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LINEAR FUNCTIONALS OF EIGENVALUES OF RANDOM

MATRICES

PERSI DIACONIS AND STEVEN N. EVANS

Abstract. LetMn be a random n�n unitary matrix with distribution given
by Haar measure on the unitary group. Using explicit moment calculations,
a general criterion is given for linear combinations of traces of powers of Mn

to converge to a Gaussian limit as n ! 1. By Fourier analysis, this result
leads to central limit theorems for the measure on the circle that places a
unit mass at each of the eigenvalues of Mn. For example, the integral of
this measure against a function with suitably decaying Fourier coe�cients
converges to a Gaussian limit without any normalisation. Known central limit
theorems for the number of eigenvalues in a circular arc and the logarithm of
the characteristicpolynomial ofMn are also derived from the criterion. Similar
results are sketched for Haar distributed orthogonal and symplectic matrices.

1. Introduction

For n 2 N, let Mn be a random n � n unitary matrix with distribution given
by Haar measure on the unitary group. The eigenvalues of Mn lie on the unit
circle T of the complex plane C . Write �n for the random measure on T that
places a unit mass at each of the eigenvalues of Mn. That is, if the eigenvalues are
f�n1; : : : ; �nng, then �n(f) :=

R
T
f d�n =

P
j f(�nj). The purpose of this paper is

to study the asymptotic behaviour of the measures �n as n!1.
Note that if f :T! C has Fourier expansion f(ei�) =

P
j2Zf̂je

ij�, then

�n(f) = nf̂0 +
1X
j=1

f̂j Tr (M
j
n) +

1X
j=1

f̂�j Tr (M
j
n);

where Tr denotes the trace and, for the moment, we are being informal about con-
ditions under which such developments are valid. Questions about the asymptotic
behaviour of cn(�n(fn) � E[�n(fn)]) for a sequence of test functions ffng and se-
quence of norming constants fcng may therefore be placed in the larger framework

of questions about the asymptotic behaviour of
P1

j=1(anj Tr (M
j
n) + bnj Tr (M

j
n))

for arrays of complex constants fanj : n 2 N; j 2 Ng and fbnj : n 2 N; j 2 Ng.
In x3 we give a general criterion under which such sequences of linear com-

binations of traces converge in distribution to normal. The main tool is an exact
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computation of the joint moments of the random variables Tr (M j
n) due to Diaconis

and Shahshahani [DS94] that we recall in x2.
An immediate consequence of this convergence criterion is that if f : T! R

is a test function such that
P

j jf̂jj2jjj < 1, then �n(f) � E[�n(f)] converges in
distribution to a centred normal random variable �(f) with E[�(f)2 ] =

P
j jf̂j j2jjj

(see x5) | a result which follows easily from those in [DS94], but which was made
explicit in [Joh97]. We also consider the multivariate generalisation of this result for
a collection of such test functions. These results are used to show that the complex
Poisson integrals of the measures �n converge to a Gaussian analytic function on
the unit disk with interesting value distribution properties.

More generally, we establish in x4 that if the sequence fPk
j=�k jf̂j j2jgk2Nis

slowly varying, then

�n(f) � E[�n(f)]qPn
j=�n jf̂jj2jjj

converges in distribution to standard normal.
In x6 we recover the results of [Wie98] on the number of eigenvalues in a �xed

arc. We show that if f is the indicator function of the set fei� : � 2 [�; �]g, then

�n(f) � n���2�
1
�

p
logn

converges in distribution to a complex standard normal random variable. (Recall
that a complex random variable is said to be standard complex normal if the real
and imaginary parts are independent centred (real) normal random variables with
common variance 1

2 .) Furthermore, we recover the multivariate extension of this
result for several intervals in a manner that \explains" the intriguing covariance
structure found in [Wie98] as a consquence of the Fourier expansions of the indicator
functions of the intervals. We also consider the analogous asymptotics for the
number of eigenvalues in arcs which shrink in length as the dimension n increases.

Our methods also recover the results [HKO00] (following on from those in [KS00])
on the asymptotic normality of the suitably normalised logarithm of the charac-
teristic polynomial of Mn. As remarked in [HKO00], this result coupled with an
application of the argument principle gives another \explanation" of the covariance
structure in of [Wie98].

The main virtue of our results on linear combinations of traces is their consid-
erable generality and the fact that they follow from rather elementary method{of{
moments arguments. They rely on a small amount of representation theory for the
unitary group and avoid the use of analytic tools such as Szeg�o{type theorems for
Toeplitz determinants. The present paper deals with linear functionals of �n of the
form

R
f(�) �n(d�), but a similar development is possible for quadratic functionals

of the form
RR

f(�; �) �n(d�) �n(d�) and higher order functionals. Also, our meth-
ods are directly applicable to the orthogonal and symplectic groups, given that the
requisite moment formulae have been obtained in [DS94] (the technical report of
A. Ram that was cited in [DS94] for the relevant representation theory of these
groups has now appeared as [Ram95] { see also [Ram97]). We outline the relevant
arguments in x8.



EIGENVALUES OF RANDOM MATRICES 3

2. Moments of traces

Theorem 2.1. a) Consider a = (a1; : : : ; ak) and b = (b1; : : : ; bk) with aj ; bj 2
f0; 1; : : :g. Let Z1; Z2; : : :Zk be independent standard complex normal random

variables. Then for n � (
Pk

j=1 jaj) _ (
Pk

j=1 jbj),

E

2
4 kY
j=1

�
Tr (M j

n)
�aj �

Tr (M j
n)
�bj35 = �ab

kY
j=1

jajaj! = E

2
4 kY
j=1

�p
jZj

�aj �p
jZj

�bj35 :
b) For any j; k,

E

h
Tr (M j

n) Tr (M
k
n)
i
= �jk(j ^ n):

Proof. Part (a) is Theorem 2 in [DS94] with a slightly di�erent (and incorrect)
condition on a; b. For the sake of completeness, we re{do the proof in [DS94].

De�ne the simple power sum symmetric function pj to be the symmetric function

pj(x1; : : : ; xn) = xj1 + � � � + xjn. Let � be the partition (1a1 ; 2a2; : : : ; kak) of the
integer K = 1a1 + 2a2 + � � � + kak and set p� =

Q
j p

aj
j to be the corresponding

compound power sum symmetric function. Associate � with the conjugacy class of
the symmetric group on K letters that consists of permutations with aj j{cycles
for 1 � j � k. We have the expansion

p� =
X
�`K

���s�;

where the sum is over all partitions of K, the coe�cient ��� is the character of
the irreducible representation of the symmetric group associated with the partition
� evaluated on the conjugacy class associated with the partition �, and s� is the
Schur function corresponding to the partition � (see I.7.8 of [Mac79]).

Given an n� n unitary matrix U , write s�(U ) (resp. p�(U )) for the function s�
(resp. p�) applied to the eigenvalues of U . Writing `(�) for the number of parts of
the partition � (that is, the length of �), the functions U 7! s�(U ) are irreducible
characters of the unitary group when `(�) � n and s�(U ) = 0 otherwise (see x11.1
of [Lit58]). Thus

E

h
s�(Mn)s� (Mn)

i
= ���1(`(�) � n);

Set � = (1b1 ; 2b2; : : : ; kbk) and L = 1b1 + 2b2 + � � �+ kbk . We have

E

2
4 kY
j=1

�
Tr (M j

n)
�aj �

Tr (M j
n)
�bj35

= E
h
p�(Mn)p�(Mn)

i

= E

2
4 X

�`K

���s�(Mn)

! X
�`L

���s�(Mn)

!35
= �KL

X
�`K

����
�
�1(`(�) � n):

(2.1)
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When K � n, all partitions of K are necessarily of length at most n, and so,
by the second orthogonality relation for characters of the symmetric group (see
Equation (4.2;5) of [Lit58]), the rightmost term of (2.1) becomes

�KL���

kY
j=1

jajaj! = �ab

kY
j=1

jajaj!;

which coincides with the claimed mixed moment of
p
jZj , 1 � j � k, (see Lemma

1 of [DS94]).
Turning to part (b), we have from (2.1) that

E

h
Tr (M j

n) Tr (M
k
n )
i
= �jk

X
�`j

�����(j)���2 1(`(�) � n);

where (j) is the partition of j consisting of a single part of size j. Now ��(j) = 0

unless � is a hook partition (that is, a partition with at most one part of size greater
than 1), in which case

��(j) = (�1)`(�)�1

(see, for example, Exercise 4.16 in [FH91]). Since there are j ^n hook partitions of
j of length at most n, part (b) follows.

Remark 2.2. It is shown in [Rai97] that the eigenvalues of M j
n for j � n are dis-

tributed as n independent uniform random variables on T.

3. Linear combinations of traces

Theorem 3.1. Consider an array of complex constants fanj : n 2 N; j 2 Ng.
Suppose there exists �2 such that

lim
n!1

1X
j=1

janjj2(j ^ n) = �2:

Suppose also that there exists a sequence of positive integers fmn : n 2 Ng such

that

lim
n!1

mn=n = 0

and

lim
n!1

1X
j=mn+1

janjj2(j ^ n) = 0:

Then
P1

j=1 anj Tr (M
j
n) converges in distribution as n ! 1 to �Z, where Z is a

complex standard normal random variable.

Proof. Recall from Theorem 2.1 that E[ Tr (M j
n)] = 0 and E[ Tr (M j

n) Tr (M
k
n )] =

�jk(j ^ n). Consequently, the series
P1

j=1 anj Tr (M
j
n) converges in L2 for each n

and limn!1 E[j
P1

j=mn+1
anj Tr (M j

n)j2] = 0.

It therefore su�ces to show that ��1
Pmn

j=1 anj Tr (M
j
n) converges in distribution

as n!1 to a complex standard normal random variable. Let Z0; Z1; Z2; : : : be a
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sequence of independent complex standard normals. From Theorem 2.1 we know
that

E

2
64
8<
:

mnX
j=1

anj Tr (M
j
n)

9=
;
�8<
:

mnX
j=1

anj Tr (M
j
n)

9=
;
�
3
75

= E

2
64
8<
:

mnX
j=1

anj
p
jZj

9=
;
�8<
:

mnX
j=1

anj
p
jZj

9=
;
�
3
75

= E

2
664
8><
>:
0
@mnX
j=1

janjj2j
1
A
1=2

Z0

9>=
>;
�8><
>:
0
@mnX
j=1

janjj2j
1
A
1=2

Z0

9>=
>;
�

;

3
775

provided that �mn � n and �mn � n. The result now follows by convergence of
moments for complex normal distributions and the assumption that mn=n! 0.

A straightforward adaptation of the methods in the proof of Theorem 3.1 estab-
lishes the following result. The details are left to the reader.

Theorem 3.2. Consider arrays of complex constants fanj : n 2 N; j 2 Ng and

fbnj : n 2 N; j 2 Ng. Suppose there exist �2, �2, and 
 such that

lim
n!1

1X
j=1

janjj2(j ^ n) = �2;

lim
n!1

1X
j=1

jbnjj2(j ^ n) = �2;

and

lim
n!1

1X
j=1

anjbnj(j ^ n) = 
:

Suppose also that there exists a sequence of positive integers fmn : n 2 Ng such

that

lim
n!1

mn=n = 0

and

lim
n!1

1X
j=mn+1

(janjj2 + jbnjj2)(j ^ n) = 0:

Then
P1

j=1(anj Tr (M
j
n) + bnj Tr (M

j
n)) converges in distribution as n ! 1 to

X+ iY , where (X;Y ) is a pair of centred jointly normal real random variables with

E[X2 ] =
1

2
(�2 + �2 + 2<
);

E[Y 2] =
1

2
(�2 + �2 � 2<
);
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and

E[XY ] = =
:

4. Integration against functions satisfying a Fourier growth

condition

It is immediate from Theorem 2.1 that for each k 2 N the random vector
(Tr (Mn); Tr (M2

n); : : : Tr (M
k
n)) converges in distribution to (Z1;

p
2Z2; : : : ;

p
kZk)

as n ! 1, where Z1; Z2; : : : ; Zk are independent standard complex normal ran-

dom variables. Therefore, if f(�) =
Pk

j=�k f̂je
ij� is a real-valued trigonometric

polynomial, so that f̂�j =
�̂
f j, then

�n(f) � E[�n(f)] = �n(f) � nf̂0

=
kX
j=1

h
f̂j TrM

j
n +

�̂
f j Tr (M

j
n)
i

= 2
kX
j=1

h
(<f̂j)(<Tr (M j

n))� (=f̂j)(=Tr (M j
n))
i

converges in distribution as n!1 to a centred normal with variance

4
kX

j=1

�
j

2
(<f̂j)2 + j

2
(=f̂j)2

�
=

kX
j=�k

jf̂jj2jjj:

This observation suggests that �n(f) � E[�n(f)] should converge to normal when
f is no longer just a trigonometric polynomial but more generally when f is a real{
valued function of the form f(�) =

P
j2Zf̂je

ij� with
P

j2Zjf̂jj2jjj < 1. We �nd

in the x5 that this is indeed the case (see Theorem 5.1).
First, however, we establish a more general result that shows that even whenX

j2Z

jf̂jj2jjj =1

it can still sometimes be the case that

(�n(f) � E[�n(f)])=Var[�n(f)]
is asymptotically normal.

Given f 2 L2(T) (where we de�ne L2(T) to be the space of real{valued square{
integrable functions), write

f̂j :=
1

2�

Z
e�ij�f(�) d�; j 2Z;

for the Fourier coe�cients of f .
Recall that a positive sequence fckgk2Nis said to be slowly varying if

lim
k!1

cb�kc

ck
= 1; � > 0;

(see [Fel71, BGT87]).
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Theorem 4.1. Suppose that f 2 L2(T) is such that the sequence fPk
j=�k jf̂jj2jgk2N

is slowly varying. Then

�n(f) � E[�n(f)]qPn
j=�n jf̂jj2jjj

converges in distribution to a standard normal random variable as n!1.

Proof. Note �rst of all for any Borel subset A � T that the probability Mn has
at least one eigenvalue in A (that is, Pf�n(A) 6= 0g) is, by symmetry, at most
n 1
2�

R
A d�. Therefore, �n(f) only depends on the L2(T) equivalence class of f .

Similarly, we have that

�n(f) = lim
k!1

Z kX
j=�k

f̂je
ij� �n(d�)

in probability, because

f(�) = lim
k!1

kX
j=�k

f̂je
ij�

in Lebesgue measure. Thus

�n(f) =
1X
j=1

f̂j TrM
j
n +

1X
j=1

�̂
fj TrM

j
n:

Set cn =
Pn

j=�n jf̂j j2jjj = 2
Pn

j=1 jf̂j j2j. We will apply Theorem 3.2 with

anj = f̂j=
p
cn and bnj =

�̂
fj=

p
cn:

Because fcngn2Nis slowly varying, it is clear that there is a sequence of integers
fmngn2Nsuch that limn!1mn =1, limn!1mn=n = 0, and

lim
n!1

cmn
=cn = 1:(4.1)

Summing by parts,

2
1X

j=n+1

jf̂jj2 =
1X
j=n

(cj+1 � cj)
1

j + 1
=

1X
j=n+1

cj
1

j(j + 1)
� cn

1

n+ 1
:(4.2)

Note also that

lim
n!1

n

cn

1X
j=n+1

cj
1

j(j + 1)
= 1(4.3)

by Theorem 1 in xVIII.9 of [Fel71].
Combining equations (4.1), (4.2), and (4.3) gives

lim
n!1

1X
j=mn+1

(janjj2 + jbnjj2)(j ^ n) = 0:

Thus the conditions of Theorem 3.2 hold with

�2 = �2 = 
 =
1

2
;

and this immediately leads to the result.
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5. Integration against functions in H
1

2

2

Let H
1

2

2 denote the space of functions f 2 L2(T) such that

kfk21
2

:=
X
j2Z

jf̂j j2jjj <1;

and de�ne an inner product on H
1

2

2 by

hf; gi 1
2

:=
X
j2Z

f̂j �̂gj jjj:

Alternatively, H
1

2

2 is the space of functions f 2 L2(T) such that

1

16�2

ZZ
(f(�) � f(�))2

sin2
�
���
2

� d� d� <1;(5.1)

and, moreover,

hf; gi 1
2

=
1

16�2

ZZ
(f(�) � f(�)) (g(�) � g(�))

sin2
�
���
2

� d� d�

(see Equations (1.2.18) and (1.2.21) of [FOT94]).

The space H
1

2

2 is an example of a Bessel{potential function space and it coincides

with the Besov space B
1

2

2;2, the Sobolev{Lebesgue space F
1

2

2;2 and the Lipschitz space

�
1

2

2;2 (see Equations (18) and (19) in x3.5.4 and Equation (13) in x3.5.1 of [ST87]).
Finally, note that if we take the complex Poisson integral of f 2 L2(T), namely

Pf(z) := 1

2�

Z
ei� + z

ei� � z
f(�) d�

= f̂0 + 2
1X
j=1

f̂jz
j ; jzj < 1;

then, letting m denote Lebesgue measure on the disk fz 2 C : jzj < 1g,Z ����dPf(z)dz

����
2

m(dz) =

Z 1

0

2�

2
44 1X

j=1

jf̂j j2j2r2(j�1)
3
5 r dr

= 2�
X
j2Z

jf̂jj2j

Thus, f 2 H
1

2

2 if and only ifZ ����dPf(z)dz

����
2

m(dz) <1;

and

hf; gi 1
2

=
1

2�

Z
dPf(z)
dz

dPg(z)
dz

m(dz); f; g 2 H
1

2

2 :

Theorem 5.1. If f1; : : : ; fk 2 H
1

2

2 with E[�n(fh)] = n
R
fj(�) d� = 0 for 1 � h �

k, then the random vector (�n(f1); : : : ;�n(fk)) converges in distribution to a jointly

normal, centred random vector (�(f1); : : : ;�(fk)) with E[�(fh )�(f`)] = hfh; f`i 1
2

.
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Proof. Employing the Cram�er{Wold device (see Theorem 2.9.5 of [Dur96]), it is
enough to consider the case k = 1. In this case, however, the result is immediate
from Theorem 4.1.

Remark 5.2. A function in H
1

2

2 need no be a.e. equal to a continuous or even

bounded function (see x3.5.4 of [ST87]). However, note that if f 2 H
1

2

2 , then, by
(5.1) and Markov's inequality, the Lebesgue measure of the set f(�; �) : jf(�) �
f(�)j > Aj sin((� � �)=2)jg converges to 0 as A ! 1. In particular, a function in

H
1

2

2 cannot have jump discontinuities.

Remark 5.3. It is immediate from (5.1) that if f 2 H
1

2

2 and ' : R! R is Lipschitz

(that is, j'(x)� '(y)j � Kjx� yj for some constant K), then � � f 2 H
1

2

2 .

Remark 5.4. The space H
1

2

2 equipped with the inner product h�; �i 1
2

is nothing other

than the Dirichlet space and Dirichlet form of the symmetric Cauchy process on
the circle (see Example 1.4.2 of [FOT94]). (The symmetric Cauchy process on the
circle is just the usual symmetric Cauchy process on the line wrapped around the
circle.)

This observation can be used to deduce various features of the Gaussian process

f�(f) : f 2 H
1

2

2 ;
R
f = 0g, several of which will be in a forthcoming paper of the

authors. We merely point out for the moment that this fact has consequences for

the continuity properties of functions in H
1

2

2 . There is a natural notion of capacity

associated with h�; �i 1
2

, and any function in H
1

2

2 has a quasi{continuous modi�cation

with respect to this capacity. That is, if f 2 H
1

2

2 , then there exists g such that g = f
a.e. and for any � > 0 there is an open set G of capacity less than � such that g
restricted to TnG is continuous (see Theorem 2.1.3 of [FOT94]). We note that the
capacity associated with h�; �i 1

2

appearing in this de�nition can be replaced by the

classical logarithmic capacity on T.
Probabilistically, quasi{continuity can be characterised as follows. Write (Xt;P

x)
for the symmetric Cauchy process on the circle. A function g is quasi{continuous
if there exists a set N � Tsuch that Pxf9t > 0 : Xt 2 Ng = 0 for all x 2Tand

P
xflim

s#t
g(Xs) = g(Xt) and lim

s"t
g(Xs) = g(Xt�); 8t � 0g = 1

for all x =2 N .
It is certainly not the case that quasi{continuity is a su�cient condition for

membership in H
1

2

2 . For example, we know from above that the indicator function

of an interval [�; �] with 0 < � < � < 2� is not in H
1

2

2 (this is also obvious by
direct computation of Fourier coe�cients { see the proof of Theorem 6.1 below).
However, because the Cauchy process does not hit points we have

P
xf9t > 0 : Xt 2 f�; �g or Xt� 2 f�; �gg = 0

for all x > 0 and hence the indicator function is quasi{continuous.

Remark 5.5. It is immediate that if f; g 2 L1(T)\H 1

2

2 , then the product fg is also

in L1(T) \ H
1

2

2 with kfgk 1

2

� kfk1kgk 1

2

+ kgk1kfk 1

2

. This is an instance of a

standard fact for Dirichlet forms (see Theorem 1.4.2(ii) of [FOT94]), but it is also
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immediate from (5.1). The algebra L1(T)\H
1

2

2 is known as the Krein algebra and
appears in the study of Hankel operators (see x5.2 of [BS99]).
Example 5.6. Consider the complex Poisson integral of the random measure �n,
that is, the random analytic function Fn on fz 2 C : jzj < 1g given by

Fn(z) :=
1

2�

Z
ei� + z

ei� � z
�n(d�)

=
n

2�
+

1

�

1X
j=1

Tr (M j
n)z

j:

The harmonic function <Fn has the measure �n as its \boundary value" in the
sense that as r " 1 the measure <Fn(rei�) d� converges weakly to �n (that is,R
f(�)<Fn(rei�) d� ! R

f(�) �n(d�) for all real{valued continuous functions f).
Note also that

Fn(z) = � 1

�

�0Mn
(z)

�Mn
(z)

� n

2�
;

where

�Mn
(z) := det(Mn � zI)

is the characteristic polynomial of Mn.
It follows from Theorem 5.1 that the �nite dimensional distributions of Fn� n

2�
converge to those of the random analytic function

G(z) :=
1

�

1X
j=1

p
jZjz

j; jzj < 1;

where Z1; Z2; : : : are i.i.d. standard complex normal random variables. Indeed,
one can easily check tightness and actually show convergence in distribution in the
space of continuous C{valued functions on fz 2 C : jzj < 1g equipped with the
topology of uniform convergence on compacts, but we leave this to the reader.

Random analytic functions such as G have been much studied (see, for example,
[Kah85]). For example, let c(r; b) denote the number of zeroes of G(z) � b in
fz 2 C : jzj < rg. For K � 0 set

C�(K; r) := sup
jbj�K

Z r

1

2

c(s; b)

s
ds

and

C�(K; r) := inf
jbj�K

Z r

1

2

c(s; b)

s
ds:

An easy fourth moment calculation and Borel{Cantelli argument shows that

lim
r"1

(1� r)2
1X
j=1

jZ2j r
2j =

1

4
a.s.

Therefore, by Theorem 1 of [O�72] and the remarks after that result we have

lim
r"1

C�(K; r)

log( 1
1�r

)
= lim

r"1

C�(K; r)

log( 1
1�r

)
= 1 a.s.

Consequently, almost surely G takes every value in the complex plane in�nitely
often. In fact, G restricted to any sector of the unit disk almost surely takes every
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value in�nitely often (see Theorem 2 of [O�72]). In particular, almost surely for each
b 2 C every point of the circle Tis a limit point of the level set fjzj < 1 : G(z) = bg.

6. Number of eigenvalues in an arc

For 0 � � < � < 2� write Nn(�; �) for the number of eigenvalues of Mn of
the form ei� with � 2 [�; �]. That is, Nn(�; �) = �n(f) where f is the indicator
function of the arc fei� : � 2 [�; �]g. Note that E[Nn(�; �)] = n(� � �)=2�. The
following result is in [Wie98].

Theorem 6.1. As n!1, the �nite{dimensional distributions of the processes

Nn(�; �)� E[Nn (�; �)]
1
�

p
logn

; 0 � � < � < 2�;

converge to those of a centred Gaussian process fZ(�; �) : 0 � � < � < 2�g with

the covariance structure

E[Z(�; �)Z(�0 ; �0)] =

8>>>>>><
>>>>>>:

1; if � = �0 and � = �0;
1
2 ; if � = �0 and � 6= �0;
1
2
; if � 6= �0 and � = �0;

�1
2 ; if � = �0;

0; otherwise.

Proof. Recall that the indicator function of the interval [�; �] has the Fourier ex-
pansion

� 7! 1

2�
(� � �) +

1

2�i

1X
j=1

e�ij� � e�ij�

j
eij� +

1

2�i

1X
j=1

eij� � eij�

j
e�ij�:

The result could be established using Theorem 4.1, but it is somewhat more in-
structive from the point of view of understanding how the covariance of Z arises to
proceed by a direct appeal to Theorem 3.2.

It su�ces to show for distinct 0 � '1; : : : ; 'k < 2� that the real random vector

1

2�i
p
logn

0
@ 1X
j=1

�
e�ij'`

j
Tr (M j

n)�
eij'`

j
Tr (M j

n)

�1A
k

`=1

converges in distribution to a vector of independent centred Gaussian random vari-
ables with common variance 1

2�2 .
Employing the Cram�er{Wold device, it su�ces in turn to show for real constants

c1; : : : ; ck that

1

2�i
p
logn

0
@X

`

c`

0
@ 1X
j=1

e�ij'`

j
Tr (M j

n)�
eij'`

j
Tr (M j

n)

1
A
1
A

converges in distribution to a centred normal random variable with variance

1

2�2

X
`

c2` :
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We will apply Theorem 3.2 with

anj =
1

2�i
p
logn

X
`

c`
e�ij'`

j
;

bnj = �anj = � 1

2�i
p
logn

X
`

c`
eij'`

j
;

and

mn =
n

logn
:

It is elementary that

1

logn

1X
j=mn+1

j ^ n

j2
= 0;

and an application of part (a) of Lemma 6.2 below shows that the conditions of
Theorem 3.2 hold with

�2 = �2 = 
 =
1

4�2

X
`

c2` ;

easily leading to the result.

The following elementary result is used in the preceeding proof and elsewhere.

Lemma 6.2. a) For 0 < � < 2�

lim
n!1

1

logn

nX
j=1

eij�

j
= 0:

b) For � > 0,

lim
T!1

1

logT

Z T

1

ei�t

t
dt = 0:

Proof. We only prove part (a). The proof of part (b) is similar and is left to the
reader. Summing by parts shows that it su�ces to establish

lim
n!1

1

n

nX
j=1

exp(ij�) = 0;

but the expression inside the limit on the left{hand side is just

1

n

exp(i(n + 1)�) � exp(i�)

exp(i�) � 1

We now consider the asymptotics of the number of eigenvalues in an arc that
shrinks with n. Fix a sequence of positive constants fKn : n 2 Ng. For 0 �
� < � < 1 write ~Nn(�; �) for the number of eigenvalues of Mn of the form ei�

with � 2 [�=Kn; �=Kn]. Clearly, one cannot expect normal limiting behaviour if
1
Kn

= O( 1n ), but this turns out to be the only restriction.
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Theorem 6.3. Suppose that Kn !1 and Kn=n! 0 as n!1. As n!1, the

�nite{dimensional distributions of the processes

~Nn(�; �)� E[ ~Nn(�; �)]
1
�

p
log(n=Kn)

; 0 � � < � <1;

converge to those of a centred Gaussian process f ~Z(�; �) : 0 � � < � < 1g with

the covariance structure

E[ ~Z (�; �) ~Z(�0; �0)] =

8>>>>>><
>>>>>>:

1; if � = �0 and � = �0;
1
2 ; if � = �0 and � 6= �0;
1
2 ; if � 6= �0 and � = �0;

�1
2 ; if � = �0;

0; otherwise.

Proof. By the same Fourier expansion used in the proof of Theorem 6.1, it su�ces
to show for distinct 0 < '1; : : : ; 'k <1 that the real random vector

1

2�i
p
log(n=Kn)

0
@ 1X
j=1

�
e�ij'`=Kn � 1

j
Tr (M j

n) �
eij'`=Kn � 1

j
Tr (M j

n)

�1A
k

`=1

converges in distribution to a random vector of the form (W0+W1;W0+W1; : : : ;W0+
Wk) where W0; : : : ;Wk are independent centred Gaussian random variables with
common variance 1

2�2 .
Employing the Cram�er{Wold device, it su�ces in turn to show for real constants

c1; : : : ; ck that

1

2�i
p
log(n=Kn)

0
@X

`

c`

0
@ 1X
j=1

e�ij'`=Kn � 1

j
Tr (M j

n) �
eij'`=Kn � 1

j
Tr (M j

n)

1
A
1
A

converges in distribution to a centred normal random variable with variance

1

2�2
(
X
`

c2` +
X
`0;`00

c`0c`00):

We will apply Theorem 3.2 with

anj =
1

2�i
p
log(n=Kn)

X
`

c`
e�ij'`=Kn � 1

j
;

bnj = �anj = � 1

2�i
p
log(n=Kn)

X
`

c`
eij'`=Kn � 1

j
;

and

mn =
n

log(n=Kn)
:

It is elementary that

1

log(n=Kn)

1X
j=mn+1

j ^ n

j2
= 0:
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Note that

lim
n!1

1

log(n=Kn)

nX
j=1

�
e�ij'`0=Kn � 1

j

��
eij'`00=Kn � 1

j

�
(j ^ n)

= lim
n!1

1

log(n=Kn)

nX
j=1

�
e�ij'`0=Kn � 1

��
eij'`00=Kn � 1

� Kn

j

1

Kn

= lim
n!1

1

log(n=Kn)

Z n=Kn

1

�
e�i'`0 t � 1

� �
ei'`00 t � 1

� 1
t
dt

=

(
1; if '`0 6= '`00 ;

2; if '`0 = '`00 ;

by part (b) of Lemma 6.2.
Thus the conditions of Theorem 3.2 hold with

�2 = �2 = 
 =
1

4�2

0
@X

`

c2` +
X
`0;`00

c`0c`00

1
A ;

easily leading to the result.

Remark 6.4. The sort of covariance structure for the limiting Gaussian process
seen in Theorems 6.1 and 6.3 was also reported for a di�erent ensemble of random
unitary matrices in [CL95].

7. Asymptotics for the characteristic polynomial

We essentially follow the notation and development in [HKOS00] (see also [HKO00]).
For an n� n unitary matrix U , write

�U (z) := det(U � zI); z 2 C ;
for the characteristic polynomial of U and set

�U (z) := det(I � 1

z
U ) = (�1

z
)n�U (z); z 6= 0:

The zeroes of both �U and �U are the eigenvalues of U and lie on the unit circle.
Let log denote the usual branch of the logarithm de�ned on Cnfv 2 C : <v � 0g,

so that log(1� v) = �P1
j=1 v

j=j for jvj < 1. Write w1; : : : ; wn for the eigenvalues
of U and set

�U (z) :=
X
`

log
�
1� w`

z

�

for z 2 Cn(S`fw`t : 0 � t � 1g), so that �U (z) = log �U (z) mod 2�i. Note that

�U (z) = �
1X
j=1

1

j

Tr (U j)

zj

for jzj > 1.
If z is a �xed point on the unit circle then, almost surely, z is not an eigenvalue of

Mn and �Mn
(z) is de�ned. Moreover, if fwkg is a �xed sequence with jwkj > 1 for
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all k and limk!1 wk = z, then limk!1 �U(wk) = �U (z). We know from Theorem

2.1 that E[ Tr (M j
n)] = 0 and E[ Tr (M j

n) Tr (M
k
n )] = �jk(j ^ n). Therefore,

lim
k!1

�Mn
(wk) = � lim

k!1

1X
j=1

1

j

Tr (M j
n)

wj
k

= �
1X
j=1

1

j

Tr (M j
n)

zj

in L2. Consequently,

�Mn
(z) = �

1X
j=1

1

j

Tr (M j
n)

zj
:

The following appears in [HKO00] (see also [KS00]) and we refer the reader
there for a discussion of the analogy between this result and Selberg's central limit
theorem for the Riemann zeta function.

Theorem 7.1. For distinct points z1; : : : ; zk on the unit circle, the random vectors

1p
logn

(�Mn
(z1); : : : ;�Mn

(zk))

converge in distribution as n ! 1 to a vector of independent complex standard

normal random variables.

Proof. It su�ces by the Cram�er{Wold device to show that if c1; : : : ; ck are complex
constants, then

P
` c`�Mn

(z`))=
p
logn converges in distribution to (

P
` jc`j2)1=2Z,

where Z is a complex standard normal random variable.
An argument similar to the one in the proof of Theorem 6.1 shows that the

conditions of Theorem 3.1 hold with

anj =

P
` c`z

�j
`

j
p
logn

;

mn =
n

logn
;

and

�2 =
X
`

jc`j2;

as required.

Remark 7.2. Recalling the notation of x6, one can use the principle of the argument
to show that

Nn(�; �)� E[Nn(�; �)] =
1

�
= (�Mn

(�) � �Mn
(�))

(see, for example, [HKOS00]). Consequently, Theorem 6.1 follows from Theorem
7.1.

8. Orthogonal and symplectic matrices

The methods used above in the context of the unitary group are directly appli-
cable to linear functionals of eigenvalues of Haar distributed random matrices in
the orthogonal and symplectic groups. The relevant moment formulae were estab-
lished in [DS94] using the thesis work of Arun Ram that has now been published in
[Ram95, Ram97]. We refer to these papers for background and details. Rather than
completely re-do the above development in the orthogonal and symplectic settings,
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we just indicate how our methods extend by sketching the following analogue of
Theorem 3.1.

Theorem 8.1. Consider an array of real constants fanj : n 2 N; j 2 Ng. Suppose
there exists � and �2 such that

lim
n!1

1X
j=1

an;2j = � and lim
n!1

1X
j=1

a2nj(j ^ 2n) = �2:

Suppose also that there exists a sequence of positive integers fmn : n 2 Ng such

that

lim
n!1

mn=n = 0;

lim
n!1

1X
j=mn+1

jan;2jj = 0; and lim
n!1

1X
j=mn+1

a2nj(j ^ 2n) = 0:

If Mn is a Haar distributed n � n orthogonal matrix, then
P1

j=1 anj Tr (M
j
n) con-

verges in distribution as n ! 1 to � + �Z, where Z is a real standard normal

random variable. If Mn is a Haar distributed 2n � 2n symplectic matrix, thenP1
j=1 anj Tr (M

j
n) converges in distribution as n!1 to ��+ �Z

Proof. We consider the orthogonal case, leaving the symplectic case to the reader.
We begin with an analogue of Theorem 2.1. Consider non-negative integers

a1; : : : ; ak. Let Z1; Z2; : : :Zk be independent standard normal random variables.
Put �j to be 1 or 0 according to whether j is even or odd. Then

E

2
4 kY
j=1

Tr (M j
n)

aj

3
5 = E

2
4 kY
j=1

(
p
jZj + �j)

aj

3
5 ; n � 2

kX
j=1

jaj ;(8.1)

and

E
��
Tr (M j

n)� �j
� �

Tr (Mk
n )� �k

��
= �jk(j ^ 2n):(8.2)

To establish (8.1), �rst recall from the proof of Theorem 2.1 that
Qk

j=1 Tr (M
j
n)

aj

is the power sum symmetric function p� applied to the eigenvalues of Mn, where �
is the partition (1a1 ; 2a2 ; : : : ; kak). Set K = 1a1 + 2a2 + � � �+ kak.

The power sum symmetric functions may be expressed as linear combinations
of the characters s� of the orthogonal group. These characters are indexed by
partitions � with Young diagrams having at most n boxes in the �rst two columns
(that is, �01+ �02 � n, where �0 is the partition conjugate to �). The change of basis
coe�cients are the characters of the Brauer algebra BK (n). From pp186{187 of
[Ram95] we have

p�(x1; : : : ; xn) =

bK=2cX
j=0

X
�`K�2j

1f�01 + �02 � ng��K;n(!)s�(x1; : : : ; xn);

here for each partition � of K � 2j, 0 � j � bK=2c, the coe�cient ��K;n(!) is the
character of an irreducible representation of BK(n) evaluated at a permutation !
of K letters with cycle type �.
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Integrating over the orthogonal group and using orthogonality of characters
shows that

E[p� (Mn)] = �;K;n(!);

where ; is the trivial partition. Observe that if K is odd, then E[p� (Mn)] = 0;
whereas if K = 2m is even and n � 2K, then Theorem 2.8 of [Ram97] gives

�;2m;n(!) =
kY
j=1

fj(aj);

where

for j odd; fj(a) :=

(
0; if a is odd;

(a� 1)!!; if a is even;

for j even; fj(a) :=

ba=2cX
s=0

�
a

2s

�
(2s � 1)!!js:

Noting that

fj(aj) = E
h
(
p
jZj + �j)

aj
i

completes the proof of (8.1).
Turning to (8.2), Theorem 6.8 of [Ram95] provides an alternative expression for

the simple power sums pj as linear combinations of the characters s� . There are
several cases to consider.

For n = 2r + 1 odd the formulae in [Ram95] yield the following. If j � r, then

pj = 1fj is eveng+
(r�1)^(j�1)X

`=0

(�1)`s(j�`;1`);

whereas if j > r, then

pj = 1fj is even and r � (j + 1)=2g+
r�1X
`=0

(�1)`s(j�`;1`)

+

(j�1)^(2r�1)X
`=r

(�1)`s(j�`;12r�`):

Multiplying pj and pk, integrating over the orthogonal group, and using the orthog-
onality of characters now yields (8.2). A very similar argument handles the case
when n is even.

The proof of the theorem is completed using the method of moments just as in
Theorem 3.1.

Remark 8.2. The identity (8.1) is a slightly corrected version of Theorem 4 in
[DS94]. It is not clear how small n can be to have equality of moments. For ex-
ample, [Dia87] shows that E[ Tr (Mn)a] = E[Za

1 ] for 0 � a � 2n+ 1. The question
rests on the semi-simplicity of BK (n), a matter which has not been fully resolved
(cf. [HW89, DWH99]).
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