
Generalization bounds for incremental search classi�cation

algorithms

Yoram Gat
University of California, Berkeley

Technical report No. 575 (March 2000)

Abstract

This paper presents generalization bounds for a certain class of clas-

si�cation algorithms. The bounds presented take advantage of the local

nature of the search that these algorithms use in order to obtain bounds

that are better than those that can be obtained using VC type bounds.

The results are applied to well-known classi�cation algorithms such as

classi�cation trees and the perceptron.

1 Introduction

1.1 The classi�cation problem setup

I consider the classical problem of learning a classi�er from examples which can
be formalized as follows: Let P be an unknown distribution over Z = X � Y.
Let Z = (X;Y) and Zi = (Xi; Yi); i = 1; 2; : : : be iid random variables with
distribution P. The problem is predicting Y given Z1; : : : ; Zl and X.

The set of variables Z1; : : : ; Zl is referred to as the training set, and will be
denoted by S. S will also be used to denote the �eld spanned by the training
set, and the empirical distribution of the training set.

A solution to the problem of learning from examples is a function mapping
the training set into C, which is some set of classi�er functions:

M : Zl ! C: (1)

Each c 2 C is a function c : X ! Y. Thus the prediction for Y is cM (X) where
cM = M (Z1; : : : ; Zl). The function M is often referred to as a classi�cation
algorithm (CA).

There is a one-to-one correspondence between the classi�ers in C and error
indicator functions fc : Z ! f0; 1g, where

fc(x; y) = 1 fc(x) 6= yg :

Denote F = ffc : c 2 Cg and fM = fcM .
The quality of the classi�er cM , for a given training set, may be measured

using the expected error rate (also called expected risk):

EPf
M = P

�
cM (X) 6= Y

���S� :
AMS 1991 subject classi�cations. Primary 62H30.

Key words and phrases. Generalization ability, classi�cation trees, perceptron algorithm.

1

The solution M is usually geared toward �nding a classi�er which has low em-
pirical error rate (also called empirical risk):

ESf
M =

1

l

lX
i=1

1
�
fM (Xi) 6= Yi

	
:

Therefore, it is often desirable to be able to obtain bounds for the di�erence
between the empirical and the expected error rates, which is called the over�t
of the algorithm and denoted EP�Sf

M . The behavior of the di�erence will
depend on the underlying, unknown probability measure. The term general-
ization ability is used to describe the worst-case behavior of the over�t of a
speci�c algorithm. The smaller the probability for a large over�t, the better is
the generalization ability of the algorithm.

1.2 Incremental search classi�cation algorithms

One map M commonly used is

M (Z1; : : : ; Zl) = argmin
c2C

ESfc:

This is known as the Empirical Risk Minimization (ERM) method. It has been
shown that the generalization ability of the algorithm can be determined by
using the VC dimension of the set of functions F ([1] sec. 4.9).

Frequently, it is di�cult to carry out the minimization search over the whole
range of classi�ers considered. In these situations, an incremental search is some-
times carried out. To implement an incremental search, a measure of proximity
over the space of classi�ers is de�ned. The incremental search classi�cation al-
gorithm (ISCA) starts by considering some �xed classi�er inside the classi�er
space, and proceeds by considering classi�ers that are in proximity to the this
starting point, and then classi�ers that are in proximity to them, and so on.
The algorithm thus proceeds in steps. The more steps that are being taken, and
the larger the number of classi�ers that are in proximity to any given classi�er,
the larger is the search.

One type of ISCAs is that of the greedy search classi�cation algorithm. A
greedy search classi�cation algorithm searches among the classi�ers that are in
proximity to the starting point for the classi�er with the lowest empirical error.
It then searches the classi�ers that are close to this classi�er for the one that
has the lowest empirical error, and so on. Other ISCAs may look a few steps
ahead before deciding where to search next.

ISCAs are usually less expensive computationally to implement than exhaus-
tive searches, but they have the drawback that they may not �nd the global min-
imum of the empirical error. However, in the presence of uncertainty, such as
exists when training classi�ers from examples, the fact that incremental searches
examine only a small part of the search space, causes a reduction in the over�t
that the algorithmmay produce. That is, while the empirical error rate achieved

2

may be larger than the global minimumof the empirical error rate, the classi�er
found may have a lower expected error rate.

This paper lays out a procedure for estimating the generalization ability, i.e.,
of bounding the over�t, of ISCAs. This procedure can achieve tighter bounds
than would be possible for global or exhaustive search algorithms.

Many of the ideas presented in this paper are present in [3] and in [4].
The treatment here is somewhat di�erent, and includes handling the technical
di�culty of analyzing continuous classi�er spaces.

2 Graph theoretical trees

This section de�nes a few concepts that will be used in the discussion of ISCAs.
A (graph theoretical) graph is a set of nodes V , and a set of edges, E. Each

edge e is a couple of nodes e = fu; vg; u; v 2 V .
A path on a graph is a sequence of distinct edges so that any two consecutive

edges have a common node:

fv1; v2g; fv2; v3g; : : : ; fvk�1; vkg:

A (graph theoretical) rooted tree is a graph that has special root node v0,
and which has a unique path from the root node to any other node in the graph.

On a rooted tree any node v can be designated with a level, lev(v). The
root node has level 0, while the level of any other node is the length of, i.e., the
number of edges in, the path from the root to the node.

For any node v on a rooted tree, de�ne:

� The set of o�spring of the node:

o�sp(v) = fu 2 V : fv; ug 2 E; lev(u) > lev(v)g:

� The parent of the node (for all nodes except for the root node v0):

parent(v) = u; such that fv; ug 2 E; lev(v) > lev(u):

� The set of ancestors of the node:

ancest(v) = fu 2 V n fvg : fu; u0g 2 the path from v0 to vg:

� The set of descendants of the node:

descend(v) = fu 2 V : v 2 ancest(u)g:

A node whose o�spring set is empty is called a terminal node, or a leaf.

3

3 A tree node numbering procedure

This section presents a natural way to assign a number, n(v), to each node v
on a rooted tree. The numbering which results has the following properties:

� The number n(v) of any node v depends only on the number of o�spring
of the nodes in the path from the root to the node v.

� jfv : n(v) � kgj � k.

� If the tree has no leaves, then

bk=dc � jfv : n(v) � kgj ;

where d = maxfv:n(v)�kg jo�sp(v)j.

De�nition 1 For any rooted tree, T = (V;E; v0), de�ne the a numbering, nv0 ,
of the node set recursively as follows:

nv0(v0) = 1;

nv0(v) = 1 + jo�sp(v0)j � nv1(v);

where v1 is the o�spring of v0 in the path from v0 to v.

For each node, v, its number, nv0(v), can be written up explicitly in terms of the
number of o�spring of the ancestors of v. Let fv0; v1g; fv1; v2g; : : : ; fvk�1; vg be
the path from v0 to v. Then:

nv0(v) = 1 + jo�sp(v0)j+

jo�sp(v0)j � jo�sp(v1)j+ � � �+

jo�sp(v0)j � jo�sp(v1)j � � � jo�sp(vk�1)j :

By the de�nition of n, the �rst property above holds. Lemma 1 states the
second property, and its proof follows:

Lemma 1 For any k = 1; 2; : : : and for any v 2 V , de�ne

Cv
k = fu 2 descend(v) : nv(u) � kg:

The following inequality holds:

jCv
k j � k:

Proof: By induction on k. The statement holds for k = 1. Assume that the
statement holds for all k0 < k.

Cv
k =

[
u2o�sp(v)

fu0 2 descend(u) : nu(u
0) � (k � 1)= jo�sp(v)jg [fvg;

4

Using the induction hypothesis,����
�
u0 2 descend(u) : nu(u

0) �
k � 1

jo�sp(v)j

����� � k � 1

jo�sp(v)j
:

The lemma follows. 2

The third property is not used here. It is, however, of interest, since the
bounds in the paper cannot be tight if jfv : n(v) � kgj � k. The third property
of the numbering, therefore, guarantees that for leaess trees, such as those
discussed in this paper, this is not the case.

4 Sieve structures and simultaneous con�dence

regions

4.1 General sieve structures and bounds

When a classi�cation algorithmhas a rich enough range C, it may not be possible
to obtain bounds of the form

P

sup
f2F

EP�Sf > �

!
� �(�);

where �(�) is small for small �.
It is, however, often useful to obtain a somewhat weaker, but still interesting

bound by de�ning a sieve structure over C:

C =
[
i�1

Ci:

The spaces Ci are formed to be small enough so that, for each i, a bound of the
type

P(sup
c2Ci

EP�Sfc > �) � �i(�);

exists, where �i(�) are small for small �, but not uniformly in i.
These separate bounds imply a simultaneous bound:

P(EP�Sfc > �i(c)(�i(c)) for some c 2 C) �
X
i�1

�i;

where �i; i = 1; 2; : : : is a sequence of constants, �i; i = 1; 2; : : : are the inverse
functions of �i, and for every c 2 C, i(c) is some member of fi : c 2 Cig.

4.2 A sieve structure for a countable set of classi�ers

One way in which the sieve structure can be used is to split an in�nite set of
classi�ers into a sequence of �nite sets. Let C =

S
i�1 Ci be a countable set of

5

classi�ers, where jCij < Ni. Further assume that it is known that for each given
c, P(EP�Sfc > �) � p(�). Then for each i,

P

�
sup
c2Ci

EP�Sfc > �

�
� Nip(�):

For this case, �i(�) = p�1(�=Ni).

4.3 A sieve structure for a tree of classi�ers

By using the numbering procedure of section 3, the bound of the previous sub-
section can be directly applied to a set of classi�ers that has a rooted tree
structure associated with it, i.e., a set of classi�ers which are the node set of a
tree.

Let Ni; i = 1; 2; : : : be a sequence of constants and let n(c) be the numbering
of the classi�ers induced by a tree structure. Then,

P

sup

c:n(c)�Ni

EP�Sfc > �

!
� Nip(�):

Setting i(n) = minfi : Ni � ng a simultaneous bound is obtained:

P

�
EP�Sfc > p�1

�
�i(n(c))

Ni(n(c))

�
for some c 2 C

�
� �: (2)

The results of this paper are all bounds of the type given by expression (2).
To obtain such a bound for a particular CA, M , it is su�cient to arrange the
classi�ers in the set C in a tree structure. The bound is then implied by the
numbering of the classi�ers on the tree.

4.4 A sieve structure for a tree of sets of classi�ers

A slight generalization of the situation in the previous sub-section results when
each node in the tree, v, corresponds to a �nite set of classi�ers Cv. This
situation arises during the construction of the trees of classi�ers.

The simultaneous bound in such a situation is

P

�
sup
c2Cv

EP�Sfc > p�1

�
�i(n(v))

Ni(n(v)) jCvj

�
for some v 2 V

�
� �: (3)

Since the expression for the bound in (3) is unwieldy, I introduce the abbre-
viation

�p(n; k) = p�1

�
�i(n)

Ni(n)k

�
:

Thus, in this notation, the bound in (3) is

P

�
sup
c2Cv

EP�Sfc > �p (n(v); jCvj) for some v 2 V

�
� �: (4)

6

Below, I also use the further abbreviation

�p(n) = �p(n; 1) = p�1

�
�i(n)

Ni(n)

�
;

giving the following form for inequality (2):

P (EP�Sfc > �p(n(c)) for some c 2 C) � �: (5)

4.5 The Hoe�ding bound

As a more concrete example of a bound, consider the case where the function p
is the Hoe�ding bound

P(EP�Sf) � exp�2l�2 = p(�);

and

Ni = N0r
i;

�i =

�
�=d i = 0; 1; : : :; d� 1
0 i � d

:

For this particular example, the simultaneous bound (2) (or equivalently (5))
implies the UCB:

UCB(EPf
M) =

(
ESf

M +
q

1
2l log(n(c

M)rd=�) when n(cM) � N0r
d�1

1 otherwise
:

5 ISCAs as tree search algorithms

5.1 The full and partial search trees

It is convenient to describe ISCAs as algorithms that search trees of classi�ers.
The root node corresponds to the starting point classi�er. The level 1 nodes
correspond to the classi�ers in proximity to the starting point classi�er, the level
2 nodes are those classi�ers that are in proximity to them, and so on. I call this
tree the full search tree.

While the same classi�er may appear on the full search tree several times, it
may be assumed, without loss of generality, that each classi�er is unique. This
may be achieved, if necessary by attaching unique labels to the nodes of the
tree. This approach is used here, in order to avoid ambiguities.

The full search tree, however, is often a tree in which each node has a large
number of o�spring. Furthermore, while some of the o�spring have a relatively
high probability of being used - in the sense that there is a high probability
that the selected classi�er will be a descendant of these o�spring, most of the
o�spring have have a very low probability of being used. The o�spring which
have a low probability of being used have a low impact on the amount of over�t

7

of the algorithm, but unless eliminated from the tree, will increase the over�t
bound.

It is, therefore, necessary to de�ne another tree, the partial search tree,
in such a way that its coverage probability, i.e., the probability of the selected
classi�er being on the partial search tree is high, but not 1, and that the number
of o�spring of every node in the partial search tree is as small as possible.

Since the node and edge sets of the partial search tree are subsets of those of
the full search tree, the subscripts full and @ will be used to distinguish between
properties of the di�erent trees.

Let Tfull = (Vfull; Efull; c0) be a full search tree. Tpart = (Vpart; Epart; c0)
- a partial search tree - is determined by its node set, Vpart, which is a subset
of Vfull, and which always contains c0. The edge set of the partial search is

Epart =
n
fu; vg 2 Efull : u; v 2 Vpart

o
:

5.2 A de�nition template of partial trees

This sub-section describes a template for the de�nition of partial trees, for
various CAs.

The template assumes that there exists a family of events

A = fA(c; n) : c 2 C; n 2 Ng ;

with the property that for any sequence of classi�ers c1; c2; : : :, and for any
sequence of natural numbers n1; n2; : : :, such that jfni : ni � Ngj � N , it holds
that

P

1\
i=1

A(ci; ni)

!
� 1� �: (6)

This family is referred to as a tree building event family (TBEF).
Using the TBEF A, the node set of the partial tree is de�ned recursively:

� c0 2 Vpart.

� c 2 Vpart if

a. c0 = parentfull(c) 2 Vpart, and,

b. fc0; cg is in the path of M , for some sample point in the event
A(c0; npart(c

0)).

Note that since npart(c) depends only on the number of o�spring of the
ancestors of c in the partial tree, the numbering npart is well de�ned.

The partial tree will contain cM in the event

A =
\

c2Vpart

A(c; npart(c)):

Therefore, by lemma 1 and by inequality (6), P (cM 2 Vpart) � 1� �.

8

6 Application to a projection histogram algo-

rithm

This section presents a somewhat arti�cial example of a CA whose over�t can
be analyzed using the setup described above.

Let X = f0; 1gd and Y = 0; 1. Let the space of classi�ers considered be

C =

(
ci(1);:::;i(r);y : r = 1; : : : ; d; 1 � i(1); : : : ; i(r) � d; y 2 Y2r

)
;

where
ci(1);:::;i(r);y(x) = yxi(1);:::;xi(r) :

That is, each classi�er in the set classi�es a point x according to its projection
onto an r dimensional space. The classi�ers are indexed according to the di-
mensions of projection and according to the classi�cation labels assigned to the
various values in the projected space.

Consider the projection histogramCA,M , which works in the following way:

� Given the dimensions of projection, i(1); : : : ; i(r), M picks the vector y
that minimizes the empirical risk (with arbitrary choice if there is more
than one such vector).

� The projection dimensions are picked one by one and in a greedy fashion.
That is, having picked dimensions i(1); : : : ; i(k), the next dimension to be
picked would be the dimension that will give the largest reduction in the
empirical error.

De�ne the full search tree with the nodes corresponding to the classi�ers in
C, and a dummy root node c0 which classi�es all x 2 X as 0. Let edges join any
two nodes such that the projection space of one node is equal to the that of the
other node with one additional dimension. That is, two nodes ci(1);:::;i(r);y and
cj(1);:::;j(r);j(r+1);y0 are joined by an edge if

fi(1); : : : ; i(r)g � fj(1); : : : ; j(r + 1)g :

In addition, let c0 be joined with all the classi�ers with a one dimensional
projection space. Thus, a node of level r has (d � r)22

r+1

o�spring in the full
tree.

A partial search tree which contains only those o�spring that are likely to
produce minimal empirical error rate will usually have fewer o�spring per node.

Following the partial tree de�nition template, a TBEF A is de�ned:

A(c; n) =

(
! : sup

c02o�spfull(c)
jEP�Sfc0 j � �p

�
n;
��o�spfull(c)���

)
:

The set of o�spring of c in the partial tree, assuming that c is in the partial
tree, and that its number on that tree is npart(c) = n, is

9

0

Root

4 4 4Level 1

10 10Level 2

Figure 1: Parts of a full and partial tree for a greedy algorithm

o�sppart(c) =

(
c0 2 o�spfull(c) :

EP(f
0
c) � inf

c002o�spfull(c)
EPfc00 + 2�p

�
n;
��o�spfull(c)���

)
:

The family of events just de�ned, and the corresponding partial tree give a
recipe that can be used for producing partial trees for greedy algorithms in a
variety of settings. This de�nition and the following analysis are going to be
used twice more in the context of classi�cation trees (see below).

The family of events A is indeed a TBEF, by the de�nition of �p, and using
the bound of equation (3). Therefore, the partial tree has coverage probability
of no less than 1� �.

A schematic diagram of the resulting tree appears in Figure 1. A part of a
full tree is shown (dotted arcs), with the partial tree overlaid (solid arcs). The
path of the greedy algorithm is shown in a bold line. The numbering of the
partial tree nodes is shown.

Applying the bound of equation (2), it was thus proved that for the greedy
algorithm

P
�
EP�Sf

M > �p
�
n
�
cM
���
� 2�;

where the number n(cM) is calculated for the partial search tree de�ned above.
Of course, the structure of the partial search tree is unknown, since the

expected error rates of the classi�ers are unknown. It is, however, possible to
build a tree which contains the partial search tree for all sample points outside
an event with bounded probability.

10

In the event
A =

\
c2Vpart

A(c; npart(c));

the di�erence jEP�Sfcj is bounded by �p
�
n(c);

��o�spfull(c)��� for each of the
classi�ers on the partial search tree and for their o�spring. Therefore, in the
event A, the set o�sppart(c) is contained in set

o�sppart(c) =

(
c0 2 o�spfull(c) :

ES (fc0) < inf
c002o�spfull(c)

ESfc00 + 4�p
�
n(c);

��o�spfull(c)���
)
:

The considerations above lead to the following procedure for a 1� 2� UCB
for the expected error rate of the greedy algorithm:

� Greedy algorithm: Run the greedy algorithm, producing a path on the
tree

fc0; c1g; fc1; c2g; : : : ; fck�1; ckg;

where c0 is the root node and ck = cM is the selected classi�er.

� Initialization: Set t 1; n 1 and i 0.

� Stopping condition: If i = k, stop. The UCB is

ESf
M + �p(n):

Otherwise, continue to the O�spring step.

� O�spring: Set

K
�
c 2 o�spfull(ci) : ESfc < ESfci+1 + 4�p

�
n;
��o�spfull(ci)���	 ;

where
��o�spfull(ci)�� = (d� i)22

i+1
:

� Loop: Set t jKj t; n n+ t, and i i+ 1. Go back to the Stopping
condition step.

7 Classi�cation trees

Two of the classi�cation algorithms considered below construct classi�cation
trees (CTs) ([6]). This type of classi�ers can be naturally described as rooted
trees.

The terminal nodes of the CT are elements of Y. Any non-terminal node v,
is a simple classi�er, with feature space X and label space Yv. The edges that
connect v to its o�spring correspond to the elements of Yv. The value of a CT,
T , for a certain point x in feature space, is calculated as follows:

11

� Initialization: Set v = v0, v0 being the root node of T .

� Evaluate: If v is a terminal node, T (x) = v. Otherwise, set y = v(x).

� Loop: Find, u, the o�spring of v so that the edge fv; ug corresponds to
the value y. Set v u and go back to step Evaluate.

In the cases considered here, X = X1 � : : : � Xd, where the Xi are some
ordered sets. Furthermore, for all non-terminal v, Yv = f0; 1g, and the non-
terminal nodes classi�ers are axis orthogonal splits, i.e., they have the form

v(x) = 1 fx(kv) � avg ;

where x(kv) is the kv-th coordinate of x, kv 2 f1; 2; : : :; dg, and av 2 Xkv .
Note that rooted trees are used in this paper to describe both CTs and search

trees. However, there is no essential connection between these two devices, and,
as demonstrated by the previous application and another application below, the
search tree construction is relevant for classi�ers which are not CTs.

8 Application to a classi�cation tree with binary

features

Let X = f0; 1gd;Y = f0; 1g, and let C be the space of CTs with axis orthogonal
splits.

Consider a greedy algorithm, that builds a classi�cation tree by iteratively
adding splits which result in the minimal empirical errors achievable by a single
split.

Since each split adds one more terminal node to the classi�cation tree, after
the n-th split, the algorithm makes a choice among about (n + 1)d possible
splits, and for each split it has to decide which side of the split is designated
with 0 and which with 1. Thus, in the full search tree each n-th level node has
about 2(n+ 1)d o�spring.

Again, the partial search tree may contain substantially fewer o�spring per
node and will, in such a case, provide much tighter bounds than those implied
by the full tree.

The TBEF and the partial tree are de�ned in exactly the same way as in
Section 6. The resulting analysis and UCB for the expected risk are therefore
the same, with the sole di�erence being that the number of o�spring in the full
search tree (used in the O�spring step) is bounded in this case by 2(i+ 1)d.

9 Application to randomized search-correct clas-

si�cation algorithms

This section de�nes a type of algorithms, which are referred to below as random-
ized search-correct classi�cation algorithms (RSCCAs), and proves a general-
ization bound for this class. The proof involves, in addition to the construction

12

of a partial search tree, a conditioning technique which is identical to the one
used in [5].

9.1 Randomized search-correct classi�cation algorithms

De�nition 2 A classi�cation algorithm with the following structure is a ran-
domized search correction classi�cation algorithm (RSCCA).

� Initialization: Set c c0.

� Stopping condition: If all the points in the training set are classi�ed
correctly by c, or if some other stopping condition is met, output c and
stop. Otherwise, continue to the Search step.

� Search: Select a point, z, which is misclassi�ed by c, randomly among all
the misclassi�ed training points.

� Correction: Set c T (c; z).

� Loop: Go back to the Stopping condition step.

One example of an RSCCA is the perceptron algorithm ([2]), where X = Rd,
Y = f�1; 1g, and C is the set of linear classi�ers in Rd. That is,�

ca;b : a 2 R; b 2 R
d
	
;

where
ca;b(x) = 21fx � b > ag � 1:

Let c0 = c0;0, and
T (ca;b; (x; y)) = ca+y;b+yx:

Another example is a variation of the nearest neighbor algorithm: Let
d : X � X ! R be a distance function de�ned on the feature space. De-
�ne a set of classi�ers as follows: c;(0) = y0, for some arbitrary y0 2 Y, and
c(x1;y1);:::;(xk;yk)(x) = yj(x), where

j(x) = arg min
j2f1;2;:::;kg

d(xj; x):

Let c0 = c;, and
T (cz1;:::;zk ; z) = cz1;:::;zk;z:

9.2 Randomized classi�cation algorithms

Note that the de�nition of a classi�cation algorithm given above does not allow
for the classi�cation associated with a feature point to be random. While the
de�nition could be modi�ed to allow that, it is also possible to consider classi�-
cation algorithms that involve randomization as a distribution over deterministic
classi�cation algorithms. This is the approach used here.

13

9.3 Conditioning

Since the classi�ers considered by the RSCCA are functions of the training
points, a conditioning technique has to be employed in order to de�ne a search
tree for the algorithm. This sub-section describes the technique, which I call
symmetric conditioning.

The following de�nitions will be used:

De�nition 3 A test set, S0, is a set of iid random variables Z0i = (X0
i; Y

0
i); i =

1; 2; : : : ; l0 with the same distribution P as the variables in the training set S,
and independent of S.

The law of large numbers implies that, for large l0, the test set error rate

ES0fM =
1

l0

l0X
i=1

1
�
cM (X0

i) 6= Y 0
i

	

is a good approximation of the expected error rate.
The test set can be identi�ed with the continuation of the sequence Zi, i.e.,

Z0i = Zi+l. This notation is useful in de�ning the symmetric �eld of events:

De�nition 4 The symmetric �eld, F�, is the �eld spanned by events of the
form:

[�
�
Z�(1) 2 B1; : : : ; Z�(r+l) 2 Bl+l0

	
;

where the union is over all permutations � of the numbers 1; : : : ; l + l0, and the
Bi's are measurable subsets of Z.

The symmetric �eld has the property that, conditioned on the symmetric �eld,
the distribution of Z1; : : : ; Zl+l0 is uniform over the (l + l0)! permutations of
some l+ l0 (not necessarily distinct) values z1; : : : ; zl+l0 . This is true, no matter
what is the underlying probability measure P.

Symmetric conditioning relies on the fact that

P

�
ES0fM �ESf

M > ��
1

l0

���EP�SfM > �

�
�

1

2
:

It is therefore enough to bound P(ES0fM �ESfM > �). Since

P(ES0fM � ESf
M > �) = EP

�
ES0fM �ESf

M > �
���F�� ;

it is su�cient to show that for all z1; : : : ; z2l,

1

(2l)!

X
�

1

8<
:
������
1

l

lX
i=1

fM (z�(i))�
1

l0

l+l0X
i=l+1

fM (z�(i))

������ > �

9=
;

is small, where
fM = M

�
z�(1); : : : ; z�(l)

�
:

14

That is, it is su�cient to show that the conditional probability of a large di�er-
ence given the symmetric �eld is small.

Given the symmetric �eld, the full search tree can be constructed. The root
of the tree is c0, as denoted in the de�nition of an RSCCA. The o�spring of
each classi�er, c, in the tree, are

fT (c; zi) : zi = (xi; yi) 2 S [S
0; c(xi) 6= yig:

Note that the tree contains branches that correspond to the elements of both
the training and test sets.

9.4 The partial search tree

Throughout the rest of this sub-section, the conditioning on the symmetric �eld
is implicitly assumed. The randomization of the data is thus solely through
the partition of a set of points fz1; : : : ; zl+l0g into the training and the test
sets. The probability space (!;F!;P) can therefore be treated as the space of
uniform probability over such partitions. To further simplify the expressions, I
set l0 = l.

The randomized search order can be implemented by determining an order
of priority among the o�spring of each classi�er. This order will be expressed
as a set of functions, one for each classi�er:

oc : o�spfull(c)! f1; : : : ;
��o�spfull(c)��g:

For each classi�er c, the priorities, oc(c
0), are distinct integers in the range

1; : : : ;
��o�spfull(c)��, with lower values corresponding to higher priority. The

order of priorities is chosen uniformly over all possible orderings of the o�spring
of each classi�er, and independently for each classi�er.

The algorithm then proceeds from a classi�er to the o�spring in the training
set that has the highest priority. Given the priorities of the o�spring, the chance
that the algorithm will proceed to a particular o�spring, given that the parent
is in the path, is the chance that all the o�spring with higher priorities are not
in the training set, but rather in the test set. Therefore, the chance that a low
priority o�spring is in the path is small.

Speci�cally, since

� lESfc is the number of o�spring of c in the training set,

� lES0fc is the number of o�spring of c in the test set,

� the order of priorities among the o�spring of c is uniform over all orders
and independent of the training set and the priorities of o�spring of the
other classi�ers,

then the the probability of a classi�er on the path ofM , of having no o�spring in
the training set among the m highest priority o�spring is bounded by E(Rc)m,
where

Rc =
ES0fc

ESfc +ES0fc
=

ES0fc
2EPfc

:

15

In the event fEP�Sfc � �g,

Rc � rc(�) =
EPfc + �

2EPfc
:

Therefore, given EP�Sfc � �, in order to make sure that the conditional prob-
ability that the algorithm chooses an o�spring of c that is not on the partial
search tree is less than �, it is enough to retain in the tree only the log�= log rc(�)
highest priority o�spring of c.

In light of the above, the partial search tree can be constructed using the
partial tree de�nition template. Fix a sequence of constants �i; i = 0; 1; : : :, and
denote � =

P1
i=0 �i. Set

A(c; n) =

(
(!; !0) : EP�Sfc � �p(n) and

min
c02S\o�spfull(c)

oc(c
0) �

log �lev(c)
logRc

for all c0 in M 's path

)
:

The set of o�spring of c in the partial tree, assuming that c is in the partial
tree, and that its number on that tree is npart(c) = n, is

o�sppart(c) =

(
c0 2 o�spfull(c) : oc(c

0) �
log �lev(f)
log rc(�(n))

)
:

The probability of the event

A =
\

c2Vpart

A(c; npart(c));

in which case cM 2 Vpart, is at least 1� � � �.
As in the case of the CT, the construction of the partial search tree requires

the values of the expected error rates of the classi�ers in the full search tree,
which are not available. Again, as in the case of the CT, a tree which contains
the partial search tree can be constructed.

In the event fEP�Sfc � �g,

rc(�) � rc(�) =
ESfc

2ESfc � 2�
:

Therefore, in the event A, o�sppart(c) is contained in

o�sppart(c) =

(
c0 2 o�spfull(c) : oc(c

0) �
log �lev(c)
log rc(�p(n))

)
:

The following procedure calculates the resulting level 1� �� � UCB for the
expected risk of the classi�er generated by the RSCCA.

16

� RSCCA algorithm: Run the RSCCA algorithm, producing a path on
the tree

fc0; c1g; fc1; c2g; : : : ; fck�1; ckg;

where c0 is the root node and ck = cM is the selected classi�er.

� Initialization: Set t 1; n 1 and i 0.

� Stopping condition: If i = k, stop. The UCB is

ESf
M + �p(n):

Otherwise, continue to the Count o�spring step.

� Count o�spring: Set

r
ESfci

2ESfci � 2�p(n)
;

and

m
log�i
log r

:

� Loop: Set t mt; n n+ t, and i i + 1. Go back to the Stopping
condition step.

Note that the number of o�spring of any classi�er in the partial tree, as well
as in the random tree that covers it, does not grow as the number of training
points, l, increases. The number of o�spring of a classi�er is an increasing
function of bounds of the over�t of its ancestors. These bounds actually decrease
as l increases, and so the number of o�spring drops (but not to 1) as the training
set grows large. The resulting simultaneous con�dence bound therefore has the
form ESfc+

�c
l
, rather than the form ESfc+

�c log l
l

, as results from the bound
of [5].

10 Application to a classi�cation tree with con-

tinuous features

The application of the search tree bound to CTs with continuous features uses
the symmetric conditioning as well.

Let X = Rd;Y = f0; 1g, and let C be the space of CTs with axis orthogonal
splits.

Again, consider a greedy algorithm, that builds a classi�cation tree by iter-
atively adding splits which result in the minimal empirical errors achievable by
a single split.

As in sub-section 9.4, this section uses symmetric conditioning implicitly,
thus reducing the random choice of the training set to the random partitioning
of a set of 2l points, z1; : : : ; z2l, into the training set S and test set S0.

17

In the full search tree, the o�spring of a particular CT, c, are all the CTs
which result by substituting one of the leaves of c with a non-leaf node, which
corresponds to a classi�er, v, of the form

v(x) = 1fx(kv) � xv(kv)g ;

where xv is the feature vector of one of the points z1; : : : ; z2l. This new non-leaf
node, v, has two o�spring which are leaves.

As in the case of the projection histogram CA and of the binary tree, the
TBEF A is de�ned as:

A(c; n) =

(
! : sup

c02o�spfull(c)
jEP�Sfc0 j � �p

�
n;
��o�spfull(c)���

)
;

and again, the set of o�spring of c in the partial tree, assuming that c is in the
partial tree, and that its number on that tree is npart(c) = n, is

o�sppart(c) =

(
c0 2 o�spfull(c) :

EP(f
0
c) � inf

c002o�spfull(c)
EPfc00 + 2�p

�
n;
��o�spfull(f 0)���

)
:

This gives rise to a partial tree that has coverage probability of no less than
1� �, and thus,

P
�
EP�Sf

M > �p

�
npart(c

M)
��
� 2�;

where the number n(cM) is calculated for the partial search tree de�ned above.
Calculating the n(c)'s, however, involves, in the case of continuous feature

space, not only the unknown values, EPfc, but also the unknown points in the
test set S0.

As in the previous applications,
���o�sppart(c)��� will be bounded from above,

giving bounds from above for n(c) for all the classi�ers on the partial search
tree.

Bounding
���o�sppart(c) \ S��� can be done in the same way that it was done

for the binary tree. That is, in the event A =
T
c2Vpart

A(c; npart(c));

o�sppart(c) \ S � o�spSpart(c); (7)

where

o�spSpart(c) =

(
c0 2 o�spfull(c) :

ES (fc0) � inf
c002o�spfull(c)

ESfc00 + 4�p
�
n(c);

��o�spfull(c)���
)
:

18

To bound
���o�sppart(c) \ S0��� de�ne the event A0 = Tc2Vpart

A0(c; npart(c)),

where

A0(c; n) =

(
! :
���o�sppart(c) \ S��� � ���o�sppart(c) \ S0���+ l�p(n)

)
:

By the de�nition of �p, P(A0) � 1� �. Therefore P(A \A0) � 1� 2�.
In the event A \A0,���o�sppart(c)��� � 2

���o�sppart(c) \ S���+ l�p(npart(c)):

This, together with the inclusion in (7), implies that

2
���o�spSpart(c)���+ l�p(npart(c))

is a level 1� 2� UCB for
���o�sppart(c)���.

The resulting UCB for the risk of cM is implemented by the following algo-
rithm. Note that in the full search tree the number of o�spring of any classi�er
is bounded by 2d(l + 1).

� Greedy algorithm: Run the greedy algorithm, producing a sequence of
classi�ers c0; c1; : : : ; ck�1; ck = cM .

� Initialization: Set t 1; n 1 and i 0.

� Stopping condition: If i = k, stop. The UCB is

ESf
M + �p(n):

Otherwise, continue to the O�spring step.

� O�spring: Set

K
�
c 2 o�spfull(ci) : ESfc � ESfci+1 + 4�p (n; 2d(l+ 1))

	
:

� Update: Set

� m 2 jKj+ l�p(n),

� t mt,

� n n+ t,

� i i + 1.

� Loop: Go back to the Stopping condition step.

19

11 Conclusions

This paper presented a way to describe some classi�cation algorithms as tree
search algorithms. It was shown that the more narrow the search is, the smaller
is the over�t that the algorithm incurs. In addition to providing insight into the
behavior of classi�cation algorithms, the search tree description provides over-
�t bounds for several classi�cation algorithms, e.g., classi�cation trees, which
improve upon other, more general, bounds, such as VC dimension bounds and
the bounds of [5].

The question of how sharp the bounds obtained are was not addressed and
remains a topic for further investigation.

Acknowledgments I thank Prof. Peter Bickel for reading the drafts of this
paper and for his insightful comments that have led to signi�cant improvements
in the presentation.

References

[1] Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons, Inc.,
New York.

[2] Minsky, M. L. and Papert S. A. (1988). Perceptrons. The MIT Press, Cam-
bridge.

[3] Freund, Y. (1998). Self bounding classi�cation algorithms. COLT '98: Pro-

ceedings of the eleventh annual conference on computational learning theory,
247-258. ACM Press, New York, NY, 1998.

[4] Langford J. and Blum A. (1999). Microchoice bounds and self bounding
learning algorithms.COLT '99: Proceedings of the twelfth annual conference

on computational learning theory.

[5] Gat, Y. (1999). A bound concerning the generalization ability of a certain
class of learning algorithms. Technical report No. 548. Department of Statis-
tics, UC Berkeley.

[6] Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Clas-
si�cation and regression trees. Wadsworth, Belmont, CA.

Yoram Gat
University of California, Berkeley
367 Evans Hall
Berkeley, CA, 94720
E-mail: yoram@stat.berkeley.edu

20

