian motion
around the circle, then T is dominated by the �rst time that the linear Brownian
motion hits the level 1 after hitting the level 0). It is not hard to see that (`xT )x2T
is indeed stationary under P0 (cf. the proof of Theorem 3.1 in [EP97]).

Date: October 25, 1999.
1991 Mathematics Subject Classi�cation. Primary: 60J30, 60J55; Secondary: 60G10, 60J25.
Key words and phrases. L�evy process, local time, subordinator, uctuation theory, reected

process.
Research supported in part by NSF grant DMS-9703845.

1



2 STEVEN N. EVANS

Note further that if we de�ne a process (Kn
x )x�0 by

Kn
x := Tnk ;

k

2n
� x <

k + 1

2n
;

then Kn
x is increasing in n for each x and the c�adl�ag process K := (Kx)x�0 de�ned

by

Kx := inf
y>x

sup
n

Kn
y

has the property that P0{a.s. X(Kx) := x mod 1 for all x � 0. Observe that K
is a subordinator under P0. Of course, K is just an analogue of the usual ladder
times process for linear Brownian motion.

Suppose now that we let X be an arbitrary L�evy process on Tand ask whether
the same construction leads to a �nite stopping time T and a �nite valued process
K, which will necessarily be a subordinator under P0. If T is �nite and X has local
times, then the local time process stopped at T is stationary in the spatial variable.
More generally, if T is �nite then the occupation measure process of X stopped at
T is stationary in the obvious sense for random measures on T. We also note that
we can apply the recipe for de�ning T and K to L�evy processes on R. We will show
below that if K is �nite valued and H is any non{decreasing, c�adl�ag process such
that X(H(x)) = x, then K(x) � H(x), whereas no such H exist if K is not �nite
valued.

In the R{valued case, the construction of T certainly leads to a �nite stopping
time under P0 when PxfX hits yg = 1 for all x < y, and X has no positive jumps.
We leave the relatively straightforward proof to the reader. A muchmore interesting
case is when the L�evy measure of X assigns positive (and possibly in�nite) mass
to the positive half-line, so that X no longer \creeps over levels from below".

In this paper we consider symmetric L�evy processes on Tor R and show that T
is �nite if and only if X has a non{zero Gaussian component and, in the R{valued
case, is also recurrent. Moreover, we identify the distribution of the subordinator
K in this case.

Suppose now that X has a non{zero Gaussian component and is also recurrent
in the R{valued case. Set

Gt := sup ([0; t]\ fKx : x � 0g) ;
with the convention that sup ; = �1, and write

Lt :=

(
XGt

; if Gt 6= �1;

0; otherwise:

Observe that Lt is just the current maximum when X is linear Brownian motion
started at 0. We show that Z := (Xt�Lt)t�0 is a Markov process. In the R{valued
case, (Lt)t�0 is a local time at 0 for this process, whilst in the T{valued case this
process needs to be \unwrapped" onto the line to produce a local time.

We identify the distribution of Z and �nd the excursion law in the Itô decom-
position of Z into a point process of excursions away from 0. Of course, when X
is linear Brownian motion we just recover the usual uctation theory and classical
results for excursions below the maximum, but we get new objects when dealing
with processes that have jumps. At the end of the paper we investigate some of
the properties of the zero set of Z.
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For the remainder of the paper we will restrict attention to the R{valued setting
and leave to the reader the straightforward formulation and proof of the corre-
sponding T{valued results.

2. Inverses for real{valued, c�adl�ag functions

De�nition 2.1. Given a c�adl�ag function f : R+ ! R, write I(f) for the class of
non{decreasing, c�adl�ag functions g : R+! R+ such that f(g(x)) = x for all x � 0.
Note that if I(f) is non{empty, then �f de�ned by �f (x) := inffg(x) : g 2 I(f)g is
also in I(f) and �f (x) � g(x) for any g 2 I(f).
Remark 2.2. Note that if f : R+ ! R is continuous, f(0) � 0, and the range of f
contains R+, then I(f) 6= ; and �f (x) = infft � 0 : f(t) > xg.
De�nition 2.3. Given a c�adl�ag function f : R+! R and n 2 N write

Tn0 (f) := infft � 0 : f(t) = 0g

Tnk+1(f) := inf

�
t � Tnk (f) : f(t) =

k + 1

2n

�
; k � 0;

with the usual convention that inf ; =1. Set

�fn(x) := Tnk (f);
k

2n
� x <

k + 1

2n
:

Note that the quantity �fn(x) is non{decreasing in both n and x.

Lemma 2.4. The set I(f) is non{empty if and only if supn �fn(x) < 1 for all
x � 0, in which case �f (x) = infy>x supn �fn(y).

Proof. Suppose �rst that I(f) is non-empty. It is clear that each of the times
Tnk (f) is �nite and that Tnk (f) � g(k=2n) for any g 2 I(f). In particular, Tnk (f) �
�f (k=2n). Thus �fn(x) � �f (x) for all n; k. Set f̂ (x) = supn �fn(x) � �f (x).

We claim that f̂ is strictly increasing. If not, then there are three dyadic rationals
a < b < c such that f̂ (a) = f̂(b) = f̂(c) = s, say. By construction, f( �fn(a)) = a,
f( �fn(b)) = b, and f( �fn(c)) = c for all n su�ciently large. Also, we either have
�fn(a) < s for all n or �fn(a) = s for all n su�ciently large, with similar behaviour
for �fn(b) and �fn(c). The only way this could possibly happen would be if �fn(a) < s
and �fn(b) < s for all n, but this would contradict the existence of a left{limit at s
for f .

Now, if f̂(x) is not one of the countable number of points of discontinuity of f ,

then f(f̂ (x)) = limn f( �f
n(x)) = x. Because f̂ is strictly increasing, the set of x such

that f̂ (x) is a discontinuity point of f is also countable. Therefore, for a dense set

of x we have f(f̂ (x)) = x and hence, by the right{continuity of f , f( �f (x)) = x for

all x, where we set �f (x) := infy>x f̂(y). Note that �f is c�adl�ag and non{decreasing,

and �f(x) � infy>x �f (y) = �f (x), so that �f = �f , as required.
The proof of the converse is similar and is left to the reader.

Remark 2.5. It follows from the proof of Lemma 2.4 that �f is strictly increasing.
Of course, this is also immediate from the properties that �f is non{decreasing and
f( �f (x)) = x.
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De�nition 2.6. Suppose that I(f) is non{empty. Put

f (t) := sup
�
[0; t]\ f �f (x) : x � 0g� ; t � 0;

with the convention that sup ; = �1, and

~f (t) :=

(
f(f (t)); if f (t) 6= �1;

0; otherwise:

Lemma 2.7. Suppose that I(f) is non{empty.

(i) The function ~f is continuous and non{decreasing.

(ii) The function �f is the right{continuous functional inverse of ~f , that is

�f (x) := infft � 0 : ~f(t) > xg:
(iii) If for �xed s � 0 we de�ne a c�adl�ag function g : R+! R by

g(t) := f(s + t)� ~f (s);

then I(g) 6= ; and

~f (s + t) = ~f(s) + ~g(t); t � 0:

(iv) Let g be as in part (iii) and suppose that s = �f (x) for some x � 0, then

�f (x+ y) � �f(x) = �g(y); y � 0:

Proof. (i) It is clear that ~f is non{decreasing and right{continuous.

Consider the left{continuity of ~f at t > 0. There are four cases to consider:

(a) t is not in the closure of f �f(x) : x � 0g,
(b) t = �f (0),
(c) t = �f (x) for some x > 0,
(d) t = supw<x �f (w) for some x > 0 and �f (x) > t.

In case (a), ~f (s) = ~f (t) for all s < t su�ciently close to t. Case (b) is obvious. In

case (c), lims"t ~f (s) = limw"x f( �f (w)) = limw"xw = x = f( �f (x)) = ~f (t). In case

(d), lims"t ~f (s) = x by the argument for case (c), and we also have lims"t ~f (s) �
~f (t) � ~f ( �f (x)) = f( �f (x)) = x.
(ii) Suppose that �f (x) = t for some t � 0. We have limy#x �f (y) = t, which implies

that ~f (u) > ~f (t) for all u > t.

(iii) Observe that g( �f (x + ~f(s)) � s) = x, x � 0, so I(g) 6= ; and �g(x) � �f (x +
~f (s)) � s, x � 0. Equivalently,

s + �g(x � ~f (s)) � �f (x); x � ~f (s):(2.1)

If we set

f�(x) :=

(
�f(x); if x < ~f(s);

s+ �g(x� ~f (s)); if x � ~f(s);

then f(f�(x)) = x, and, by (2.1), f�(x) � �f (x), x � 0. Therefore f� = �f . The
result follows readily from this equality.
(iv) This is immediate from the proof of part (iii).
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3. Existence of inverses for L�evy processes

Let X = (
;F ;Ft; Xt; �t;P
x) be a symmetric L�evy process on R. That is, X is

a conservative R{valued Hunt process such that PxfXt 2 Ag = P0fx + Xt 2 Ag
and P0fXt 2 Ag = P0f�Xt 2 Ag for all x 2 R, t � 0, and Borel sets A. For the
convenience of the reader, we have tried to use [Ber96] as a uni�ed reference on
L�evy processes, and we refer the reader there for original bibliographic citations.

Recall that

P0 [exp(i�Xt)] = exp (�t	(�)) ; � 2 R;
where

	(�) =
�2

2
�2 +

Z
Rnf0g

(1� cos �x) �(dx)

for some � � 0 and symmetric measure � such that
R
(x2 ^ 1) �(dx) < 1. Note

that

lim
j�j!1

	(�)

�2
=

�2

2
:(3.1)

(see Proposition I.2 of [Ber96]). When � > 0 we say that X has a non{trivial
Gaussian component.

Notation 3.1. For q > 0 set

�(q) :=

�
�2

2�

Z
1

q + 	(�)
d�

��1
;

with the convention that 0�1 = +1 and +1�1 = 0.

Notation 3.2. Write Sx := infft > 0 : Xt = xg for x 2 R.
Theorem 3.3. If X is recurrent and has non{trivial Gaussian component, then
I(X) 6= ;, Py{a.s. for all y. Otherwise, I(X) = ;, Py{a.s. for all y. In the former
case, K := �X is a subordinator under P0 with

P0[exp(�qKx)] = exp (�x�(q)) :
Proof. Put Tnk := Tnk (X) and Kn

x := �Xn(x), in agreement with the notation in the
Introduction.

Suppose until further notice that X has a non{trivial Gaussian component and
consider �rst what happens under P0.

By Lemma 2.4 we need to show that supnK
n
x is �nite P0{a.s. for each x � 0 if

and only if X is recurrent.
By (3.1) Z

1

q + 	(�)
d� <1; q > 0:(3.2)

By Corollary II.20 and Theorem II.19 of [Ber96], X has continuous resolvent den-
sities (uq)q>0,

P0[exp(�qSx)] = uq(x)=uq(0);(3.3)

and

uq(x) =
1

2�

Z
cos �x

q +	(�)
d�:(3.4)
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We claim that

lim
x#0

uq(0)� uq(x)

x
=

1

�2
:(3.5)

To see this, note that

uq(0)� uq(x)

x
=

1

2�

Z
1� cos �

x2(q +	(�=x))
d�:

By (3.1) the integrand on the right{hand side is bounded above by c(1� cos �)��2

for a suitable constant c and converges to 2(1 � cos �)��2��2 as x # 0. The claim
(3.5) now follows from dominated convergence and the observationZ

1� cos �

�2
d� = �:

It follows from (3.3), (3.4) and (3.5) that

P0[exp(�q sup
n

Kn
x )] = lim

n
P0[exp(�qKn

x )]

= lim
n
P0[exp(�qS2�n )]b2

nxc

= lim
n

�
uq(2�n)
uq(0)

�b2nxc
= exp (�x�(q)) :

(3.6)

Therefore, supnK
n
x will be �nite P0{a.s. if and only if the rightmost term in (3.6)

converges to 1 as q # 0. This, however, will occur if and only if the integral in (3.2)
goes to 1, and this, in turn, is equivalent to X being recurrent when (3.2) holds
(see Theorem I.17 of [Ber96]).

If I(X) is non{empty P0{a.s. and so K = �X is �nite valued P0{a.s., then it is
clear from Lemma 2.4 that each Kx is a stopping time for X. Moreover, it follows
straightforwardly from Lemma 2.7(iv) and the L�evy property of X that K is a
subordinator under P0 with the stated Laplace exponent.

Now consider what happens under Py for general y (but still with the assumption
that X has a non{trivial Gaussian component). In order that I(X) is non{empty
Py{a.s. for some y 2 R it is necessary and su�cient that I(X) is non{emptyP0{a.s.
and PyfS0 < 1g = 1. From what we have seen above, both of these conditions
hold for all y 2 Rwhen X is recurrent. On the other hand, if X is transient, then
we have seen that I(X) is empty P0{a.s., and this certainly implies that I(X) is
empty Py{a.s. for all y 2 R.

Suppose now that X does not have a non{trivial Gaussian component. In order
that P0fI(X) 6= ;g > 0, it must certainly be the case that P0fSx < 1g > 0 for
all x > 0, and so we can restrict attention to X with this latter property. By
Exercise II.6.5 of [Ber96], infft > 0 : Xt = 0g = 0, P0{a.s. Thus, by Theorem
II.19 of [Ber96], X has continuous resolvent densities (uq)q>0, and (3.3) and (3.4)
hold. We can then use (3.1) and the arguments above to show that for all x > 0,
P0[exp(�q supnKn

x )] = 0 for all q > 0, and so supnK
n
x = 1, P0{a.s., as required.

Remark 3.4. IfX has a non{trivial Gaussian component, then X has local times. If
X is also recurrent, then the inverse local time at 0 is a subordinator with Laplace
exponent a multiple of � (see Proposition V.4 of [Ber96]). That is, the inverse
local time is distributed as a linear time change of K. For Brownian motion this is
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equivalent to L�evy's theorem that the maximumand local time at 0 processes have
the same distribution.

Remark 3.5. Set Ux := infft � 0 : Xt > xg, x > 0. As was remarked to us by Jean
Bertoin, the condition that X has a non{trivial Gaussian component is equivalent
(in our symmetric setting) to the condition that P0fXUx = XUx� = xg > 0 for
some (equivalently, all) x > 0. That is, there is \positive probability of creeping,
rather than jumping, over the level x." This latter condition is, in turn, equivalent
to the condition that the ladder height process of X is a subordinator with positive
drift (see Theorem VI.19 of [Ber96] and the discussion that follows it.)

Remark 3.6. It is clear from the proof of Theorem 3.3 that I(X) 6= ;, Py{a.s. for
all y 2 R, whenever X is a recurrent L�evy process (not necessarily symmetric) with
continuous resolvent densities (uq)q>0 such that �(q) := limh#0(uq(0) � uq(h))=h
exists and is �nite, in which case �(q) is the Laplace exponent of the subordinatorK.
As was pointed out to us by the referee, the existence of this limit can be established
for certain non{symmetric processes. For example, if X has only positive jumps
and non{trivial Gaussian component, then one can show using Exercise VII.5.2(b)
of [Ber96] that the limit exists and is given by

�(q) =
2

�2�0(q)
��(q);

where � is the inverse Laplace exponent of X.

4. The \reflected" process

NOTE: From now on we suppose that X is recurrent with non{trivial Gaussian
component.

Notation 4.1. As in the Introduction, put

Gt := X (t);

Lt := ~Xt;

and

Zt := Xt � Lt:

Recall that a point y is said to be regular (resp. instantaneous) for a Markov
process (Mt;Q

x) if infft > 0 : Mt = yg = 0 (resp. infft > 0 : Mt 6= yg = 0),
Qy{a.s.

Theorem 4.2. (i) The process Z is a time{homogeneous, strong Markov process
with respect to the �ltration (Ft)t�0.

(ii) The state 0 is regular and instantaneous for Z, and L is a corresponding local
time.

Proof. Given Lemma 2.7(iii), the proof of (i) is straightforward from the homo-
geneity and independence of the increments of X, and follows the pattern of the
proof in standard uctuation theory that a L�evy process reected at its current
maximum is strong Markov (see Proposition VI.1 of [Ber96]).

Under P0, the closure of the zero set of Z contains the closure of the range
of a strictly increasing subordinator K. Consequently, 0 is regular for Z. Also,
infft > 0 : Xt < 0g = 0, P0{a.s. and so 0 is instantaneous for Z (for example, by
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symmetry and the fact that the distribution of Xt is non{atomic we have P0f90 �
s � t : Xt < 0g � P0fXt < 0g = 1=2, and the result follows from the Blumenthal
zero{one law). Therefore, by Theorem IV.4 of [Ber96] the process Z does have a
local time at 0.

Now, by parts (i) and (ii) of Lemma 2.7, (Lt)t�0 is a continuous, non{decreasing,
(F)t�0{adapted process such that the support of the random measure dL is con-
tained in closure of the range of K which is, in turn, contained in the closure of the
zero set of Z. Moreover, if S is a (F)t�0 stopping time such that ZS = 0, P0{a.s.
on fS <1g, then it follows from Lemma 2.7(iii) and the L�evy property of X that
((ZS+t; LS+t�LS ))t�0 is independent of FS under P0f� jS <1g and has the same
law as (Z;L) under P0. Consequently, by Proposition IV.5 of [Ber96], L is, up to a
choice of normalisation, the local time of Z at 0.

Notation 4.3. Under the assumption thatX has a non{trivial Gaussian component,
the distribution of Xt, t > 0, has a density pt under P0 (so that the density of Xt

under Px is pt(� � x)).

Remark 4.4. Note that pt is di�erentiable and
R jp0t(x)j dx � (��2t=2)�1=2. Con-

sequently, the joint Laplace { Fourier transform
R1
0

R
exp(�qt + izx) p0t(x) dx dt is

well{de�ned and is given by �iz=[q +	(z)].

Theorem 4.5. Suppose that � is a rate q exponential time that is independent of
X.

(i) The random variables L� and Z� are independent under P0.
(ii) The random variable L� has an exponential distribution under P0 with rate

�(q).
(iii) Under Px the random variable Z� has characteristic function

Px [exp(izZ� )] =
q

q + 	(z)

�
exp(izx) � iz

�2

2�

Z
cos �x

q + 	(�)
d�

�

(iv) Under Px the random variable Zt, t > 0, has a density given by

PxfZt 2 dyg
dy

= pt(y � x) + �2
Z t

0

ps(�x) p0t�s(y) ds

Proof. Part (i) is a general result from excursion theory, as is the claim in part (ii)
that L� is exponential (see VI.50.4 and VI.49.5 in [RW87], respectively).

In order to compute the rate of L� note that

P0 [L� ] = P
0

�Z 1

0

q exp(�qt)Lt dt
�

= P0
�Z 1

0

exp(�qt) dLt
�

= P0
�Z 1

0

exp(�qKx) dx

�
= �(q)�1

(4.1)

by Theorem 3.3.
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Turning to part (iii), we �rst consider the case when x = 0. We have from parts
(i) and (ii) and the identity X� = Z� + L� that

P0 [exp(izZ� )] = P
0 [exp(izX� )]=P

0 [exp(izL� )]

=
q(�(q) � iz)

(q +	(z))�(q)
:

(4.2)

Recall from the proof of Theorem 3.3 that X has continuous resolvent densities
(uq)q>0, and we have from (3.3) that

q

q +	(z)
exp(izx) = Px [exp(izX� )]

= Px [exp(izX� ); � < S0] +P
x [exp(izX� ); � � S0]

= Px [exp(izX� ); � < S0] +P
xf� � S0gP0 [exp(izX� )]

= Px [exp(izX� ); � < S0] +
uq(�x)
uq(0)

q

q + 	(z)
:

Because (Zt : 0 � t < S0) has the same law under Px as (Xt : 0 � t < S0), we
have by similar reasoning and using (4.2) that

Px [exp(izZ� )] = P
x [exp(izX� ); � < S0] +

uq(�x)
uq(0)

q(�(q) � iz)

(q +	(z))�(q)
:

Part (iii) follows upon rearranging and using the expression for uq in (3.4).
Part (iv) follows by inverting the joint Laplace { Fourier transform implicit in

part (iii).

Remark 4.6. Suppose that X is standard Brownian motion. In this case Lt =
maxfXs : 0 � s � tg _ 0 under Px, x � 0, and so, by a celebrated theorem of L�evy,
Z should be distributed as Brownian motion on the negative half{line reected
at 0. Recall for any x; y that

R1
0 exp(�qt)pt(�x) dt = exp(�p2qjxj)=p2q andR1

0 exp(�qt)p0t(y) dt = �sgn(y) exp(�p2qjyj). Hence, for x � 0,

Z 1

0

exp(�qt)
�Z t

0

ps(�x)p0t�s(y) ds
�
dt =

(
� exp(�p2qjy � xj)=p2q; y > 0;

+exp(�p2qjy + xj)=p2q; y < 0;

=

(
� R1

0 exp(�qt)pt(y � x) dt; y > 0;

+
R1
0

exp(�qt)pt(�y � x) dt; y < 0:

From Theorem 4.5(iv) we thus have for x � 0 that

PxfZt 2 dyg
dy

=

(
0; y > 0;
1p
2�t

exp
�
� (y�x)2

2t

�
+ 1p

2�t
exp

�
� (�y�x)2

2t

�
; y < 0;

as expected. Of course, for general X with jumps it is possible that Zt > 0, and
so it certainly not the case for such X that Z has the same distribution as �jXj
under Px, x � 0.

By Theorem 4.2 and standard results of excursion theory (see Ch. IV of [Ber96]
or Ch. VI of [RW87]) the paths of Z under P0 can be decomposed using the local
time L into a Poisson point process on R+� E, where E is the space of excursion
paths from 0. That is, E is the space of c�adl�ag path e : R+ ! R such that e(t) =
e(h(e)) = 0 for all t � h(e) > 0, where h(e) := infft > 0 : e(t) = 0 or e(t�) = 0g.



10 STEVEN N. EVANS

This Poisson process has intenstity � 
 nZ , where � is Lebesgue measure on R+

and nZ is the �{�nite Itô excursion measure on E.
If p0t (x; dy) is the transition kernel of the stopped process Z(t ^ h(Z)) (which

coincides with the transition kernel of X stopped at S0), then nZ is given by

nZfe 2 E : et1 2 dx1; : : : ; etk 2 dxk; h(e) > t1g
= nZt1(dx1)p

0
t2�t1(x1; dx2) � � �p0tk�tk�1(xk�1; dxk):

for 0 < t1 < � � � < tk < 1, where (nZt )t>0 is a certain family of measures (the
entrance law of the excursion measure).

Similarly, the paths of X under P0 can be decomposed using a local time at 0
into a Poisson process of excursions from 0. The usual choice of normalisation for
the local time at 0 is such that the inverse local time is a subordinator with Laplace
exponent 1=uq(0) = �2�(q). Denote the corresponding excursion measure by nX .
Then nX is Markovian with transition kernel p0t and entrance law that we denote
(nXt )t>0.

Proposition 4.7. The family (nZt )t>0 (and hence the measure nZ) is characterised
by Z 1

0

Z 1

�1
exp(�qt + izx)nZt (dx) dt =

�(q) � iz

q +	(z)
:

Thus

nZt (dx) =
1

�2
nXt (dx) + p0t(x) dx:

Proof. From VI.50.3 of [RW87], Theorem 4.5 and (4.1) we have thatZ 1

0

Z 1

�1
exp(�qt+ izx)nZt (dx) dt =

R1
0 P0 [exp(�qt + izZt)] dt

P0
�R1
0 exp(�qt) dLt

�
=

1

q +	(z)

�
1� iz�(q)�1

�.
�(q)�1;

and the claim for the joint Laplace { Fourier transform follows.
As similar argument shows thatZ 1

0

Z 1

�1
exp(�qt + izx)nXt (dx) dt =

�2�(q)

q +	(z)
;

and the second claim follows by inverting transforms.

Remark 4.8. Suppose that X is standard Brownian motion. Then

nXt (dx)

dx
=

jxjp
2�t3

exp

�
�x2

2t

�

(see (VI.50.9) of [RW87]), and so

nZt (dx)

dx
=

(
0; x > 0;

2 jxjp
2�t3

exp
�
�x2

2t

�
; x < 0;

which is the entrance law for Brownian motion on the negative half{line reected
at 0 (cf. Remark 4.6).
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5. Properties of the zero set

Proposition 5.1. (i) With P0 probability 1,

lim sup
t#0

L(t)

(2�2t log j log tj)1=2 = 1:

(ii) The Hausdor� and packing dimensions of the set ft � 0 : Zt = 0g are both
P0{a.s. equal to 1=2.

(iii) As t # 0 the law of the random variable t�1Gt converges weakly to an arcsine
distribution.

Proof. The key to all of the claims is the consequence of (3.1) that

lim
q!1 q�1=2�(q) =

p
2=�:

(i) See Exercise V.4.4(b) of [Ber96].
(ii) Note that ft � 0 : Zt = 0g di�ers from its closure by a countable set and the
same is true of the range of K. Moreover, by Theorem IV.4(iii) of [Ber96], the
closure of ft � 0 : Zt = 0g coincides with the closure of the range of K. The claim
follows by known results on the Hausdor� and packing dimensions of the range of
a subordinator | see the discussion around (2.10) and (2.11) in [PT96].
(iii) See Theorem III.6 of [Ber96].

Acknowledgement. We thank Jean Bertoin, Marc Yor and the referee for helpful
comments.
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