Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions

Philippe Biane, Jim Pitman ${ }^{\dagger}$ and Marc Yor ${ }^{\ddagger}$

Technical Report No. 569

Department of Statistics
University of California
367 Evans Hall \# 3860
Berkeley, CA 94720-3860
October 1999. Revised November 22, 1999

Abstract

This paper reviews known results which connect Riemann's integral representations of his zeta function, involving Jacobi's theta function and its derivatives, to some particular probability laws governing sums of independent exponential variables. These laws are related to one-dimensional Brownian motion and to higher dimensional Bessel processes. We present some characterizations of these probability laws, and some approximations of Riemann's zeta function which are related to these laws.

Keywords: Infinitely divisible laws Γ sums of independent exponential variables「Bessel processTfunctional equation

AMS subject classifications. 11 M06, 60J65, 60E07

[^0]
Contents

1 Introduction 3
2 Probabilistic interpretations of some classical analytic formulae 4
2.1 Some classical analysis 4
2.2 Probabilistic interpretation of $2 \xi(s)$ 6
3 Two infinitely divisible families 7
3.1 Laplace transforms and Lévy densities 10
3.2 Probability densities and reciprocal relations 11
3.3 Moments and Mellin transforms 12
3.4 Characterizations of the distributions of Σ_{2} and $\Sigma_{2}^{\#}$ 13
4 Brownian interpretations 14
4.1 Introduction and Notation 14
4.2 Bessel processes 18
4.3 A table of identities in distribution 19
4.4 Squared Bessel processes (Row 2) 22
4.5 First passage times (Row 3) 23
4.6 Maxima and the agreement formula (Rows 4 and 5) 25
4.7 Further entries. 26
5 Renormalization of the series $\sum n^{-s}$. 27
5.1 Statement of the result 27
5.2 On sums of independent exponential random variables 28
5.3 Proof of Theorem 3 29
5.4 The case of the $L_{\chi_{4}}$ function 30
5.5 Comparison with other summation methods 30
6 Final remarks 31
6.1 Hurwitz's zeta function and Dirichlet's L-functions 31
6.2 Other probabilistic aspects of Riemann's zeta function 33

1 Introduction

In his fundamental paper [63] ГRiemann showed that the Riemann zeta function「initially defined by the series

$$
\begin{equation*}
\zeta(s):=\sum_{n=1}^{\infty} n^{-s} \quad(\Re s>1) \tag{1}
\end{equation*}
$$

admits a meromorphic continuation to the entire complex plane Twith only a simple pole at 1 Гand that the function

$$
\begin{equation*}
\xi(s):=\frac{1}{2} s(s-1) \pi^{-s / 2} \Gamma\left(\frac{1}{2} s\right) \zeta(s) \quad(\Re s>1) \tag{2}
\end{equation*}
$$

is the restriction to $\left(\Re_{S}>1\right)$ of a unique entire analytic function $\xi \Gamma$ which satisfies the functional equation

$$
\begin{equation*}
\xi(s)=\xi(1-s) \tag{3}
\end{equation*}
$$

for all complex s. These basic properties of ζ and ξ follow from a representation of 2ξ as the Mellin transform of a function involving derivatives of Jacobi's theta function. This function turns out to be the density of a probability distribution on the real line Γ which has deep and intriguing connections with the theory of Brownian motion. This distribution first appears in the probabilistic literature in the 1950's in the work of Feller [24] ГGnedenko [26] Г and Tákacs [71] Гwho derived it as the asymptotic distribution as $n \rightarrow \infty$ of the range of a simple one-dimensional random walk conditioned to return to its origin after $2 n$ steps Γ and found formula (5) below for $s=1,2, \cdots$. Combined with the approximation of random walks by Brownian motion Гjustified by Donsker's theorem [9Г20Г62] The random walk asymptotics imply that if

$$
\begin{equation*}
Y:=\sqrt{\frac{2}{\pi}}\left(\max _{0 \leq u \leq 1} b_{u}-\min _{0 \leq u \leq 1} b_{u}\right) \tag{4}
\end{equation*}
$$

where ($b_{u}, 0 \leq u \leq 1$) is the standard Brownian bridge derived by conditioning a onedimensional Brownian motion ($B_{u}, 0 \leq u \leq 1$) on $B_{0}=B_{1}=0 \Gamma$ then

$$
\begin{equation*}
E\left(Y^{s}\right)=2 \xi(s) \quad(s \in \mathbb{C}) \tag{5}
\end{equation*}
$$

where E is the expectation operator. Many other constructions of random variables with the same distribution as Y have since been discovered Гinvolving functionals of the path of a Brownian motion or Brownian bridge in \mathbb{R}^{d} for $d=1,2,3$ or 4 .

Our main purpose in this paper is to review this circle of ideas Γ with emphasis on the probabilistic interpretations such as (4)-(5) of various functions which play an important
role in analytic number theory. For the most part this is a survey of known results Γ but the result of Section 5 may be new.

Section 2 reviews the classical analysis underlying (5) Гand offers different analytic characterizations of the probability distribution of Y. Section 3 presents various formulae related to the distributions of the random variables Σ_{h} and $\Sigma_{h}^{\#}$ defined by

$$
\begin{equation*}
\Sigma_{h}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\Gamma_{h, n}}{n^{2}} \quad \text { and } \quad \Sigma_{h}^{\#}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\Gamma_{h, n}}{\left(n-\frac{1}{2}\right)^{2}} \tag{6}
\end{equation*}
$$

for independent random variables $\Gamma_{h, n}$ with the $\operatorname{gamma}(h)$ density

$$
\begin{equation*}
P\left(\Gamma_{h, n} \in d x\right) / d x=\Gamma(h)^{-1} x^{h-1} e^{-x} \quad(t>0) \tag{7}
\end{equation*}
$$

Our motivation to study these laws stems from their close connection to the classical functions of analytic number theory Γ and their repeated appearances in the study of Brownian motion Γ which we recall in Section 4. For exampleГto make the connection with the beginning of this introduction Cone has

$$
\begin{equation*}
\Sigma_{2} \stackrel{d}{=} \frac{2}{\pi} Y^{2} \tag{8}
\end{equation*}
$$

where $\stackrel{d}{=}$ means equality in distribution. As we discuss in Section 4Γ Brownian paths possess a number distributional symmetries Fwhich explain some of the remarkable coincidences in distribution implied by the repeated appearances of the laws of Σ_{h} and $\Sigma_{h}^{\#}$ for various h. Section 5 shows how one of the probabilistic results of Section 3 leads us to an approximation of the zeta function Γ valid in the entire complex plane Γ which is similar to an approximation obtained by Sondow [69]. We conclude in Section 6 with some consideration of the Hurwitz zeta function and Dirichlet L-functions Γ and some references to other work relating the Riemann zeta function to probability theory.

2 Probabilistic interpretations of some classical analytic formulae

2.1 Some classical analysis

Let us start with Jacobi's theta function identity

$$
\begin{equation*}
\frac{1}{\sqrt{\pi t}} \sum_{n=-\infty}^{\infty} e^{-(n+x)^{2} / t}=\sum_{n=-\infty}^{\infty} \cos (2 n \pi x) e^{-n^{2} \pi^{2} t} \quad(x \in \mathbb{R}, t>0) \tag{9}
\end{equation*}
$$

which is a well known instance of the Poisson summation formula [5]. This identity equates two different expressions for $p_{t / 2}(0, x)$ where $p_{t}(0, x)$ is the fundamental solution of the heat equation on a circle identified with $[0,1] \Gamma$ with initial condition $\delta_{0} \Gamma$ the delta function at zero. In probabilistic terms $\Gamma p_{t}(0, x)$ is the probability density at $x \in[0,1]$ of the position of a Brownian motion on the circle started at 0 at time 0 and run for time t. The left hand expression is obtained by wrapping the Gaussian solution on the line while the right hand expression is obtained by Fourier analysis. In particular Γ (9) for $x=0$ can be written

$$
\begin{equation*}
\sqrt{t} \theta(t)=\theta\left(t^{-1}\right) \quad(t>0) \tag{10}
\end{equation*}
$$

where θ is the Jacobi theta function

$$
\begin{equation*}
\theta(t):=\sum_{n=-\infty}^{\infty} \exp \left(-n^{2} \pi t\right) \quad(t>0) \tag{11}
\end{equation*}
$$

For the function ξ defined by (2) RRiemann obtained the integral representation

$$
\begin{equation*}
\frac{4 \xi(s)}{s(s-1)}=\int_{0}^{\infty} t^{\frac{s}{2}-1}(\theta(t)-1) d t \quad(\Re(s)>1) \tag{12}
\end{equation*}
$$

by switching the order of summation and integration and using

$$
\begin{equation*}
\Gamma(s)=\int_{0}^{\infty} x^{s-1} e^{-x} d x \quad(\Re s>0) \tag{13}
\end{equation*}
$$

He then deduced his functional equation $\xi(s)=\xi(1-s)$ from (12) and Jacobi's functional equation (10). Following the notation of Edwards [22Г§10.3] Гlet

$$
\begin{equation*}
G(y):=\theta\left(y^{2}\right)=\sum_{n=-\infty}^{\infty} \exp \left(-\pi n^{2} y^{2}\right) \tag{14}
\end{equation*}
$$

so Jacobi's functional equation (10) acquires the simpler form

$$
\begin{equation*}
y G(y)=G\left(y^{-1}\right) \quad(y>0) \tag{15}
\end{equation*}
$$

The function

$$
\begin{equation*}
H(y):=\frac{d}{d y}\left[y^{2} \frac{d}{d y} G(y)\right]=2 y G^{\prime}(y)+y^{2} G^{\prime \prime}(y) \tag{16}
\end{equation*}
$$

that is

$$
\begin{equation*}
H(y)=4 y^{2} \sum_{n=1}^{\infty}\left(2 \pi^{2} n^{4} y^{2}-3 \pi n^{2}\right) e^{-\pi n^{2} y^{2}} \tag{17}
\end{equation*}
$$

satisfies the same functional equation as G :

$$
\begin{equation*}
y H(y)=H\left(y^{-1}\right) \quad(y>0) \tag{18}
\end{equation*}
$$

As indicated by RiemannTthis allows (12) to be transformed by integration by parts for $\Re s>1$ to yield

$$
\begin{equation*}
2 \xi(s)=\int_{0}^{\infty} y^{s-1} H(y) d y \tag{19}
\end{equation*}
$$

It follows immediately by analytic continuation that (19) serves to define an entire function $\xi(s)$ which satisfies Riemann's functional equation $\xi(s)=\xi(1-s)$ for all complex s. Conversely「the functional equation (18) for H is recovered from Riemann's functional equation for ξ by uniqueness of Mellin transforms. The representation of ξ as a Mellin transform was used by Hardy to prove that an infinity of zeros of ζ lie on the critical line. It is also essential in the work of Pólya [61] and Newman [49] on the Riemann hypothesis. But the probabilistic interpretations of (18) which we discuss in this paper do not appear in these works.

2.2 Probabilistic interpretation of $2 \xi(s)$

As observed by Chung [14] and Newman [49] $\Gamma H(y)>0$ for all $y>0$ (obviously for $y \geq 1$ Thence too for $y<1$ by (18)). By (2) $\Gamma(3)$ and $\zeta(s) \sim(s-1)^{-1}$ as $s \rightarrow 1 \Gamma$

$$
2 \xi(0)=2 \xi(1)=1
$$

so formula (19) for $s=0$ and $s=1$ implies

$$
\int_{0}^{\infty} y^{-1} H(y) d y=\int_{0}^{\infty} H(y) d y=1
$$

That is to say the function $y^{-1} H(y)$ is the density function of a probability distribution on $(0, \infty)$ with mean 1 . Note that the functional equation (18) for H can be expressed as follows in terms of a random variable Y with this distribution: for every non-negative measurable function g

$$
\begin{equation*}
E[g(1 / Y)]=E[Y g(Y)] \tag{20}
\end{equation*}
$$

The distribution of $1 / Y$ is therefore identical to the size-biased distribution derived from Y. See Smith-Diaconis [68] for further interpretations of this relation. The next lemmar which follows from the preceding discussion and formulas tabulated in Section 3 [gathers different characterizations of a random variable Y with this density. Here Y is assumed to be defined on some probability space (Ω, \mathcal{F}, P) Гwith expectation operator E.

Proposition 1 ([14Г8]) For a non-negative random variable Y, each of the following conditions (i) - (iv) is equivalent to Y having density $y^{-1} H(y)$ for $y>0$:

$$
\begin{equation*}
E\left(Y^{s}\right)=2 \xi(s) \quad(s \in \mathbb{C}) \tag{i}
\end{equation*}
$$

(ii) for $y>0$

$$
\begin{equation*}
P(Y \leq y)=G(y)+y G^{\prime}(y)=-y^{-2} G^{\prime}\left(y^{-1}\right) \tag{22}
\end{equation*}
$$

that is

$$
\begin{equation*}
P(Y \leq y)=\sum_{n=-\infty}^{\infty}\left(1-2 \pi n^{2} y^{2}\right) e^{-\pi n^{2} y^{2}}=4 \pi y^{-3} \sum_{n=1}^{\infty} n^{2} e^{-\pi n^{2} / y^{2}} \tag{23}
\end{equation*}
$$

(iii) with Σ_{2} defined by (6)

$$
\begin{equation*}
Y \stackrel{d}{=} \sqrt{\frac{\pi}{2} \Sigma_{2}} ; \tag{24}
\end{equation*}
$$

(iv)

$$
\begin{equation*}
E\left[e^{-\lambda Y^{2}}\right]=\left(\frac{\sqrt{\pi \lambda}}{\sinh \sqrt{\pi \lambda}}\right)^{2} \tag{25}
\end{equation*}
$$

3 Two infinitely divisible families

This section presents an array of results regarding the probability laws on $(0, \infty)$ of the random variables Σ_{h} and $\Sigma_{h}^{\#}$ defined by (6) with special emphasis on results for $h=1$ and $h=2$ Twhich are summarized by Table 1 . Each column of the table presents features of the law of one of the four sums $\Sigma=\Sigma_{1}, \Sigma_{2}, \Sigma_{1}^{\#}$ of $\Sigma_{2}^{\#}$. Those in the Σ_{2} column can be read from Proposition 1Γ while the formulae in other columns provide to analogous results for $\Sigma_{1} \Gamma \Sigma_{1}^{\#}$ and $\Sigma_{2}^{\#}$ instead of Σ_{2}. While the Mellin transforms of $\Sigma_{1} \Gamma \Sigma_{2}$ and $\Sigma_{2}^{\#}$ all involve the function ξ associated with the Riemann zeta function Γ the Mellin transform of $\Sigma_{1}^{\#}$ involves instead the Dirichlet L-function associated with the quadratic character modulo 4 Tthat is

$$
\begin{equation*}
L_{\chi_{4}}(s):=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{s}} \quad(\Re s>0) . \tag{26}
\end{equation*}
$$

We now discuss the entries of Table 1 row by row.

Table 1

Σ	$\Sigma_{1}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{n^{2}}$	$\Sigma_{2}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}+\hat{\varepsilon}_{n}}{n^{2}}$
$E\left[e^{-\lambda \Sigma}\right]$	$\frac{\sqrt{2 \lambda}}{\sinh \sqrt{2 \lambda}}$	$\left(\frac{\sqrt{2 \lambda}}{\sinh \sqrt{2 \lambda}}\right)^{2}$
Lévy density	$\rho_{1}(x):=\frac{1}{x} \sum_{n=1}^{\infty} e^{-\pi^{2} n^{2} x / 2}$	$2 \rho_{1}(x)$
$f(x):=\frac{d}{d x} P(\Sigma \leq x)$	$\frac{d}{d x} \sum_{n=-\infty}^{\infty}(-1)^{n} e^{-n^{2} \pi^{2} x / 2}$	$\frac{d}{d x} \sum_{n=-\infty}^{\infty}\left(1-n^{2} \pi^{2} x\right) e^{-n^{2} \pi^{2} x / 2}$
reciprocal relations	$f_{1}(x)=\left(\frac{2}{\pi x^{3}}\right)^{1 / 2} f_{2}^{\#}\left(\frac{4}{\pi^{2} x}\right)$	$f_{2}(x)=\left(\frac{2}{\pi x}\right)^{5 / 2} f_{2}\left(\frac{4}{\pi^{2} x}\right)$
$E\left[g\left(\frac{4}{\pi^{2} \Sigma}\right)\right]$	$\sqrt{\frac{\pi}{2}} E\left[\left(\Sigma_{2}^{\#}\right)^{-1 / 2} g\left(\Sigma_{2}^{\#}\right)\right]$	$\sqrt{\frac{\pi}{2}} E\left[\left(\Sigma_{2}\right)^{1 / 2} g\left(\Sigma_{2}\right)\right]$
$E\left[\Sigma^{s}\right]$	$\left(\frac{2^{1-2 s}-1}{1-2 s}\right)\left(\frac{2}{\pi}\right)^{s} 2 \xi(2 s)$	$\left(\frac{2}{\pi}\right)^{s} 2 \xi(2 s)$
$E\left[\Sigma^{n}\right]$	$\frac{n!}{(2 n)!}\left(2^{3 n}-2^{n+1}\right)(-1)^{n+1} B_{2 n}$	$\frac{n!}{(2 n)!}(2 n-1) 2^{3 n}(-1)^{n+1} B_{2 n}$

Table 1 continued	
$\Sigma_{1}^{\#}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{\left(n-\frac{1}{2}\right)^{2}}$	$\Sigma_{2}^{\#}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}+\hat{\varepsilon}_{n}}{\left(n-\frac{1}{2}\right)^{2}}$
$\frac{1}{\cosh \sqrt{2 \lambda}}$	$\left(\frac{1}{\cosh \sqrt{2 \lambda}}\right)^{2}$
$\rho_{1}^{\#}(x):=\frac{1}{x} \sum_{n=1}^{\infty} e^{-\pi^{2}(n-1 / 2)^{2} x / 2}$	$2 \rho_{1}^{\#}(x)$
$\pi \sum_{n=0}^{\infty}(-1)^{n}\left(n+\frac{1}{2}\right) e^{-\left(n+\frac{1}{2}\right)^{2} \pi^{2} x / 2}$	$\frac{1}{2} \sum_{n=-\infty}^{\infty}\left(\left(n+\frac{1}{2}\right)^{2} \pi^{2} x-1\right) e^{-\left(n+\frac{1}{2}\right)^{2} \pi^{2} x / 2}$
$f_{1}^{\#}(x)=\left(\frac{2}{\pi x}\right)^{3 / 2} f_{1}^{\#}\left(\frac{4}{\pi^{2} x}\right)$	$f_{2}^{\#}(x)=\frac{2}{\pi}\left(\frac{2}{\pi x}\right)^{3 / 2} f_{1}\left(\frac{4}{\pi^{2} x}\right)$
$\sqrt{\frac{2}{\pi}} E\left[\left(\Sigma_{1}^{\#}\right)^{-1 / 2} g\left(\Sigma_{1}^{\#}\right)\right]$	$\left(\frac{2}{\pi}\right)^{3 / 2} E\left[\left(\Sigma_{1}\right)^{-1 / 2} g\left(\Sigma_{1}\right)\right]$
$\Gamma(s+1) 2^{s+1}\left(\frac{2}{\pi}\right)^{2 s+1} L_{\chi_{4}}(2 s+1)$	$\frac{\left(2^{2(s+1)}-1\right)}{s+1}\left(\frac{2}{\pi}\right)^{s+1} \xi(2(s+1))$
$\frac{n!}{(2 n)!} 2^{n}(-1)^{n} E_{2 n}$	$\frac{\left(2^{2 n+2}-1\right) 2^{3 n+1} n!}{(n+1)(2 n)!}(-1)^{n} B_{2 n+2}$

3.1 Laplace transforms and Lévy densities

Recall from (6) that $\Sigma_{h}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\Gamma_{h, n}}{n^{2}}$ where the distribution of the independent gamma (h) variables $\Gamma_{h, n}$ is characterized by the Laplace transform

$$
\begin{equation*}
E\left[\exp \left(-\lambda \Gamma_{h, n}\right)\right]=(1+\lambda)^{-h} . \tag{27}
\end{equation*}
$$

Euler's formulae

$$
\begin{equation*}
\sinh z=z \prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{n^{2} \pi^{2}}\right) \quad \text { and } \quad \cosh z=\prod_{n=1}^{\infty}\left(1+\frac{z^{2}}{\left(n-\frac{1}{2}\right)^{2} \pi^{2}}\right) \tag{28}
\end{equation*}
$$

allow the following evaluation [76Г15]: for $\Re(\lambda)>0$

$$
\begin{equation*}
E\left[e^{-\lambda \Sigma_{h}}\right]=E\left[\prod_{n=1}^{\infty} \exp \left(-\frac{2 \lambda \Gamma_{h, n}}{n^{2} \pi^{2}}\right)\right]=\prod_{n=1}^{\infty}\left(1+\frac{2 \lambda}{n^{2} \pi^{2}}\right)^{-h}=\left(\frac{\sqrt{2 \lambda}}{\sinh \sqrt{2 \lambda}}\right)^{h} \tag{29}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
E\left[\exp \left(-\lambda \Sigma_{h}^{\#}\right)\right]=\left(\frac{1}{\cosh \sqrt{2 \lambda}}\right)^{h} \tag{30}
\end{equation*}
$$

Lévy densities $\rho(x)$. A probability distribution F on the line is called infinitely divisible if for each n there exist independent random variables $T_{n, 1}, \ldots, T_{n, n}$ with the same distribution such that $\sum_{i=1}^{n} T_{n, i}$ has distribution F. According to the Lévy-Khintchine representation Γ which has a well known interpretation in terms of Poisson processes [79Г §II.64] Гa distribution F concentrated on $[0, \infty)$ is infinitely divisible if and only if its Laplace transform $\varphi(\lambda):=\int_{0}^{\infty} e^{-\lambda t} F(d t)$ admits the representation

$$
\begin{equation*}
\varphi(\lambda)=\exp \left(-c \lambda-\int_{0}^{\infty}\left(1-e^{-\lambda x}\right) \nu(d x)\right) \quad(\lambda \geq 0) \tag{31}
\end{equation*}
$$

for some $c \geq 0$ and some positive measure ν on $(0, \infty) \Gamma$ called the Lévy measure of $F \Gamma$ with c and ν uniquely determined by F.

If $\nu(d x)=\rho(x) d x$ then $\rho(x)$ is called the Lévy density of F. It is elementary that for Γ_{h} with gamma (h) distribution and $a>0$ the distribution of Γ_{h} / a is infinitely divisible with Lévy density $h x^{-1} e^{-a x}$. It follows easily that for $a_{n}>0$ with $\sum_{n} a_{n}<\infty$ and independent gamma (h) variables $\Gamma_{h, n}$ the distribution of $\sum_{n} \Gamma_{h, n} / a_{n}$ is infinitely divisible with Lévy density $h x^{-1} \sum_{n} e^{-a_{n} x}$. Thus for each $h>0$ the laws of Σ_{h} and $\Sigma_{h}^{\#}$ are infinitely divisible Γ with the Lévy densities indicated in the Table for $h=1$ and $h=2$.

We note that Riemann's formula (12) for $s=2 p$ can be interpreted as an expression for the p th moment $\mu_{1}(p)$ of the Lévy density ρ_{1} of Σ_{1} : for $\Re p>\frac{1}{2}$

$$
\begin{equation*}
\mu_{1}(p):=\int_{0}^{\infty} t^{p} \rho_{1}(t) d t=\left(\frac{2}{\pi}\right)^{p} \frac{1}{2} \int_{0}^{\infty} y^{p-1}(\theta(y)-1) d y=\frac{2^{p}}{\pi^{2 p}} \Gamma(p) \zeta(2 p) \tag{32}
\end{equation*}
$$

3.2 Probability densities and reciprocal relations

By application of the negative binomial expansion

$$
\begin{equation*}
\frac{1}{(1-x)^{h}}=\frac{1}{\Gamma(h)} \sum_{n=0}^{\infty} \frac{\Gamma(n+h)}{\Gamma(n+1)} x^{n} \quad(h>0,|x|<1) \tag{33}
\end{equation*}
$$

there is the expansion

$$
\begin{equation*}
\left(\frac{t}{\sinh t}\right)^{h}=\frac{2^{h} t^{h} e^{-t h}}{\left(1-e^{-2 t}\right)^{h}}=\frac{2^{h} t^{h}}{\Gamma(h)} \sum_{n=0}^{\infty} \frac{\Gamma(n+h)}{\Gamma(n+1)} e^{-(2 n+h) t} \tag{34}
\end{equation*}
$$

which corrects two typographical errors in $[8 \Gamma(3 . v)]$ Гand

$$
\begin{equation*}
\left(\frac{1}{\cosh t}\right)^{h}=\frac{2^{h} e^{-t h}}{\left(1+e^{-2 t}\right)^{h}}=\frac{2^{h}}{\Gamma(h)} \sum_{n=0}^{\infty}(-1)^{n} \frac{\Gamma(n+h)}{\Gamma(n+1)} e^{-(2 n+h) t} \tag{35}
\end{equation*}
$$

The Laplace transform (30) can be inverted by applying the expansion (35) and inverting term by term using Lévy's formula [45]

$$
\begin{equation*}
\int_{0}^{\infty} \frac{a}{\sqrt{2 \pi t^{3}}} e^{-a^{2} /(2 t)} e^{-\lambda t} d t=e^{-a \sqrt{2 \lambda}} \tag{36}
\end{equation*}
$$

Thus there is the following expression for the density $f_{h}^{\#}(t):=P\left(\Sigma_{h}^{\#} \in d t\right) / d t$: for arbitrary real $h>0$:

$$
\begin{equation*}
f_{h}^{\#}(t)=\frac{2^{h}}{\Gamma(h)} \sum_{n=0}^{\infty}(-1)^{n} \frac{\Gamma(n+h)}{\Gamma(n+1)} \frac{(2 n+h)}{\sqrt{2 \pi t^{3}}} \exp \left(-\frac{(2 n+h)^{2}}{2 t}\right) \tag{37}
\end{equation*}
$$

A more complicated formula for $f_{h}(t)$ was obtained from (34) by the same method in $[8 \Gamma(3 . x)]$. The formulae for the densities of Σ_{h} and $\Sigma_{h}^{\#}$ displayed in Table 1 for $h=1$ and $h=2$ can be obtained using the reciprocal relations of Row 5 . The self-reciprocal relation involving Σ_{2} is a variant of (18) Γ while that involving $\Sigma_{1}^{\#} \Gamma$ which was observed
by Ciesielski-Taylor [16] Гis an instance of another application of the Poisson summation formula which is recalled as (94) in Section 6.1. Lastly「the reciprocal relation involving the densities f_{1} of Σ_{1} and $f_{2}^{\#}$ of $\Sigma_{2}^{\#}$ amounts to the identity

$$
\begin{equation*}
P\left(\Sigma_{1} \leq x\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{-n^{2} \pi^{2} x / 2}=\sqrt{\frac{2}{\pi x}} \sum_{n=-\infty}^{\infty} e^{-2\left(n+\frac{1}{2}\right)^{2} / x} \tag{38}
\end{equation*}
$$

where the second equality is read from (9) with $x=1 / 2$ and t replaced by $x / 2$.
Formulae for $E\left[g\left(\frac{4}{\pi^{2} \Sigma}\right)\right]$. These formulae Γ valid for an arbitrary non-negative Borel function function g Гare integrated forms of the reciprocal relations「similar to (20).

3.3 Moments and Mellin transforms

It is easily shown that the distributions of Σ_{h} and $\Sigma_{h}^{\#}$ have moments of all orders (see e.g. Lemma 4). The formulae for the Mellin transforms $E\left(\Sigma^{s}\right)$ can all be obtained by term-by-term integration of the densities for suitable s Tfollowed by analytic continuation. According to the self-reciprocal relation for $\Sigma_{1}^{\#}$ Tfor all $s \in \mathbb{C}$

$$
\begin{equation*}
E\left[\left(\frac{\pi}{2} \Sigma_{1}^{\#}\right)^{s}\right]=E\left[\left(\frac{\pi}{2} \Sigma_{1}^{\#}\right)^{-\frac{1}{2}-s}\right] \tag{39}
\end{equation*}
$$

Using the formula for $E\left(\left(\Sigma_{1}^{\#}\right)^{s}\right)$ in terms of $L_{\chi_{4}}$ defined by (26) Гgiven in Table 1 1 we see that if we define

$$
\begin{equation*}
\Lambda_{\chi_{1}}(t):=E\left[\left(\frac{\pi}{2} \Sigma_{1}^{\#}\right)^{\frac{t-1}{2}}\right]=\Gamma\left(\frac{t+1}{2}\right)\left(\frac{4}{\pi}\right)^{\frac{t+1}{2}} L_{\chi_{1}}(t) \tag{40}
\end{equation*}
$$

then (39) amounts to the functional equation

$$
\begin{equation*}
\Lambda_{\chi_{4}}(t)=\Lambda_{\chi_{4}}(1-t) \quad(t \in \mathbb{C}) \tag{41}
\end{equation*}
$$

This is an instance of the general functional equation for a Dirichlet L-function Which is recalled as (95) in Section 6.
Positive integer moments $E\left(\Sigma^{n}\right)$. These formulas are particularizations of the preceding Row H using the classical evaluation of $\zeta(2 n)$ in terms of the Bernoulli numbers $B_{2 n}$. The result for $\Sigma_{1}^{\#}$ involves the Euler numbers $E_{2 n}$ defined by the expansion

$$
\begin{equation*}
\frac{1}{\cosh (z)}=\frac{2}{e^{z}+e^{-z}}=\sum_{n=0}^{\infty} E_{2 n} \frac{z^{2 n}}{(2 n)!} \tag{42}
\end{equation*}
$$

A multiplicative relation. Table 1 reveals the following remarkably simple relation:

$$
\begin{equation*}
E\left(\Sigma_{1}^{s}\right)=\left(\frac{2^{1-2 s}-1}{1-2 s}\right) E\left(\Sigma_{2}^{s}\right) \tag{43}
\end{equation*}
$$

where the first factor on the right side is evaluated by continuity for $s=1 / 2$. By elementary integration Γ this factor can be interpreted as follows:

$$
\begin{equation*}
\left(\frac{2^{1-2 s}-1}{1-2 s}\right)=E\left(W^{-2 s}\right) \tag{44}
\end{equation*}
$$

for a random variable W with uniform distribution on $[1,2]$. Thus (43) amounts to the the following identity in distribution:

$$
\begin{equation*}
\Sigma_{1} \stackrel{d}{=} W^{-2} \Sigma_{2} \tag{45}
\end{equation*}
$$

where W is assumed independent of Σ_{2}. An equivalent of (45) was interpreted in terms of Brownian motion in [56Г(4)].

Note that (45) could be rewritten as $\Sigma_{1} \stackrel{d}{=} W^{-2}\left(\Sigma_{1}+\hat{\Sigma}_{1}\right)$ for $\Sigma_{1} \Gamma \hat{\Sigma}_{1}$ and W independent random variables Γ with $\hat{\Sigma}_{1}$ having the same distribution as $\Sigma_{1} \Gamma$ and W uniform on $[1,2]$. By consideration of positive integer moments t this property uniquely characterizes the distribution of Σ_{1} among all distributions with mean $1 / 3$ and finite moments of all orders.

3.4 Characterizations of the distributions of Σ_{2} and $\Sigma_{2}^{\#}$

As just indicated Γ the identity (45) allows a simple probabilistic characterization of the distribution of Σ_{1}. The following Proposition offers similar characterizations of the distributions of Σ_{2} and $\Sigma_{2}^{\#}$.

Proposition 2 Let X be a non-negative random variable, and let X^{*} denote a random variable such that

$$
P\left(X^{*} \in d x\right)=x P(X \in d x) / E(X)
$$

(i) X is distributed as Σ_{2} if and only if $E(X)=2 / 3$ and

$$
\begin{equation*}
X^{*} \stackrel{d}{=} X+H X^{*} \tag{46}
\end{equation*}
$$

where X, H and X^{*} are independent, with

$$
P(H \in d h)=\left(h^{-1 / 2}-1\right) d h \quad(0<h<1)
$$

(ii) X is distributed as $\Sigma_{2}^{\#}$ if and only if $E(X)=2$ and

$$
\begin{equation*}
X^{*} \stackrel{d}{=} X+U^{2} \hat{X} \tag{47}
\end{equation*}
$$

where X, U and \hat{X} are independent, with \hat{X} distributed as X and U uniform on $[0,1]$.
For the proof of this PropositionTnote that (46) (or (47)) imply that the Laplace transform of X satisfies an integro-differential equation Γ whose only solution is given by the appropriate function. The "only if" part of (i) appears in [82 Гp. 26]. Details of the remaining parts will be provided elsewhere. As remarked by van Harn and Steutel [74] Γ it is an easy consequence of the Lévy-Khintchine formula that for non-negative random variables X and Y the equation $X^{*} \stackrel{d}{=} X+Y$ is satisfied for some Y independent of X if and only if the law of X is infinitely divisible. As discussed in [74Г 3] Γ the distribution of X^{*} Г known as the size-biased or length-biased distribution of X Гhas a natural interpretation in renewal theory.

4 Brownian interpretations

It is a remarkable fact that the four distributions considered in Section 3 appear in many different problems concerning Brownian motion and related stochastic processes. These appearances are partially explained by the relation of these distributions to Jacobi's theta function Γ which provides a solution to the heat equation [$5 \Gamma 23$] Γ and is therefore related to Brownian motion [42 [§5.4]. We start by introducing some basic notation for Brownian motion and Bessel processesएthen present the main results in the form of another table.

4.1 Introduction and Notation

Let $\beta:=\left(\beta_{t}, t \geq 0\right)$ be a standard one-dimensional Brownian motionTthat is a stochastic process with continuous sample paths and independent increments such that $\beta_{0}=0 \Gamma$ and for all $s, t>0$ the random variable $\beta_{s+t}-\beta_{s}$ has a Gaussian distribution with mean $E\left(\beta_{s+t}-\beta_{s}\right)=0$ and mean square $E\left[\left(\beta_{s+t}-\beta_{s}\right)^{2}\right]=t$ Tmeaning that for all real x

$$
P\left(\beta_{s+t}-\beta_{s} \leq x\right)=\frac{1}{\sqrt{2 \pi t}} \int_{-\infty}^{x} e^{-y^{2} /(2 t)} d y
$$

Among continuous time stochastic processes Γ such as semimartingales Γ processes with independent increments「and Markov processes Γ Brownian motion is the paradigm of a
stochastic process with continuous paths. In particular「among processes with stationary independent increments Γ the Brownian motions ($\sigma B_{t}+\mu t, t \geq 0$) for $\sigma>0, \mu \in \mathbb{R}$ are the only ones with almost surely continuous paths [64ГI.28.12]. Brownian motion arises naturally as the limit in distribution as $n \rightarrow \infty$ of a rescaled random walk process $\left(S_{n}, n=0,1, \ldots\right)$ where $S_{n}=X_{1}+\cdots+X_{n}$ for independent random variables X_{i} with some common distribution with mean $E\left(X_{i}\right)=0$ and variance $E\left(X_{i}^{2}\right)=1$. To be more precisellet the value of S_{r} be extended to all real $r \geq 0$ by linear interpolation between integers. With this definition of $\left(S_{r}, r \geq 0\right)$ as a random continuous function Γ it is known that no matter what the distribution of the X_{i} with mean 0 and variance 1 Гas $n \rightarrow \infty$

$$
\begin{equation*}
\left(\frac{S_{n t}}{\sqrt{n}}, t \geq 0\right) \xrightarrow{d}\left(\beta_{t}, t \geq 0\right) \tag{48}
\end{equation*}
$$

in the sense of weak convergence of probability distributions on the path space $C[0, \infty)$. In particular Γ convergence of finite dimensional distributions in (48) follows easily from the central limit theorem Γ which is the statement of convergence of one dimensional distributions in (48) Γ that is for each fixed $t>0$

$$
\begin{equation*}
\frac{S_{n t}}{\sqrt{n}} \xrightarrow{d} \beta_{t} \tag{49}
\end{equation*}
$$

where \xrightarrow{d} denotes weak convergence of probability distributions on the line. Recall that Γ for random variables $W_{n}, n=1,2, \ldots$ and W such that W has a continuous distribution function $x \mapsto P(W \leq x) \Gamma W_{n} \xrightarrow{d} W$ means $P\left(W_{n} \leq x\right) \rightarrow P(W \leq x)$ for all real x. See [9Г62] for background.

Let $\left(b_{t}, 0 \leq t \leq 1\right)$ be a standard Brownian bridge Γ that is the centered Gaussian process with the conditional distribution of $\left(\beta_{t}, 0 \leq t \leq 1\right)$ given $\beta_{1}=0$. Some well known alternative descriptions of the distribution of b are [62ГCh. IIIГEx (3.10)]

$$
\begin{equation*}
\left(b_{t}, 0 \leq t \leq 1\right) \stackrel{d}{=}\left(\beta_{t}-t \beta_{1}, 0 \leq t \leq 1\right) \stackrel{d}{=}\left((1-t) \beta_{t /(1-t)}, 0 \leq t \leq 1\right) \tag{50}
\end{equation*}
$$

where $\stackrel{d}{=}$ denotes equality of distributions on the path space $C[0,1]$ Гand the rightmost process is defined to be 0 for $t=1$. According to a fundamental result in the theory of non-parametric statistics [19Г66] [the Brownian bridge arises in another way from the asymptotic behaviour of the empirical distribution

$$
F_{n}(x):=\frac{1}{n} \sum_{k=1}^{n} 1\left(X_{k} \leq x\right)
$$

where the X_{k} are now supposed independent with common distribution $P\left(X_{i} \leq x\right)=$ $F(x)$ for an arbitrary continuous distribution function F. As shown by Kolmogorov [43] Γ the distribution of $\sup _{x}\left|F_{n}(x)-F(x)\right|$ is the same no matter what the choice of F Гand for all real y

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left(\sqrt{n} \sup _{x}\left|F_{n}(x)-F(x)\right| \leq y\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} e^{-2 n^{2} y^{2}} \tag{51}
\end{equation*}
$$

For F the uniform distribution on $[0,1] \Gamma$ so $F(t)=t$ for $0 \leq t \leq 1 \Gamma$ it is known that

$$
\begin{equation*}
\left(\sqrt{n}\left(F_{n}(t)-t\right), 0 \leq t \leq 1\right) \xrightarrow{d}\left(b_{t}, 0 \leq t \leq 1\right) . \tag{52}
\end{equation*}
$$

As a well known consequence of (52) ГKolmogorov's limiting distribution in (51) is identical to the distribution of $\max _{0 \leq t \leq 1}\left|b_{t}\right|$. On the other hand Γ as observed by Watson [76] Γ Kolmogorov's limit distribution function in (51) is identical to that of $\frac{\pi}{2} \sqrt{\Sigma_{1}}$. Thus we find the first appearance of the law of Σ_{1} as the law of a functional of Brownian bridge.

To put this in terms of random walks Γ if $\left(S_{n}\right)$ is a simple random walk Γ meaning $P\left(X_{i}=+1\right)=P\left(X_{i}=-1\right)=1 / 2 \Gamma$ then

$$
\begin{equation*}
\left(\frac{S_{2 n t}}{\sqrt{2 n}}, 0 \leq t \leq 1 \mid S_{2 n}=0\right) \stackrel{d}{\rightarrow}\left(b_{t}, 0 \leq t \leq 1\right) \tag{53}
\end{equation*}
$$

where on the left side the random walk is conditioned to return to zero at time $2 n$ Гand on the right side the Brownian motion is conditioned to return to zero at time 1. Thus

$$
\begin{equation*}
\left(\left.\frac{1}{\sqrt{2 n}} \max _{0 \leq k \leq 2 n}\left|S_{k}\right| \right\rvert\, S_{2 n}=0\right) \stackrel{d}{\rightarrow} \max _{0 \leq t \leq 1}\left|b_{t}\right| \stackrel{d}{=} \frac{\pi}{2} \sqrt{\Sigma_{1}} \tag{54}
\end{equation*}
$$

where the equality in distribution summarizes the conclusion of the previous paragraph. In the same veinГGnedenko [26] derived another asymptotic distribution from random walks Γ which can be interpreted in terms of Brownian bridge as

$$
\begin{equation*}
\left(\left.\frac{1}{\sqrt{2 n}}\left[\max _{0 \leq k \leq 2 n} S_{k}-\min _{0 \leq k \leq 2 n} S_{k}\right] \right\rvert\, S_{2 n}=0\right) \stackrel{d}{\rightarrow} \max _{0 \leq t \leq 1} b_{t}-\min _{0 \leq t \leq 1} b_{t} \stackrel{d}{=} \frac{\pi}{2} \sqrt{\Sigma_{2}} . \tag{55}
\end{equation*}
$$

The equalities in distribution in both (54) and (55) can be deduced from the formula

$$
\begin{equation*}
P\left(\min _{0 \leq u \leq 1} b_{u} \geq-a, \max _{0 \leq u \leq 1} b_{u} \leq b\right)=\sum_{k=-\infty}^{\infty} e^{-2 k^{2}(a+b)^{2}}-\sum_{k=-\infty}^{\infty} e^{-2[b+k(a+b)]^{2}} \tag{56}
\end{equation*}
$$

of Smirnov [67] and Doob [19]. Kennedy [35] found that these distributions appear again if the random walk is conditioned instead on the event $(R=2 n)$ or ($R>2 n$) Гwhere

$$
R:=\inf \left\{n \geq 1: S_{n}=0\right\}
$$

is the time of the first return to zero by the random walk. Thus

$$
\begin{equation*}
\left(\left.\frac{1}{\sqrt{2 n}} \max _{0 \leq k \leq 2 n}\left|S_{k}\right| \right\rvert\, R=2 n\right) \xrightarrow{d} \max _{0 \leq t \leq 1} e_{t} \stackrel{d}{=} \frac{\pi}{2} \sqrt{\Sigma_{2}} \tag{57}
\end{equation*}
$$

where $\left(e_{t}, 0 \leq t \leq 1\right)$ denotes a standard Brownian excursion Γ that is the process with continuous sample paths defined following [33Г35Г 21] by the limit in distribution on $C[0,1]$

$$
\begin{equation*}
\left(\frac{\left|S_{2 n t}\right|}{\sqrt{2 n}}, 0 \leq t \leq 1 \mid R=2 n\right) \xrightarrow{d}\left(e_{t}, 0 \leq t \leq 1\right) . \tag{58}
\end{equation*}
$$

A satisfying explanation of the identity in distribution between the limit variables featured in (55) and (57) is provided by the following identity of distributions on $C[0,1]$ due to Vervaat [75]:

$$
\begin{equation*}
\left(e_{u}, 0 \leq u \leq 1\right) \stackrel{d}{=}\left(b_{\rho+u(\bmod 1)}-b_{\rho}, 0 \leq u \leq 1\right) \tag{59}
\end{equation*}
$$

where ρ is the almost surely unique time that the Brownian bridge b attains its minimum value. As shown by Tákacs[71] and Smith-Diaconis [68] Гeither of the approximations (55) or (57) can be used to establish the differentiated form (22) of Jacobi's functional equation (15) by a discrete approximation argument involving quantities of probabilistic interest. See also Pólya [60] for a closely related proof of Jacobi's functional equation based on the local normal approximation to the binomial distribution.

In the same vein as (55) and (57) there is the result of [35Г21] that

$$
\begin{equation*}
\left(\left.\frac{1}{\sqrt{2 n}} \max _{0 \leq k \leq 2 n}\left|S_{k}\right| \right\rvert\, R>2 n\right) \stackrel{d}{\rightarrow} \max _{0 \leq t \leq 1} m_{t} \stackrel{d}{=} \pi \sqrt{\Sigma_{1}} \tag{60}
\end{equation*}
$$

where $\left(m_{t}, 0 \leq t \leq 1\right)$ denotes a standard Brownian meander Γ defined by the limit in distribution on $C[0,1]$

$$
\begin{equation*}
\left(\frac{\left|S_{2 n t}\right|}{\sqrt{2 n}}, 0 \leq t \leq 1 \mid R>2 n\right) \xrightarrow{d}\left(m_{t}, 0 \leq t \leq 1\right) . \tag{61}
\end{equation*}
$$

The surprising consequence of (54) and (60) Γ that $\max _{0 \leq t \leq 1} m_{t} \stackrel{d}{=} 2 \max _{0 \leq t \leq 1}\left|b_{t}\right| \Gamma$ was explained in [8] by a transformation of bridge b into a process distributed like the meander m. For a review of various transformations relating Brownian bridgeTexcursion and the meander see [6].

4.2 Bessel processes

The work of Williams [77Г78Г79] shows how the study of excursions of one-dimensional Brownian motion leads inevitably to descriptions of these excursions involving higher dimensional Bessel processes. For $d=1,2, \ldots$ let $R_{d}:=\left(R_{d, t}, t \geq 0\right)$ be the d-dimensional Bessel process $\operatorname{BES}(d) \Gamma$ that is the non-negative process defined by the radial part of a d-dimensional Brownian motion:

$$
R_{d, t}^{2}:=\sum_{i=1}^{d} B_{i, t}^{2}
$$

where $\left(B_{i, t}, t \geq 0\right)$ for $i=1,2, \ldots$ is a sequence of independent one-dimensional Brownian motions. Note that each of the processes $X=B \Gamma$ and $X=R_{d}$ for any $d \geq 1 \Gamma$ has the Brownian scaling property:

$$
\begin{equation*}
\left(X_{u}, u \geq 0\right) \stackrel{d}{=}\left(\sqrt{c} X_{u / c}, u \geq 0\right) \tag{62}
\end{equation*}
$$

for every $c>0 \Gamma$ where $\stackrel{d}{=}$ denotes equality in distribution of processes. For a process $X=\left(X_{t}, t \geq 0\right)$ let \bar{X} and \underline{X} denote the past maximum and past minimum processes derived from X Гthat is

$$
\bar{X}_{t}:=\sup _{0 \leq s \leq t} X_{s} ; \quad X_{t}:=\inf _{0 \leq s \leq t} X_{s} .
$$

Note that if X has the Brownian scaling property (62) then so too do \bar{X}, \underline{X} Гand $\bar{X}-\underline{X}$. For a suitable process X Гlet

$$
\left(L_{t}^{x}(X), t \geq 0, x \in \mathbb{R}\right)
$$

be the process of local times of X defined by the occupation density formula

$$
\begin{equation*}
\int_{0}^{t} f\left(X_{s}\right) d s=\int_{-\infty}^{\infty} f(x) L_{t}^{x}(X) d x \tag{63}
\end{equation*}
$$

for all non-negative Borel functions f Гand almost sure joint continuity in t and x. See [$62 \Gamma \mathrm{Ch} . \mathrm{VI}]$ for background and proof of the existence of such a local time process for $X=B$ and $X=R_{d}$ for any $d \geq 1$.

Let $r_{d}:=\left(r_{d, u}, 0 \leq u \leq 1\right)$ denote the d-dimensional Bessel bridge defined by conditioning $R_{d, u}, 0 \leq u \leq 1$ on $R_{d, 1}=0$. Put another way Γr_{d}^{2} is the sum of squares of d independent copies of the standard Brownian bridge.

4.3 A table of identities in distribution

We now discuss the meaning of Table 2Γ which presents a number of known identities in distribution. The results are collected from the work of numerous authors Гincluding Gikhman [25] Kiefer [39] Γ Chung [14] Γ Biane-Yor [8]. See also [80Г 55Г 58]. In the following sections we review briefly the main arguments underlying the results presented in the table.

Each column of the table displays a list of random variables with the distribution determined by the Laplace transform in Row 0. Each variable in the second column is distributed as the sum of two independent copies of any variable in the first column Γ and each variable in the fourth column is distributed as the sum of two independent copies of any variable in the third column. The table is organized by rows of variables which are analogous in some informal sense. The next few paragraphs introduce row by row the notation used in the table Γ with pointers to explanations and attributions in following subsections. Blank entries in the table mean we do not know any construction of a variable with the appropriate distribution which respects the informal sense of analogy within rows Γ with the following exceptions. Entries for Rows 4 and 6 of the Σ_{2} column could be filled like in Row 3 as the sums of two independent copies of variables in the Σ_{1} column of the same row Γ but this would add nothing to the content of the table. The list of variables involved is by no means exhaustive: for instance Γ according to (55) the variable $\left(4 / \pi^{2}\right)\left(\bar{b}_{1}-\underline{b}_{1}\right)^{2}$ could be added to the second column. Many more constructions are possible involving Brownian bridge and excursion 5 some of which we mention in following sections. It is a consequence of its construction t that each column of the table exhibits a family of random variables with the same distribution. Therefore it is a natural problem Ccoming from the philosophy of "bijective proofs" in enumerative combinatorics (see e.g. Stanley [70]) to try giving a direct argument for each distributional identity not using the explicit computation of the distribution. Many such arguments can be given Γ relying on distributional symmetries of Brownian paths Γ or some deeper results such as the Ray-Knight theorems. HoweverTsome identities remain for which we do not have any such argument at hand. As explained in Section 4.6Γ some of these identities are equivalent to the functional equation for the Jacobi theta (or the Riemann zeta) function.
Rows 0 and 1. Row 0 displays the Laplace transforms in λ of the distributions of the variables in Row 1Γ that is $\Sigma_{1} \Gamma \Sigma_{2} \Gamma \Sigma_{1}^{\#}$ and $\Sigma_{2}^{\#} \Gamma$ as considered in previous sections.
Row 2. Section 4.4 explains why the distributions of the random variables $\int_{0}^{1} r_{d, u}^{2} d u$ and $\int_{0}^{1} R_{d, u}^{2} d u$ for $d=2$ and $d=4$ Гare as indicated in this row.

Row 3. Most of the results of this row are discussed in Section 4.5. Here

$$
T_{a}(X):=\inf \left\{t: X_{t}=a\right\}
$$

is the hitting time of a by a process $X \Gamma$ and \hat{R}_{d} is an independent copy of the Bessel process R_{d}. Note that $R_{1}:=|B|$ is just Brownian motion with reflection at 0Γ and $T_{1}(\bar{B}-\underline{B})$ is the first time that the range of the Brownian B up to time t is an interval of length 1. The result that $4 T_{1}(\bar{B}-\underline{B})$ has Laplace transform $1 / \cosh ^{2} \sqrt{2 \lambda}$ is due to Imhof [30]. See also Vallois [72Г 73] Pitman [51] and Pitman-Yor [56] for various refinements of this formula.
Rows 4 and 5 These rows Γ which involve the distribution of the maximum of various processes over $[0,1]$ Гare discussed in Section 4.6.
Row 6 Here \bar{m}_{1} is the maximum of the standard Brownian meander ($m_{u}, 0 \leq u \leq 1$). This entry is read from (60).
Row 7. The first two entries are obtained from their relation to the first two entries in Row 55that is the equalities in distribution

$$
\int_{0}^{1} \frac{d u}{m_{u}} \stackrel{d}{=} 2 \bar{r}_{1,1} \text { and } \int_{0}^{1} \frac{d u}{r_{3, u}} \stackrel{d}{=} 2 \bar{r}_{3,1}
$$

These identities follow from descriptions of the local time processes $\left(L_{1}^{x}\left(r_{d}\right), x \geq 0\right)$ for $d=1$ and $d=3 \Gamma$ which involve m for $d=1$ and r_{3} for $d=3$ Гas presented in Biane-Yor [8 ГTh. 5.3]. See also [52Г Cor. 16] for another derivation of these results. The last two entries may be obtained through their relation to the last two entries of Row 2. More generally there is the identity

$$
\frac{1}{2} \int_{0}^{1} \frac{d s}{R_{d, s}} \stackrel{d}{=}\left(\int_{0}^{1} R_{2 d-2, s}^{2} d s\right)^{-1 / 2} \quad(d>1)
$$

which can be found in Biane-Yor [8] and Revuz-Yor [62ГCh. XIГCorollary 1.12 and p . 448].
Row 8. Here $\tau_{1}:=\inf \left\{t: L_{t}^{0}(B)=1\right\}$ where $R_{1}=|B|$ and $\left(L_{t}^{x}(B), t \geq 0, x \in \mathbb{R}\right)$ is the local time process of B defined by (63). The distribution of $\tau_{1} / \bar{R}_{1, \tau_{1}}^{2}$ was identified with that of $4 T_{1}\left(R_{3}\right)$ by Knight [42] Г while the distribution of $\tau_{1} /\left(\bar{B}_{\tau_{1}}-\underline{B}_{\tau_{1}}\right)^{2}$ was identified with that of $T_{1}\left(R_{3}\right)+T_{1}\left(\hat{R}_{3}\right)$ by Pitman-Yor [56]. The result in the third column can be read from Hu-Shi-Yor [29Гp. 188].

Table 2				
0)	$\frac{\sqrt{2 \lambda}}{\sinh \sqrt{2 \lambda}}$	$\left(\frac{\sqrt{2 \lambda}}{\sinh \sqrt{2 \lambda}}\right)^{2}$	$\frac{1}{\cosh \sqrt{2 \lambda}}$	$\left(\frac{1}{\cosh \sqrt{2 \lambda}}\right)^{2}$
1)	$\Sigma_{1}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{n^{2}}$	$\Sigma_{2}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}+\hat{\varepsilon}_{n}}{n^{2}}$	$\Sigma_{1}^{\#}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{\left(n-\frac{1}{2}\right)^{2}}$	$\Sigma_{2}^{\#}:=\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\varepsilon_{n}+\hat{\varepsilon}_{n}}{\left(n-\frac{1}{2}\right)^{2}}$
2)	$\int_{0}^{1} r_{2, u}^{2} d u$	$\int_{0}^{1} r_{4, u}^{2} d u$	$\int_{0}^{1} R_{2, u}^{2} d u$	$\int_{0}^{1} R_{4, u}^{2} d u$
3)	$T_{1}\left(R_{3}\right)$	$T_{1}\left(R_{3}\right)+T_{1}\left(\hat{R}_{3}\right)$	$T_{1}\left(R_{1}\right)$	$4 T_{1}(\bar{B}-\underline{B})$
4)	$\left(\bar{R}_{3,1}\right)^{-2}$		$\left(\bar{R}_{1,1}\right)^{-2}$	$4\left(\bar{B}_{1}-\underline{B}_{1}\right)^{-2}$
5)	$\left(\frac{2}{\pi} \bar{r}_{1,1}\right)^{2}$	$\left(\frac{2}{\pi} \bar{r}_{3,1}\right)^{2}$		
6)	$\left(\frac{1}{\pi} \bar{m}_{1}\right)^{2}$			
7)	$\left(\frac{1}{\pi} \int_{0}^{1} \frac{d u}{m_{u}}\right)^{2}$	$\left(\frac{1}{\pi} \int_{0}^{1} \frac{d u}{r_{3, u}}\right)^{2}$	$\left(\frac{1}{2} \int_{0}^{1} \frac{d u}{R_{2, u}}\right)^{-2}$	$\left(\frac{1}{2} \int_{0}^{1} \frac{d u}{R_{3, u}}\right)^{-2}$
8)	$\frac{\tau_{1}}{4\left(\bar{R}_{1, \tau_{1}}\right)^{2}}$	$\frac{\tau_{1}}{\left(\bar{B}_{\tau_{1}}-\underline{B}_{\tau_{1}}\right)^{2}}$	$\frac{4}{\tau_{1}^{2}} \int_{0}^{\tau_{1}} B_{t}^{2} d t$	

4.4 Squared Bessel processes (Row 2)

For $d=1,2, \ldots$ the squared Bessel process R_{d}^{2} is by definition the sum of d independent copies of $R_{1}^{2}=B^{2} \Gamma$ the square of a one-dimensional Brownian motion $B \Gamma$ and a similar remark applies to the squared Bessel bridge r_{d}^{2}. Following Lévy [46Г 47] [let us expand the Brownian motion ($B_{t}, 0 \leq t \leq 1$) or the Brownian bridge ($b_{t}, 0 \leq t \leq 1$) in a Fourier series. For exampleГthe standard Brownian bridge b can be represented as

$$
b_{u}=\sum_{n=1}^{\infty} \frac{\sqrt{2}}{\pi} \frac{Z_{n}}{n} \sin (\pi n u) \quad(0 \leq u \leq 1)
$$

where the Z_{n} for $n=1,2, \ldots$ are independent standard normal random variables Γ so $E\left(Z_{n}\right)=0$ and $E\left(Z_{n}^{2}\right)=1$ for all n. Parseval's theorem then gives

$$
\int_{0}^{1} b_{u}^{2} d u=\sum_{n=0}^{\infty} \frac{Z_{n}^{2}}{\pi^{2} n^{2}}
$$

so the random variable $\int_{0}^{1} b_{u}^{2} d u$ appears as a quadratic form in the normal variables Z_{n}. It is elementary and well known that $Z_{n}^{2} \stackrel{d}{=} 2 \gamma_{1 / 2}$ for $\gamma_{1 / 2}$ with gamma $\left(\frac{1}{2}\right)$ distribution as in (7) and (27) for $h=\frac{1}{2}$. Thus

$$
E\left[\exp \left(-\lambda Z_{n}^{2}\right)\right]=(1+2 \lambda)^{-1 / 2}
$$

and

$$
E\left[\exp \left(-\lambda \int_{0}^{1} b_{u}^{2} d u\right)\right]=\prod_{n=1}^{\infty}\left(1+\frac{2 \lambda}{\pi^{2} n^{2}}\right)^{-1 / 2}=\left(\frac{\sqrt{2 \lambda}}{\sinh \sqrt{2 \lambda}}\right)^{1 / 2}
$$

by another application of Euler's formula (28). Taking two and four independent copies respectively gives the first two entries of Row 2 . The other entries of this row are obtained by similar considerations for unconditioned Bessel processes.

Watson [76] found that

$$
\begin{equation*}
\int_{0}^{1}\left(b_{t}-\int_{0}^{1} b_{u} d u\right)^{2} d t \stackrel{d}{=} \frac{1}{4} \Sigma_{1} \tag{64}
\end{equation*}
$$

Shi-Yor [65] give a proof of (64) with the help of a space-time transformation of the Brownian bridge. See also [81Γ p. 18-19] $[82 \Gamma$ p. 126-127] and papers cited there for more general results in this vein. In particular Γ we mention a variant of (64) for B
instead of b which can be obtained as a consequence of a stochastic Fubini theorem $[81 \Gamma$ p. 21-22]:

$$
\begin{equation*}
\int_{0}^{1}\left(B_{t}-\int_{0}^{1} B_{u} d u\right)^{2} d t \stackrel{d}{=} \int_{0}^{1} b_{u}^{2} d u \stackrel{d}{=} \Sigma_{1 / 2} \tag{65}
\end{equation*}
$$

As remarked by Watson「it is a very surprising consequence of (64) and (54) that

$$
\begin{equation*}
\int_{0}^{1}\left(b_{t}-\int_{0}^{1} b_{u} d u\right)^{2} d t \stackrel{d}{=} \pi^{-2} \max _{0 \leq t \leq 1} b_{t}^{2} \tag{66}
\end{equation*}
$$

As pointed out by Chung [14] Γ the identities in distribution (55) and (57) Where Σ_{2} is the sum of two independent copies of $\Sigma_{1} \Gamma i m p l y$ that the distribution of ($\max _{0 \leq t \leq 1} b_{t}-$ $\left.\min _{0 \leq t \leq 1} b_{t}\right)^{2}$ is that of the sum of two independent copies of $\max _{0 \leq t \leq 1} b_{t}^{2}$. In a similar vein「the first column of Table 2 shows that the distribution of $4 \pi^{-2} \max _{0 \leq t \leq 1} b_{t}^{2}$ is in turn that of the sum of two independent copies of $\int_{0}^{1} b_{t}^{2} d t \stackrel{d}{=} \Sigma_{1 / 2}$. There is still no explanation of these coincidences in terms of any kind of transformation or decomposition of Brownian paths For any combinatorial argument involving lattice paths Γ though such methods have proved effective in explaining and generalizing numerous other coincidences involving the distributions of Σ_{h} and $\Sigma_{h}^{\#}$ for various $h>0$. Vervaat's explanation (59) of the identity in law between the range of the bridge and the maximum of the excursion provides one example of this. SimilarlyГ(59) and (64) imply that

$$
\begin{equation*}
\int_{0}^{1}\left(e_{t}-\int_{0}^{1} e_{u} d u\right)^{2} d t \stackrel{d}{=} \frac{1}{4} \Sigma_{1} \tag{67}
\end{equation*}
$$

4.5 First passage times (Row 3)

It is known $[16 \Gamma 31 \Gamma 36]$ that by solving an appropriate Sturm-Liouville equation Γ for $\lambda>0$

$$
E \exp \left(-\lambda T_{1}\left(R_{d}\right)\right)=\frac{(\sqrt{2 \lambda})^{\nu}}{2^{\nu} \Gamma(\nu+1) I_{\nu}(\sqrt{2 \lambda})}=\prod_{n=1}^{\infty}\left(1+\frac{2 \lambda}{j_{\nu, n}^{2}}\right)^{-1}
$$

where $\nu:=(d-2) / 2$ with I_{ν} the usual modified Bessel function Γ related to J_{ν} by $(i x)^{\nu} / I_{\nu}(i x)=x^{\nu} / J_{\nu}(x)$ Гand $j_{\nu, 1}<j_{\nu, 2}<\cdots$ is the increasing sequence of positive zeros of J_{ν}. That is to say Γ

$$
\begin{equation*}
T_{1}\left(R_{d}\right) \stackrel{d}{=} \sum_{n=1}^{\infty} \frac{2 \varepsilon_{n}}{j_{\nu, n}^{2}} \tag{68}
\end{equation*}
$$

where the ε_{n} are independent standard exponential variables. See also Kent [37Г38] Гand literature cited there Γ for more about this spectral decomposition of $T_{1}(X) \Gamma$ which can
be formulated for a much more general one-dimensional diffusion X instead of $X=R_{d}$. The results of Row 3Гthat

$$
T_{1}\left(R_{1}\right) \stackrel{d}{=} \Sigma_{1}^{\#} \text { and } T_{1}\left(R_{3}\right) \stackrel{d}{=} \Sigma_{1}
$$

are the particular cases $d=1$ and $d=3$ of (68) Гcorresponding to $\nu= \pm 1 / 2 \Gamma$ when I_{ν} and J_{ν} can be expressed in terms of hyperbolic and trigonometric functions. In particular Γ $j_{-1 / 2, n}=\left(n-\frac{1}{2}\right) \pi$ and $j_{1 / 2, n}=n \pi$ are the nth positive zeros of the cosine and sine functions respectively. Comparison of Rows 2 and 3 reveals the identities

$$
T_{1}\left(R_{1}\right) \stackrel{d}{=} \int_{0}^{1} R_{2, u}^{2} d u \quad \text { and } \quad T_{1}\left(R_{3}\right) \stackrel{d}{=} \int_{0}^{1} r_{2, u}^{2} d u
$$

As pointed out by Williams [77Г $78 \Gamma 79] \Gamma$ these remarkable coincidences in distribution are the simplest case $g(u)=1$ of the identities in law

$$
\begin{equation*}
\int_{0}^{T_{1}\left(R_{1}\right)} g\left(1-R_{1, t}\right) d t \stackrel{d}{=} \int_{0}^{1} R_{2, u}^{2} g(u) d u \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T_{1}\left(R_{3}\right)} g\left(R_{3, t}\right) d t \stackrel{d}{=} \int_{0}^{1} r_{2, u}^{2} g(u) d u \tag{70}
\end{equation*}
$$

where the two Laplace transforms involved are again determined by the solutions of a Sturm-Liouville equation [53] $\left[62 \Gamma \mathrm{Ch}\right.$. XI]. Let $\left.L_{t}^{x}\left(R_{d}\right), t \geq 0, x \in \mathbb{R}\right)$ and $L_{t}^{x}\left(r_{d}\right), 0 \leq$ $t \leq 1, x \in \mathbb{R}$) be the local time processes of R_{d} and r_{d} defined by the occupation density formula (63) with B replaced by R_{d} or r_{d}. Granted existence of local time processes for R_{d} and r_{d} The identities (69) and (70) are an expression of the Ray-Knight theorems [62ГCh. XIГ§2] that

$$
\begin{equation*}
\left(L_{T_{1}\left(R_{1}\right)}^{1-u}\left(R_{1}\right), 0 \leq u \leq 1\right) \stackrel{d}{=}\left(R_{2, u}^{2}, 0 \leq u \leq 1\right) \tag{71}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(L_{T_{1}\left(R_{3}\right)}^{u}\left(R_{3}\right), 0 \leq u \leq 1\right) \stackrel{d}{=}\left(r_{2, u}^{2}, 0 \leq u \leq 1\right) . \tag{72}
\end{equation*}
$$

The next section gives an interpretation of the variable $T_{1}\left(R_{3}\right)+T_{1}\left(\hat{R}_{3}\right)$ appearing in column 2 in terms of Brownian excursions.

4.6 Maxima and the agreement formula (Rows 4 and 5)

The entries in Row 4 are equivalent to corresponding entries in Row 3 by application to $X=R_{d}$ and $X=\bar{B}-\underline{B}$ of the elementary identity

$$
\begin{equation*}
\left(\bar{X}_{1}\right)^{-2} \stackrel{d}{=} T_{1}(X) \tag{73}
\end{equation*}
$$

which is valid for any process X with continuous paths which satisfies the Brownian scaling identity (62) Tbecause

$$
P\left(\left(\bar{X}_{1}\right)^{-2}>t\right)=P\left(\bar{X}_{1}<t^{-\frac{1}{2}}\right)=P\left(\bar{X}_{t}<1\right)=P\left(T_{1}(X)>t\right) .
$$

The first entry of Row 5Γ with $\bar{r}_{1,1}:=\max _{0 \leq u \leq 1}\left|b_{u}\right| \Gamma$ is read from (54). The second entry of Row 5 [involving the maximum $\bar{r}_{3,1}$ of a three-dimensional Bessel bridge ($r_{3, u}, 0 \leq$ $u \leq 1) \Gamma$ is read from the work of Gikhman [25] and Kiefer [39] Γ who found a formula for $P\left(\bar{r}_{d, 1} \leq x\right)$ for arbitrary $d=1,2, \ldots$. See also [58]. This result involving $\bar{r}_{3,1}$ may be regarded as a consequence of the previous identification (57) of the law of $\bar{e}_{1} \Gamma$ the maximum of a standard Brownian excursion Гand the identity in law $\bar{e}_{1} \stackrel{d}{=} \bar{r}_{3,1}$ implied by the remarkable result of Lévy-Williams [47Г77] Гthat

$$
\begin{equation*}
\left(e_{t}, 0 \leq t \leq 1\right) \stackrel{d}{=}\left(r_{3, t}, 0 \leq t \leq 1\right) . \tag{74}
\end{equation*}
$$

Another consequence of the scaling properties of Bessel processes is provided by the following absolute continuity relation between the law of $\left(\bar{r}_{d, 1}\right)^{-2}$ and the law of

$$
\Sigma_{2, d}:=T_{1}\left(R_{d}\right)+T_{1}\left(\hat{R}_{d}\right)
$$

for general $d>0$. This result Cobtained in $[8 \Gamma 54 \Gamma 7 \Gamma 55]$ Гwe call the agreement formula: for every non-negative Borel function g

$$
\begin{equation*}
E\left[g\left(\left(\bar{r}_{d, 1}\right)^{-2}\right)\right]=C_{d} E\left[\Sigma_{2, d}^{\nu} g\left(\Sigma_{2, d}\right)\right] \tag{75}
\end{equation*}
$$

where $C_{d}:=2^{(d-2) / 2} \Gamma(d / 2)$. In [55] the agreement formula was presented as the specialization to Bessel processes of a general result for one-dimensional diffusions. As explained in $[8 \Gamma 80 \Gamma 55]$ The agreement formula follows from the fact that a certain σ-finite measure on the space of continuous non-negative paths with finite lifetimes can be explicitly disintegrated in two different ways Caccording to the lifetime Dor according to the value of the maximum.

Note from (68) that $\Sigma_{2,3} \stackrel{d}{=} \Sigma_{2}$ and $\Sigma_{2,1} \stackrel{d}{=} \Sigma_{2}^{\#}$. For $d=3$ formula (75) gives for all non-negative Borel functions g

$$
\begin{equation*}
E\left[g\left(\bar{r}_{3,1}\right)\right]=\sqrt{\frac{2}{\pi}} E\left[\sqrt{\Sigma_{2}} g\left(1 / \sqrt{\Sigma_{2}}\right)\right] . \tag{76}
\end{equation*}
$$

In view of (76) The symmetry property (20) of the common distribution of Y and $\sqrt{\frac{\pi}{2} \Sigma_{2}} \Gamma$ which expresses the functional equations for ξ and $\theta \Gamma$ can be recast as the following identity of Chung [14] Γ which appears in the second column of Table 2:

$$
\begin{equation*}
\left(\frac{2}{\pi} \bar{r}_{3,1}\right)^{2} \stackrel{d}{=} \Sigma_{2} . \tag{77}
\end{equation*}
$$

As another application of (75) Γ we note that for $d=1$ this formula shows that the reciprocal relation between the laws of Σ_{1} and $\Sigma_{2}^{\#}$ discussed in Section 3 is equivalent to the equality in distribution of (54) Гthat is

$$
\begin{equation*}
\left(\frac{2}{\pi} \bar{r}_{1,1}\right)^{2} \stackrel{d}{=} \Sigma_{1} . \tag{78}
\end{equation*}
$$

We do not know of any path transformation leading to a non-computational proof of (77) or (78).

4.7 Further entries.

The distributions of $T_{1}\left(R_{d}\right)$ and $T_{1}\left(R_{d}\right)+T_{1}\left(\hat{R}_{d}\right)$ for $d=1,3$ shared by the columns of Table 2 Talso arise naturally from a number of other constructions involving Brownian motion and Bessel processes. Alili [1] found the remarkable result that

$$
\begin{equation*}
\frac{\mu^{2}}{\pi^{2}}\left[\left(\int_{0}^{1} \operatorname{coth}\left(\mu r_{3, u}\right) d u\right)^{2}-1\right] \stackrel{d}{=} \Sigma_{2} \text { for all } \mu \neq 0 \tag{79}
\end{equation*}
$$

As a check Γ the almost sure limit of the left side of (79) as $\mu \rightarrow 0$ is the variable $\pi^{-2}\left(\int_{0}^{1} r_{3, u}^{-1} d u\right)^{2}$ in the second column of Row 7. As shown by Alili-Donati-Yor [2] [consideration of (79) as $\mu \rightarrow \infty$ shows that

$$
\begin{equation*}
\frac{4}{\pi^{2}} \int_{0}^{\infty} \frac{d t}{\exp \left(R_{3, t}\right)-1} \stackrel{d}{=} \Sigma_{1} \tag{80}
\end{equation*}
$$

Other results are the identity of Ciesielski-Taylor [16] according to which

$$
\begin{equation*}
\int_{0}^{\infty} 1\left(R_{d+2, t} \leq 1\right) d t \stackrel{d}{=} T_{1}\left(R_{d}\right) \tag{81}
\end{equation*}
$$

which for $d=1$ and $d=3$ provides further entries for the table. See also [41] $[51] \Gamma$ [81Гр.97-98Г Ch. 7$] \Gamma[82 \Gamma$ p. 132-133]Г[57] for still more functionals of Brownian motion whose Laplace transforms can be expressed in terms of hyperbolic functions.

5 Renormalization of the series $\sum n^{-s}$.

5.1 Statement of the result

The expansion of Σ_{1} as an infinite series (6) suggests that we use partial sums in order to approximate its Mellin transform. As we shall seeГthis yields an interesting approximation of the Riemann zeta function. Consider again the relationship (2) between ζ and ξ Twhich allows the definition of $\zeta(s)$ for $s \neq 1$ despite the lack of convergence of (1) for $\Re s \leq 1$. There are a number of known ways to remedy this lack of convergenceГsome of which are discussed in Section 5.5. One possibility is to look for an array of coefficients $\left(a_{n, N}, 1 \leq n \leq N\right)$ such that the functions

$$
\begin{equation*}
\kappa_{N}(s):=\sum_{n=1}^{N} \frac{a_{n, N}}{n^{s}} \tag{82}
\end{equation*}
$$

converge as $N \rightarrow \infty$ Tfor all values of s. For fixed N there are N degrees of freedom in the choice of the coefficients Γ so we can enforce the conditions $\kappa_{N}(s)=\zeta(s)$ at N choices of $s \Gamma$ and it is natural to choose the points 0 Гwhere $\zeta(0)=-\frac{1}{2}$ Гand $-2,-4,-6, \ldots,-2(N-1)$ where ζ vanishes. It is easily checked that this makes

$$
\begin{equation*}
a_{n, N}=\frac{(-N)(1-N)(2-N) \ldots(n-1-N)}{(N+1)(N+2) \ldots(N+n)}=(-1)^{n} \frac{\binom{2 N}{N-n}}{\binom{2 N}{N}} \tag{83}
\end{equation*}
$$

Note that for each fixed n

$$
a_{n, N} \rightarrow(-1)^{n} \text { as } N \rightarrow \infty
$$

and recall that

$$
\left(2^{1-s}-1\right) \zeta(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{s}} \text { for } \Re s>1
$$

extends to an entire function of s. One has
Theorem 3 For $\varepsilon_{i}, 1 \leq i \leq N$ independent standard exponential variables, and $\Re s>$ $-2 N$

$$
\begin{equation*}
E\left[\left(\frac{2}{\pi^{2}} \sum_{n=1}^{N} \frac{\varepsilon_{n}}{n^{2}}\right)^{s / 2}\right]=-s \frac{2^{s / 2}}{\pi^{s}} \Gamma\left(\frac{s}{2}\right) \sum_{n=1}^{N} \frac{a_{n, N}}{n^{s}} \tag{84}
\end{equation*}
$$

where the $a_{n, N}$ are defined by (83), and

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{a_{n, N}}{n^{s}} \rightarrow\left(2^{1-s}-1\right) \zeta(s) \text { as } N \rightarrow \infty \tag{85}
\end{equation*}
$$

uniformly on every compact subset of \mathbb{C}.
The proof of Theorem 3 occupies the next two sections.

5.2 On sums of independent exponential random variables

Let $\left(\varepsilon_{n} ; n \geq 1\right)$ be a sequence of independent identically distributed random variables Γ with the standard exponential distribution $P\left(\varepsilon_{n} \geq x\right)=e^{-x} \Gamma x \geq 0$. Let $\left(a_{n} ; n \geq 1\right)$ be a sequence of positive real numbers Γ such that $\sum_{n=1}^{\infty} a_{n}<\infty \Gamma$ then the series $X=$ $\sum_{n=1}^{\infty} a_{n} \varepsilon_{n}$ converges almost surely Гand in every L^{p} spaceГfor $1 \leq p<\infty$.
Lemma 4 Let $X=\sum_{n=1}^{\infty} a_{n} \varepsilon_{n}$ as above, and let $X_{N}=\sum_{n=1}^{N} a_{n} \varepsilon_{n}$ be the partial sums, then for every real x one has $E\left[X^{x}\right]<\infty$, and $E\left[X_{N}^{x}\right]<\infty$ for $x>-N$. Furthermore one has

$$
E\left[X_{N}^{s}\right] \rightarrow E\left[X^{s}\right] \quad \text { as } N \rightarrow \infty
$$

uniformly with respect to s on each compact subset of \mathbb{C}.
Proof. We have already seen that $E\left[X^{x}\right]<\infty$ if $x \geq 0$. Let us prove that $E\left[X_{N}^{x}\right]<\infty$ for $0>x>-N$. Let $b_{N}=\min \left(a_{n} ; n \leq N\right) \Gamma$ then $X_{N} \geq b_{N} Y_{N}=b_{N} \sum_{n=1}^{N} \varepsilon_{n}$. But Y_{N} has a gamma distribution Γ with density $\frac{1}{\Gamma(N)} t^{N-1} e^{-t}$ at $t>0 \Gamma$ so that $E\left[Y_{N}^{x}\right]<\infty$ for $0>x>-N$ and thus $E\left[X_{N}^{x}\right]<\infty$. The assertion for X follows from $X \geq X_{N}$. It remains to check the uniform convergence. If $\Re s \in[-A,+A]$ Ithen

$$
\begin{aligned}
\left|X_{N}^{s}-X^{s}\right| & =\left|\int_{X_{N}}^{X} s y^{s-1} d y\right| \\
& \leq|s|\left(X-X_{N}\right)\left(X_{N}^{-A-1} \vee X^{A-1}\right)
\end{aligned}
$$

and the required uniform convergence as $N \rightarrow \infty$ is now evident by application of the Cauchy-Schwarz inequality.

We now compute the Mellin transform of the distribution of $\sum_{n=1}^{N} a_{n} \varepsilon_{n} \Gamma$ assuming that the a_{n} are all distinct and strictly positive.

Lemma 5 With the above notations, and $\Pi_{n, N}:=\prod_{j \neq n, 1 \leq j \leq N}\left(1-\frac{a_{j}}{a_{n}}\right)$, for $\Re_{s}>-N$

$$
\begin{equation*}
E\left[\left(\sum_{n=1}^{N} a_{n} \varepsilon_{n}\right)^{s}\right]=\Gamma(s+1) \sum_{n=1}^{N} \frac{a_{n}^{s}}{\Pi_{n, N}} \tag{86}
\end{equation*}
$$

where the right side of (86) is defined by continuity for $s=-1,-2, \ldots,-N+1$.
Proof. The partial fraction expansion of the Laplace transform

$$
\begin{equation*}
E\left[\exp \left(-\lambda \sum_{n=1}^{N} a_{n} \varepsilon_{n}\right)\right]=\prod_{n=1}^{N} \frac{1}{\left(1+\lambda a_{n}\right)}=\sum_{n=1}^{N} \frac{1}{\Pi_{n, N}} \frac{1}{\left(1+\lambda a_{n}\right)} \tag{87}
\end{equation*}
$$

implies that for every non-negative measurable function g such that $E\left[g\left(a_{n} \varepsilon_{1}\right)\right]$ is finite for every n

$$
\begin{equation*}
E\left[g\left(\sum_{n=1}^{N} a_{n} \varepsilon_{n}\right)\right]=\sum_{n=1}^{N} \frac{1}{\Pi_{n, N}} E\left[g\left(a_{n} \varepsilon_{1}\right)\right] \tag{88}
\end{equation*}
$$

For $g(x)=x^{s}$ this gives (86) first for real $s>-1 \Gamma$ then also for $\Re s>-N$ since the previous lemma shows that the left side is analytic in this domain「and the right side is evidently meromorphic in this domain.

Note the implication of the above argument that the sum on the right side of (86) must vanish at $s=-1,-2, \ldots,-N+1$.

5.3 Proof of Theorem 3

This is obtained by applying the preceding results in the particular case $a_{n}=n^{-2}$. By application of Lemmas 4 and 5 Гand the formula for $E\left(\Sigma_{1}^{s}\right)$ in Table 1Γ found in $[58 \Gamma(86)] \Gamma$ the conclusions of Theorem 3 hold for

$$
\begin{equation*}
-2 a_{n, N}=\frac{1}{\prod_{n, N}}=\frac{\prod_{j \neq n}\left(j^{2}\right)}{\prod_{j \neq n}\left(j^{2}-n^{2}\right)} \tag{89}
\end{equation*}
$$

where both products are over j with $1 \leq j \leq N$ and $j \neq n$. The product in the numerator is $(N!/ n)^{2}$ while writing $j^{2}-n^{2}=(j-n)(j+n)$ allows the product in the denominator to be simplified to $(-1)^{n-1}(N+n)!(N-n)!/\left(2 n^{2}\right)$. Thus the expression for $a_{n, N}$ can be simplified to (89).

5.4 The case of the $L_{\chi_{4}}$ function

The following result can be obtained similarly with the help of the formula for $E\left(\left(\Sigma_{1}^{\#}\right)^{s}\right)$ in terms of $L_{\chi_{4}}$ defined by (26) Гgiven in Table 1 of Section 3.

Theorem 6 Let

$$
L_{\chi_{4}}^{(N)}(s):=\sum_{n=0}^{N-1}(-1)^{n} \frac{\binom{2 N-1}{N-n-1}}{\binom{2 N-1}{N-1}}(2 n+1)^{-s} .
$$

Then $\frac{\binom{2 N-1}{N-n-1}}{\binom{2 N-1}{N}} \rightarrow 1$ as $N \rightarrow \infty$; for each N, one has $L_{\chi_{4}}^{(N)}(1-2 k)=0$ for $k=$ $1,2, \ldots N-1$, and $L_{\chi_{4}}^{(N)}(s) \rightarrow L_{\chi_{4}}(s)$ uniformly on every compact of \mathbb{C}.

We note that it is also possible to use formulae (5) and (8) to provide another approximation of ζ. We leave the computation to the interested reader.

5.5 Comparison with other summation methods

Perhaps the simplest way to renormalize the series (1) is given by the classical formula

$$
\begin{equation*}
\zeta(s)=\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} n^{-s}-\frac{N^{1-s}-1}{1-s}\right)-\frac{1}{1-s} \quad(\Re(s)>0) \tag{90}
\end{equation*}
$$

Related methods are provided by the approximate functional equation and RiemannSiegel formula which are powerful tools in deriving results on the behaviour of the zeta function in the critical strip. See e.g. Ch. 7 of Edwards [22] for a detailed discussion.

It is also known [44Г28] that the series $\sum_{1}^{\infty} \frac{(-1)^{n}}{n^{s}}$ is Abel summable for all values of $s \in \mathbb{C} \Gamma$ meaning that as $z \rightarrow 1$ in the unit disk Γ

$$
\sum_{1}^{\infty} \frac{(-z)^{n}}{n^{s}} \rightarrow\left(2^{1-s}-1\right) \zeta(s)
$$

The Lerch zeta function

$$
\Phi(x, a, s)=\sum_{n=0}^{\infty} \frac{e^{2 i \pi n x}}{(n+a)^{s}} \quad(x \in \mathbb{R}, 0<a \leq 1, \Re(s)>1)
$$

is known to have analytic continuation to $s \in \mathbb{C} \Gamma$ with a pole at $s=1$ for $a=1 \Gamma x \in \mathbb{Z}$ ． This allows us to sketch another proof of Theorem 3．The formula

$$
\kappa_{N}(s)=2^{2 N}\binom{2 N}{N}^{-1} \int_{0}^{1}(\sin (\pi x))^{2 N} \Phi(x, 1, s) d x
$$

is easily checked using（82）－（83）for $\Re(s)>1 \Gamma$ and extended by analytic continuation to all values of $s \in \mathbb{C}$ ．Convergence of $\kappa_{N}(s)$ towards $\left(2^{1-s}-1\right) \zeta(s)$ then follows from continuity properties of the Lerch zeta function in the variable $x \Gamma$ and the fact that $2^{2 N}\binom{2 N}{N}^{-1}(\sin (\pi x))^{2 N} d x \rightarrow \delta_{1 / 2}$ weakly as $N \rightarrow \infty$.

Finally「we note that J．Sondow［69］has shown that Euler＇s summation method yields the following series Γ uniformly convergent on every compact of \mathbb{C} ：

$$
\begin{equation*}
\left(1-2^{1-s}\right) \zeta(s)=\sum_{j=0}^{\infty} \frac{1-\binom{j}{1} 2^{-s}+\ldots+(-1)^{j}\binom{j}{j}(j+1)^{-s}}{2^{j+1}} \tag{91}
\end{equation*}
$$

Furthermore the sum of the first N terms of this series gives the exact values of ζ at $0,-1,-2, \ldots,-N+1$ Tso we can rewrite the partial sum in（91）as

$$
\rho_{N}(s)=\sum_{1}^{N} \frac{b_{n, N}}{n^{s}}
$$

where the $b_{n, N}$ are completely determined by $\rho_{N}(-j)=\zeta(-j)$ for $j=0,1, \ldots, N-1$ ． Compare with the discussion between（82）and（83）to see the close parallel between（85） and（91）．

6 Final remarks

6．1 Hurwitz＇s zeta function and Dirichlet＇s L－functions

Row 3 of Table 2 involves hitting times of Bessel processes of dimension 1 and 3 「started from 0．If the Bessel process does not start from zero Fwe still have an interesting formula for the Mellin transform of the hitting time Cexpressed now in terms of the Hurwitz zeta function．Specifically「one has

$$
\begin{equation*}
E\left[e^{-\lambda T_{1}^{a}\left(R_{3}\right)}\right]=\frac{\sinh (a \sqrt{2 \lambda})}{a \sinh (\sqrt{2 \lambda})} \quad E\left[e^{-\lambda T_{1}^{a}\left(R_{1}\right)}\right]=\frac{\cosh (a \sqrt{2 \lambda})}{\cosh (\sqrt{2 \lambda})} \tag{92}
\end{equation*}
$$

where T_{1}^{a} denotes the hitting time of 1Γ starting from $\left.a \in\right] 0,1[\Gamma$ of the corresponding Bessel process. Expanding the denominator we get

$$
\frac{\sinh (a \sqrt{2 \lambda})}{a \sinh (\sqrt{2 \lambda})}=\frac{1}{a} \sum_{n=0}^{\infty} e^{-(2 n+1-a) \sqrt{2 \lambda}}-e^{-(2 n+1+a) \sqrt{2 \lambda}}
$$

Inverting the Laplace transform yields the density of the distribution of $T_{1}^{a}\left(R_{3}\right)$

$$
\frac{1}{a \sqrt{2 \pi t^{3}}} \sum_{n=0}^{\infty}(2 n+1-a) e^{-(2 n+1-a)^{2} /(2 t)}-(2 n+1+a) e^{-(2 n+1+a)^{2} /(2 t)}
$$

Taking the Mellin transform we get

$$
E\left[\left(T_{1}^{a}\left(R_{3}\right)\right)^{s / 2}\right]=\frac{\Gamma\left(\frac{s-1}{2}\right)}{a 2^{s / 2}}\left(\zeta\left(s, \frac{1-a}{2}\right)-\zeta\left(s, \frac{1+a}{2}\right)\right) \quad(\Re(s)>1)
$$

where $\zeta(s, x)=\sum_{n=0}^{\infty}(n+x)^{-s}$ is the Hurwitz zeta function. This identity extends by analytic continuation to all $s \in \mathbb{C}$. A similar expression exists for $T_{1}^{a}\left(R_{1}\right)$.

One can use the product expansion for sinh in order to give an approximation of $\zeta(s, u)-\zeta(s, 1-u) ; u \in] 0,1\left[\right.$. For it is easy to see that $\prod_{n=1}^{N}\left(1+\frac{2 a^{2} \lambda}{n^{2}}\right)\left(1+\frac{2 \lambda}{n^{2}}\right)^{-1}$ is the Laplace transform of a probability distribution on $[0, \infty[$ Tand that this probability distribution converges towards that of $T_{1}^{a}\left(R_{3}\right)$ Гin such a way that there is a result similar to Theorem 3.

The Hurwitz zeta function can be used to construct Dirichlet L-functions by linear combinations. However Γ direct probabilistic interpretations of general Dirichlet L functions Γ in the spirit of what we did in Section 4 do not seem to exist. More precisely let χ be a primitive character modulo N Pand let

$$
\begin{equation*}
\theta_{\chi}(t)=\sum_{n=-\infty}^{+\infty} n^{\epsilon} \chi(n) e^{-\pi n^{2} t} \tag{93}
\end{equation*}
$$

where $\epsilon=0$ or 1 according to whether χ is even or odd Γ so $\chi(-1)=(-1)^{\epsilon}$. These functions satisfy the functional equation

$$
\begin{equation*}
\theta_{\chi}(t)=\frac{(-i)^{\epsilon} \tau(\chi)}{N^{1+\epsilon} \epsilon^{\epsilon+1 / 2}} \theta_{\bar{\chi}}\left(\frac{1}{N^{2} t}\right) \tag{94}
\end{equation*}
$$

where $\tau(\chi)$ is a Gauss sum. Taking a Mellin transform Cth is yields the analytic continuation and functional equation for the associated Dirichlet L-function

$$
L_{\chi}(s):=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}},
$$

namely

$$
\begin{equation*}
\Lambda(s, \chi)=(-i)^{\epsilon} \tau(\chi) N^{-s} \Lambda(1-s, \bar{\chi}) \tag{95}
\end{equation*}
$$

where

$$
\Lambda(s, \chi)=\pi^{\frac{-(s+\epsilon)}{2}} \Gamma\left(\frac{s+\epsilon}{2}\right) L_{\chi}(s) .
$$

See [17] or [11Г§1.1] for the classical derivations of these results. For general real χ Гthere does not seem to be any simple probabilistic interpretation of $\theta_{\chi}(t)$. In particularГthis function is not necessarily positive for all $t>0$. This can be seen as follows. We choose an odd character χ (the case of even characters is similar)) and compute the Laplace transform of θ_{χ} using (94)

$$
\int_{0}^{\infty} e^{-\lambda t} \theta_{\chi}(t) d t=\sum_{n=-\infty}^{+\infty} \int_{0}^{\infty} \frac{n \chi(n)}{N^{3 / 2} t^{3 / 2}} e^{-\lambda t} e^{-\pi n^{2} /\left(N^{2} t\right)} d t=N^{-1 / 2} \sum_{n=1}^{\infty} \chi(n) e^{-\frac{2 n}{N} \sqrt{\pi \lambda}}
$$

Using the periodicity of χ Гthis equals

$$
\begin{equation*}
\frac{N^{-1 / 2} \sum_{n=1}^{N-1} \chi(n) e^{-\frac{2 n}{N} \sqrt{\pi \lambda}}}{1-e^{-2 \sqrt{\pi \lambda}}}=\frac{N^{-1 / 2} \sum_{n=1}^{(N-1) / 2} \chi(n) \sinh \left(\frac{N-2 n}{N} \sqrt{\pi \lambda}\right)}{\sinh (\sqrt{\pi \lambda})} \tag{96}
\end{equation*}
$$

For small values of N Tand χ a real odd character modulo N Tone can see by inspection that this indeed is the Laplace transform of a positive function Thence by uniqueness of Laplace transform $\Gamma \theta_{\chi}$ is positive on the real line. However Pólya [59] exhibited an infinite number of primes p such that for the quadratic character modulo p the polynomial $Q_{p}(x):=\sum_{n=1}^{p-1} x^{n} \chi(n)$ takes negative values somewhere on $[0,1]$. In particular Γ for $p=43$ we find $Q_{43}(3 / 4) \approx-0.0075$. For such quadratic Dirichlet characters Γ the Laplace transform above also takes negative values Γ which implies that θ_{χ} does not stay positive on $\left[0, \infty\left[\right.\right.$. We note that if $\theta_{\chi}>0$ on $] 0, \infty[$ then obviously its Mellin transform has no zero on the real line「and hence the corresponding L-function has no Siegel zeros.

6.2 Other probabilistic aspects of Riemann's zeta function

It is outside the scope of this paper Гand beyond the competence of its authors 5 to discuss at length the theory of the Riemann zeta function. But we mention in this final Section some other works relating the zeta function to probability theory.

The work of Pólya has played a significant role in the proof of the Lee-Yang theorem in statistical mechanics: see the discussion in [61Г pages 424-426]. Other connections between Riemann zeta function and statistical mechanics appear in Bost and Connes [10] and in Knauf [40].

The Euler product for the Riemann zeta function is interpreted probabilistically in Golomb［27］and Nanopoulos［48］Γ via the independence of various prime factors when choosing a positive integer according to the distribution with probability at n equal to $\zeta(s)^{-1} n^{-s}$ for some $s>1$ ．See also Chung［13Гp．247］and［68］．

It is an old idea of Denjoy［18］that the partial sums of the Möbius function should behave like a random walk（the law of iterated logarithm would imply Riemann hypoth－ esis）．

Fascinating connections between zeros of the Riemann zeta function（and other L－ functions）and eigenvalue distribution of random matrices are currently under intense scrutiny．See Odlyzko［50］and Katz and Sarnak［34］．

Finally let us mention a few other recent references where the Riemann zeta function makes some appearances：AsmussenTGlynn and Pitman［4］ГJoshi and Chakraborty［32］Г Chang and Peres［12］．

References

［1］L．Alili．On some hyperbolic principal values of brownian local times．In M．Yor Γ editor Γ Exponential functionals and principal values related to Brownian motion Γ pages 131－154．Biblioteca de la Revista Matemática Ibero－AmericanaГ1997．
［2］L．Aliliए C．Donati－MartinГ and M．Yor．Une identité en loi remarquable pour l＇excursion brownienne normalisée．In M．YorTeditor「 Exponential functionals and principal values related to Brownian motionГpages 155－180．Biblioteca de la Revista Matemática Ibero－AmericanaГ1997．
［3］R．Arratia and L．Goldstein．Size biasing：when is the increment independent． PreprintГ1998．
［4］S．AsmussenГP．GlynnГ and J．Pitman．Discretization error in simulation of one－ dimensional reflecting Brownian motion．Ann．Applied Prob．Г5：875－896Г1995．
［5］R．Bellman．A Brief Introduction to Theta Functions．Holt「Rinehart and Winstonए 1961.
［6］J．Bertoin and J．Pitman．Path transformations connecting Brownian bridge「ex－ cursion and meander．Bull．Sci．Math．（2）Г118：147－166Г1994．
［7］Ph．Biane．Decompositions of Brownian trajectories and some applications．In A．BadrikianГP－A MeyerГand J－A YanГ editors Г Probability and Statistics；Ren－
contres Franco-Chinoises en Probabilités et Statistiques; Proceedings of the Wuhan meeting p pages 51-76. World ScientificГ1993.
[8] Ph. Biane and M. Yor. Valeurs principales associées aux temps locaux Browniens. Bull. Sci. Math. (2)Г111:23-101Г1987.
[9] P. Billingsley. Convergence of Probability Measures. Wiley「1968.
[10] J.-B. Bost and A. Connes. Hecke algebrasTtype III factors and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (N.S.)Г1(3):411457 Г1995.
[11] D. Bump. Automorphic Forms and Representations. Cambridge Univ. Press「CambridgeГ1997.
[12] J. T. Chang and Y. Peres. Ladder heights Γ Gaussian random walksTand the Riemann zeta function. Ann. Probab.Г25:787-802Г 1997.
[13] K. L. Chung. A Course in Probability Theory. Academic Press51974. 2nd ed.
[14] K. L. Chung. Excursions in Brownian motion. Arkiv fur MatematikГ14:155-177Г 1976.
[15] K.L. Chung. A cluster of great formulas. Acta Math. Acad. Sci. HungarГ39:65-67Г 1982.
[16] Z. Ciesielski and S. J. Taylor. First passage times and sojourn density for brownian motion in space and the exact hausdorff measure of the sample path. Trans. Amer. Math. Soc.Г103:434-450Г1962.
[17] H. Davenport. The Higher Arithmetic (Sixth edition, 1992). Cambridge Univ. Press Γ CambridgeГ1952.
[18] A. Denjoy. Probabilités confirmant l'hypothèse de Riemann sur les zéros de $\zeta(s)$. C. R. Acad. Sci. ParisГ259:3143-3145Г1964.
[19] J. Doob. Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat.Г20:393-403Г1949.
[20] R. Durrett. Probability: Theory and Examples. Wadsworth-Brooks/ColeГ1995. 2nd ed.
[21] R. DurrettГD. L. IglehartГand D. R. Miller. Weak convergence to Brownian meander and Brownian excursion. Ann. Probab.Г5:117-129Г1977.
[22] H.M. Edwards. Riemann's Zeta Function. Academic PressएNew YorkГ1974.
[23] L. Ehrenpreis. Fourier analysis Γ partial differential equations Γ and automorphic functions. In Theta functions-Bowdoin 1987, Part 2 (Brunswick, ME, 1987) Гpages 45-100. Amer. Math. Soc.ГProvidenceГRIГ1989.
[24] W. Feller. The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Stat.Г22:427-432Г1951.
[25] I. I. Gikhman. On a nonparametric criterion of homogeneity for k samples. Theory Probab. Appl.Г2:369-373Г1957.
[26] B. V. Gnedenko. Kriterien für die Unverändlichkeit der Wahrscheinlichkeitsverteilung von zwei unabhängigen Stichprobenreihen (in Russian). Math. Nachrichten.Г12:29-66Г1954.
[27] S. W. Golomb. A class of probability distributions on the integers. J. Number TheoryГ2:189-192Г1970.
[28] G. H. Hardy. Divergent Series. OxfordГat the Clarendon PressГ1949.
[29] Y. HuГZ. ShiГand M. Yor. Some applications of Lévy's area formula to pseudoBrownian and pseudo-Bessel bridges. In Exponential functionals and principal values of Brownian motion. Biblioteca de la Revista Matematica Ibero-Americana ГMadridГ 1996/1997.
[30] J. P. Imhof. On the range of Brownian motion and its inverse process. Ann. Probab. Γ 13:1011-1017Г1985.
[31] K. Itô and H. P. McKean. Diffusion Processes and their Sample Paths. Springer Γ 1965.
[32] P. C. Joshi and S. Chakraborty. Moments of Cauchy order statistics via Riemann zeta functions. In H. N. NagarajaГP. K. SenГand D. F. MorrisonГeditors ГStatistical theory and applications Γ pages 117-127. SpringerГ1996.
[33] W. D. Kaigh. An invariance principle for random walk conditioned by a late return to zero. Ann. Probab.Г4:115-121Г1976.
[34] N. M. Katz and P. Sarnak. Zeroes of zeta functions and symmetry. Bull. Amer. Math. Soc. (N.S.) Г36(1):1-26Г1999.
[35] D. P. Kennedy. The distribution of the maximum Brownian excursion. J. Appl. Prob.Г13:371-376Г1976.
[36] J. Kent. Some probabilistic properties of Bessel functions. Annals of ProbabilityГ 6:760-770Г1978.
[37] J. T. Kent. Eigenvalue expansions for diffusion hitting times. Z. Wahrsch. Verw. GebieteГ52(3):309-319Г1980.
[38] J. T. Kent. The spectral decomposition of a diffusion hitting time. Ann. Probab. Γ 10(1):207-219Г1982.
[39] J. Kiefer. K-sample analogues of the Kolmogorov-Smirnov and Cramér-von Mises tests. Ann. Math. Stat.Г30:420-447Г1959.
[40] A. Knauf. The number-theoretical spin chain and the Riemann zeroes. Comm. Math. Phys.Г196(3):703-731Г1998.
[41] F. B. Knight. On sojourn times of killed Brownian motion. In Séminaire de Probabilités XIIГpages 428-445. SpringerГ1978. Lecture Notes in Math. 649.
[42] F. B. Knight. Inverse local times Γ positive sojourns Γ and maxima for Brownian motion. In Colloque Paul Lévy sur les Processus Stochastiques Γ pages 233-247. Société Mathématique de FranceГ1988. Astérisque 157-158.
[43] A. N. Kolmogorov. Sulla determinazione empirica delle leggi di probabilita. Giorn. Ist. Ital. AttuariГ4:1-11Г1933.
[44] E. Landau. Euler und die Funktionalgleichung der Riemannschen Zetafunktion. Bibliotheca MathematicaГ7:69-79Г1906-1907.
[45] P. Lévy. Sur certains processus stochastiques homogènes. Compositio Math.Г7:283339Г1939.
[46] P. Lévy. Wiener's random function and other Laplacian random functions. In Second Symposium of Berkeley. Probability and StatisticsГpages 171-186. U.C. PressГ1951.
[47] P. Lévy. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars「Paris「 1965. (first ed. 1948).
[48] Ph. Nanopoulos. Loi de Dirichlet sur N^{*} et pseudo-probabilités. C. R. Acad. Sci. Paris Sér. A-BГ280(22):АiiiГА1543-А1546Г1975.
[49] C.M. Newman. Fourier transforms with only real zeros. Proc. Amer. Math. Soc.Г 61:245-251Г1976.
[50] A. M. Odlyzko. On the distribution of spacings between zeros of the zeta function. Math. Comp.Г48(177):273-308Г1987.
[51] J. Pitman. Cyclically stationary Brownian local time processes. Probab. Th. Rel. FieldsГ106:299-329Г1996.
[52] J. Pitman. The SDE solved by local times of a Brownian excursion or bridge derived from the height profile of a random tree or forest. Ann. Probab.Г27:261-283Г1999.
[53] J. Pitman and M. Yor. A decomposition of Bessel bridges. Z. Wahrsch. Verw. GebieteГ 59:425-457Г1982.
[54] J. Pitman and M. Yor. Dilatations d'espace-tempsFréarrangements des trajectoires browniennes「et quelques extensions d'une identité de Knight. C.R. Acad. Sci. Parisए t. 316ГSérie I:723-726Г1993.
[55] J. Pitman and M. Yor. Decomposition at the maximum for excursions and bridges of one-dimensional diffusions. In N. IkedaГ S. WatanabeГ M. Fukushima厂 and H. KunitaГeditors Г Itô's Stochastic Calculus and Probability TheoryГpages 293-310. Springer-VerlagГ1996.
[56] J. Pitman and M. Yor. Random Brownian scaling identities and splicing of Bessel processes. Ann. Probab.Г26:1683-1702Г1998.
[57] J. Pitman and M. Yor. Laplace transforms related to excursions of a one-dimensional diffusion. BernoulliГ 5:249-255Г1999.
[58] J. Pitman and M. Yor. The law of the maximum of a Bessel bridge. Electronic J. ProbabilityГ4:Paper 15Г1-35Г1999.
[59] G. Pólya. Verschiedene Bemerkungen zur Zahlentheorie. Jahber. Deutsch. Math. VereinigungГpages 31-40Г1919. Reprinted in Collected Papers Γ Vol IIIГMIT Press Γ CambridgeГМаss. 1984 Гpp. 76-85.
[60] G. Pólya. Elementarer Beweis einer Thetaformel. Sitz. Berich. Akad. Wissen. Phys.math. Kl. Fpages 158-161Г1927. Reprinted in Collected Papers ГVol IГMIT Press Γ CambridgeГМass. 1974Гpp. 303-306.
[61] G. Pólya. In R. P. BoasTeditorГCollected papers. Vol. II: Location of zerosTvolume 8 of Mathematicians of Our Time. The MIT Press ГCambridgeГMass.-LondonГ1974.
[62] D. Revuz and M. Yor. Continuous martingales and Brownian motion. Springer Γ Berlin-HeidelbergT1999. 3rd edition.
[63] B. Riemann. Über die Anzahl der Primzahlen unter eine gegebener Grösse. Monatsber. Akad. BerlinГpages 671-680Г1859. English translation in [22].
[64] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales, Vol. I: Foundations. WileyГ1994. 2nd. edition.
[65] Z. Shi and M. Yor. On an identity in law for the variance of the Brownian bridge. Bull. London Math. Soc.Г29(1):103-108Г1997.
[66] G. R. Shorack and J. A. Wellner. Empirical processes with applications to statistics. John Wiley \& SonsएNew YorkГ1986.
[67] N. V. Smirnov. On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bul. Math. de l'Univ. de MoscouГ2:3-14Г 1939. (in Russian).
[68] L. Smith and P. Diaconis. Honest Bernoulli excursions. J. Appl. Probab.Г25:464 477 Г1988.
[69] J. Sondow. Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series. Proc. Amer. Math. Soc.Г120(2):421424Г1994.
[70] R. Stanley. Enumerative Combinatorics, Vol. 2. Cambridge University PressГ1999.
[71] L. Takács. Remarks on random walk problems. Publ. Math. Inst. Hung. Acad. Sci.Г 2:175-182Г1958.
[72] P. Vallois. Amplitude du mouvement brownien et juxtaposition des excursions positives et négatives. In Séminaire de Probabilités XXVIT pages 361-373. SpringerVerlag「1992. Lecture Notes in Math. 1526.
[73] P. Vallois. Decomposing the Brownian path via the range process. Stoch. Proc. Appl.Г55:211-226Г1995.
[74] K. van Harn and F. W. Steutel. Infinite divisibility and the waiting-time paradox. Comm. Statist. Stochastic ModelsГ11(3):527-540Г1995.
[75] W. Vervaat. A relation between Brownian bridge and Brownian excursion. Ann. Probab.Г7:143-149Г1979.
[76] G. S. Watson. Goodness-of-fit tests on a circle. BiometrikaГ48:109-114Г1961.
[77] D. Williams. Decomposing the Brownian path. Bull. Amer. Math. Soc.Г76:871-873Г 1970.
[78] D. Williams. Path decomposition and continuity of local time for one dimensional diffusions I. Proc. London Math. Soc. (3)Г28:738-768Г1974.
[79] D. Williams. Diffusions, Markov Processes, and Martingales, Vol. I: Foundations. WileyГChichesterГNew YorkГ1979.
[80] D. Williams. Brownian motion and the Riemann zeta-function. In G. R. Grimmett and D. J. A. WelshГeditors ГDisorder in Physical SystemsГpages 361-372. Clarendon Press Γ OxfordГ1990.
[81] M. Yor. Some Aspects of Brownian Motion, Part I: Some Special Functionals. Lectures in Math.ГETH Zürich. BirkhaüserГ1992.
[82] M. Yor. Some Aspects of Brownian Motion, Part II: Some Recent Martingale Problems. Lectures in Math.ГETH Zürich. BirkhaüserГ1997.

[^0]: * CNRS, DMA, 45 rue d'Ulm 75005 Paris, France
 ${ }^{\dagger}$ Dept. Statistics, U. C., Berkeley. Research supported in part by N.S.F. Grant DMS97-03961
 ${ }^{\ddagger}$ Laboratoire de Probabilités, Université Pierre et Marie Curie, 4 Place Jussieu F-75252 Paris Cedex 05, France. Research supported in part by N.S.F. Grant DMS97-03961

