
LOCAL FIELD U{STATISTICS

STEVEN N. EVANS

Abstract. Using the classical theory of symmetric functions, a general dis-
tributional limit theorem is established for U{statistics constructed from a
sequence of independent, identically distributed random variables taking val-
ues in a local �eld with zero characteristic.

1. Introduction

Since the work of Hoe�ding and Halmos in the 1940s, U{statistics constructed
from sequences of independent, identically distributed real random variables have
played a central role in theoretical and applied statistics. They have also at-
tracted considerable attention from probabilists because they exhibit a rich limit
theory that parallels that of i.i.d. sequences (for example, strong laws, central
limit theorems, large deviation results, and Berry{Esseen{type theorems have been
established for them). Surveys with extensive bibliographies may be found in
[Ser80, KB94, Lee90].

Our aim in this paper is to initiate an investigation into the properties of U{
statistics on algebraic structures other than the reals: namely, local �elds. A local
�eld K is any locally compact, non-discrete �eld other than the �eld of real numbers
or the �eld of complex numbers. All local �elds are totally disconnected, and are
either �nite algebraic extensions of the �eld of p-adic numbers { in which case the
characteristic is zero { or �nite algebraic extensions of the the less familiar p-series
�eld (the �eld of formal Laurent series with coe�cients drawn from the �nite �eld
with p elements) { in which case the characteristic is non{zero. We give an overview
of some of the basic properties of local �elds in x2.

Probability on local �elds has a substantial, if somewhat scattered, literature,
and a comprehensive book{length treatment has yet to be written. For the con-
venience and interest of the reader we have included a representative (but by no
means complete) bibliography in the references.

The natural de�nition of the notion of U{statistic on the local �eld K is the
following direct translation of the familiar Euclidean de�nition.

De�nition 1.1. Let fXkgk2Nbe an in�nite sequence of independent, identically
distributed random variables taking values in the local �eld K. Fix a symmetric
Borel function 	 : Km ! K for some m 2 N (that is, the value of the function
	 is unchanged by permutations of its arguments). The sequence of U{statistics

corresponding to fXkgk2Nand 	 is the sequence of K{valued random variables
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fZkgk�m given by

Zk :=
X

1�i1<i2<���<im�k

	(Xi1 ; Xi2 ; : : : ; Xim):

The following result is proved in x3. Some remarks on the hypotheses are given
after the proof.

Theorem 1.2. Suppose that the local �eld K has characteristic zero, the support of

the common distribution of the random variables Xk is compact, and the function

	 is continuous. Let fk(h)gh2Nbe a sequence of positive integers such that k(h)
converges to in�nity as h ! 1 and also k(h) thought of as an element of K con-

verges to some k� 2 K as h ! 1. Then the sequence fZk(h)gh2Nof U{statistics

converges in distribution as h!1.

2. Local fields

This section is essentially a summary of selected results from [Tai75, Sch84].
We refer the reader to these works for a fuller account. Before giving the general
de�nition of a local �eld, we begin with the prototypical example.

Example 2.1. Fix a positive prime p. We can write any non-zero rational number
r 2 Qnf0g uniquely as r = ps(a=b) where a and b are not divisible by p. Set
jrj = p�s. If we set j0j = 0, then the map j � j has the properties:

jxj = 0, x = 0;

jxyj = jxjjyj;

jx+ yj � jxj _ jyj:

(2.1)

The map (x; y) 7! jx� yj de�nes a metric on Q and we denote the completion of Q
in this metric by Qp. The �eld operations on Q extend continuously to make Qp a
topological �eld called the p-adic numbers. The map j � j also extends continuously
and the extension continues to have properties (2.1). The closed unit ball around
0, Zp := fx 2 Qp : jxj � 1g, is the closure in Qp of the integers Z, and is thus a
ring (this is also apparent from the properties (2.1)) called the p{adic integers. As
Zp = fx 2 Qp : jxj < pg, the set Zp is also open. Any other ball around 0 is of the
form fx 2 Qp : jxj � p�kg = pkZp for some integer k. Such a ball is the closure
of the rational numbers divisible by pk, and is thus a Zp{module (this is again
also apparent from the properties (2.1)). In particular, such a ball is an additive
subgroup of Qp. Arbitrary balls are translates (= cosets) of these closed and open
subgroups. In particular, the topology of Qp has a base of closed and open sets,
and hence Qp is totally disconnected. Further, each of these balls is compact, and
hence Qp is also locally compact.

A local �eld is a locally compact, non{discrete, totally disconnected, topological
�eld. (As an aside, a locally compact, non-discrete, topological �eld that is not
totally disconnected is necessarily either the real or the complex numbers. A local
�eld with characteristic zero is a �nite algebraic extension of the p{adic number
�eld for some prime p. A local �eld with non{zero characteristic is a �nite alge-
braic extension of the p{series �eld; that is, the �eld of formal Laurent series with
coe�cients drawn from the �nite �eld with p elements for some prime p.)

From now on, let K be a �xed local �eld. There is a real{valued mapping on K
which we denote by x 7! jxj. This map has the properties (2.1) and it takes the
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values fqk : k 2Zg[ f0g, where q = pc for some prime p and positive integer c (so
that for K = Qp we have c = 1).

A map with properties (2.1) is called a non-archimedean valuation. The property
jx + yj � jxj _ jyj is known as the ultrametric inequality or the strong triangle

inequality. The mapping (x; y) 7! jx� yj on K �K is a metric for K that gives the
topology of K. A consequence of (2.1) is that if jxj 6= jyj, then jx+ yj = jxj _ jyj.
This latter result implies that for every \triangle" fx; y; zg � K we have that at
least two of the lengths jx� yj, jx� zj, jy� zj must be equal and is therefore called
the isosceles triangle property.

3. Proof of Theorem 1.2

WriteE for the support of the commondistribution of theXk. By the ultrametric
Stone{Weierstrass theorem (see, for example, xA.4 of [Sch84]), polynomials are
uniformly dense in the space of continuous functions from the compact set Em into
K. Therefore, for each � > 0 there exists a polynomial Q such that

sup
(x1;:::;xm)2Em

jQ(x1; : : : ; xm)� 	(x1; : : : ; xm)j < �:

De�ne a symmetric polynomial Q : Em ! K by

Q(x1; : : : ; xm) =
1

m!

X
�2Sm

Q(x�(1); : : : ; x�(m));

where Sm denotes the symmetric group on m letters and we have used the assump-
tion that K has zero characteristic to conclude that m! 6= 0. By the strong triangle
inequality and the symmetry of 	,

sup
(x1;:::;xm)2Em

��Q(x1; : : : ; xm)� 	(x1; : : : ; xm)
��

= sup
(x1;:::;xm)2Em

����� 1m!

X
�2Sm

�
Q(x�(1); : : : ; x�(m))� 	(x�(1); : : : ; x�(m))

������
� jm!j�1�:

Thus, again by the strong triangle inequality,������
X

1�i1<i2<���<im�k

Q(Xi1 ; Xi2 ; : : : ; Xim)� Zk

������ � jm!j�1�:

It thus clearly su�ces to consider the special case of the theorem when 	 is a
symmetric polynomial. By replacing Xk by Xk � c and 	(x1; : : : ; xm) by 	(x1 +
c; : : : ; xm + c), we may further suppose that 0 2 E. Moreover, because

lim
h

X
1�i1<i2<���<im�k(h)

1 = lim
h

�
k(h)

m

�
=

k�(k� � 1) : : : (k� �m+ 1)

m!

by assumption, we may suppose that 	 has no constant term.
Given a positive integer n and integers �1 � �2 � : : : � 0 with 0 = �n+1 =

�n+2 = : : :, de�ne the corresponding monomial symmetric function Mn;� in the
variables (x1; : : : ; xn) by

Mn;�(x1; : : : ; xn) :=
X
�

x�;
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where the sum is over all distinct permutations � = (�1; : : : ; �n) of (�1; : : : ; �n)
and

x� := x�11 : : :x�nn :

The symmetric polynomialsMn;� with
P

i �i � d form a basis for the vector space
of symmetric polynomials in (x1; : : : ; xn) of total degree at most d (cf. Ch I of
[Mac95] or Ch 7 of [Sta99]). Consequently, we have

	(x1; : : : ; xm) =
X
�

c�Mm;�(x1; : : : ; xm);

for suitable constants c�, where the sum is over all � with 0 = �m+1 = �m+2 = : : :,
only �nitely many of the c� are non{zero, and c0 = 0 (by our added assumption
that 	 has no constant term). Observe for such � that if ` := maxfr : �r > 0g,
then X

1�i1<i2<���<im�k

Mm;�(Xi1 ; : : : ; Xim ) =

�
k � `

m� `

�
Mk;�(X1; : : : ; Xk):

Note that limh

�
k(h)�`
m�`

�
exists. It therefore su�ces to show that the random vectors

(Mk;�(X1; : : : ; Xk));

where � ranges over those non{zero partitions such that 0 = �m+1 = �m+2 = : : :
and

P
i �i is at most the total degree of 	, converge in distribution as k !1.

Given a non-negative integer j, de�ne the power sum symmetric function Pn;j

in the variables (x1; : : : ; xn) by

Pn;j(x1; : : : ; xn) := xj1 + � � �+ xjn;

and given integers �1 � �2 � : : : � 0 with 0 = �n+1 = �n+2 = : : :, set

Pn;�(x1; : : : ; xn) :=
Y
i

Pn;�i(x1; : : : ; xn):

We have

Mn;�(x1; : : : ; xn) =
X
�

c��Pn;�(x1; : : : ; xn)

where the sum is over all � with
P

i �i =
P

i �i and, importantly, the constants
c�� do not depend on n (cf. Ch I of [Mac95] or Ch 7 of [Sta99], and note that we
are again using the assumption that K has characteristic 0).

It thus su�ces to show for any positive integer J that the random vectors 
kX
i=1

Xi;

kX
i=1

X2
i ; : : : ;

kX
i=1

XJ
i

!

converge in distribution as k!1. However, this process is just a random walk on
the compact subgroup of the additive group of KJ generated by f(x; x2; : : : ; xJ ) :
x 2 Eg, and the added assumption that 0 2 E ensures that the random walk
converges in distribution to Haar measure on this subgroup. �

Remark 3.1. The hypothesis that K has zero characteristic was used several times
in the above proof. We do not know whether the result has a counterpart for
non{zero characteristics.



LOCAL FIELD U{STATISTICS 5

Remark 3.2. The role played by the hypothesis that k(h) converges in K is apparent
from the proof. However, because the assumption initially looks rather unusual,
we emphasise its importance with the following simple example. Suppose that K is
the �eld of p{adic numbers Qp, m = 2, and 	(x1; x2) = x1 + x2. Then

Zk = (k � 1)
kX
i=1

Xi:

As we observed in the proof, if 0 is in the support of the common distribution of

Xk, then
Pk

i=1Xi converges in distribution as k ! 1 to Haar measure on the
subgroup of Qp generated by the support. Note that if k is of the form ps+1, then
jk� 1j = p�s, whereas if k is of the form ps+ 2, s � 1, then p does not divide k� 1
and hence jk� 1j = 1. Consequently, we must take k !1 along a subsequence in
order for Zk to have a limit in distribution.

Remark 3.3. In principle, the steps in the proof can be reversed to describe the lim-
iting distribution as the push{forward by an appropriate function of Haar measure
on the compact additive subgroup of KNgenerated by (x; x2; x3; : : :) for x in suit-
able �xed translate of the support of the distribution of the Xk. It does not appear
that one can give a more e�ective characterisation of the limit. In the next section
we examine some particularly simple examples where it possible to say something
concrete about the limit.

4. Some examples

Suppose that K is the �eld of p{adic numbers Qp for some prime p and Xk takes

only the values 0 and 1 with positive probability. Then
Pk

i=1Xi =
Pk

i=1X
2
i = : : : ,

and these sums converge in distribution to Haar measure on the ring of p{adic
integers Zp.

Write En;r for the r
th elementary symmetric function of n variables; that is,

En;r(x1; : : : ; xn) :=
X

1�i1<:::<ir�n

xi1 : : :xir ; n � r:

If we put 	 = Em;r , then Zk =
�
k�r
m�r

�
Ek;r(X1; : : : ; Xk). Write U for a random

variable with Haar distribution on Zp. Then, by a classical determinantal identity
(see Example 8 in xI.2 of [Mac95]), Ek;r(X1; : : : ; Xk) converges in distribution as
k!1 to

1

r!
det

0
BBBBB@

U 1 0 : : : 0 0
U U 2 : : : 0 0
...

...
...

. . .
. . .

...
U U U : : : U r � 1
U U U : : : U U

1
CCCCCA =

U (U � 1) : : : (U � r + 1)

r!
=

�
U

r

�

(this is also clear from elementary considerations: if fx1; : : : ; xng � f0; 1g, then
En;r(x1; : : : ; xn) counts how many subsets of size r can be drawn from a set of
(x1 + � � �+ xn) objects).

We note in passing that the random variable U is the simplest example of the
natural analogue on Qp of a Gaussian random variable. Moreover, the random

variables
�
U

r

�
are, in a very natural sense, orthogonal and appear in a theory of
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stochastic integration and Wiener chaos on Qp. We refer the reader to [Eva89a,
Eva91, Eva93, Eva95] for details.

Write Hn;r for the rth complete symmetric function of n variables; that is,
Hn;r(x1; : : : ; xn) is the sum of all monomials of total degree r in the variables
x1; : : : ; xn. By another classical determinantal identity (see Example 8 in xI.2 of
[Mac95]), Hk;r(X1; : : : ; Xk) converges in distribution as k!1 to

1

r!
det

0
BBBBB@

U �1 0 : : : 0 0
U U �2 : : : 0 0
...

...
...

. . .
. . .

...
U U U : : : U �(r � 1)
U U U : : : U U

1
CCCCCA = (�1)r

�
�U

r

�
:

Note that fHk;r(X1; : : : ; Xk)g is not a sequence of U{statistics for some function
	.

Finally, given a partition � of some integer r, let Sn;�(x1; : : : ; xn) be the Schur

function in the variables x1; : : : ; xn associated with � (see xI.3 of [Mac95]). From a
classical determinantal formula expressing Schur functions in terms of the complete
symmetric functions (see Equation (3.4) of [Mac95])

Sk;�(X1; : : : ; Xk) = det (Hk;�i�i+j(X1; : : : ; Xk))1�i;j�N

for any N that is at least the length of the partition � (that is, the number of
non{zero parts in �). By the above, the right{hand side converges in distribution
as k!1 to

det

�
(�1)�i�i+j

�
�U

�i � i+ j

��
1�i;j�N

= (�1)r det

��
�U

�i � i+ j

��
1�i;j�N

:

From Example 4 in xI.3 of [Mac95], we see that the right{hand side isY
x2�0

U � c�0(x)

h�0(x)
;

where �0 is the partition dual to � and c�0(x) (resp. h�0(x)) denotes the content

(resp. hook length) of �0 at x (that is, if x is the box in the ith row and jth column of
the Young diagram of �0, then c�0(x) := j � i and h�0(x) is the number of boxes in
the hook with corner at x). There is a natural identi�cation of boxes in the Young
diagram of a partition with boxes in the Young diagram of the dual partition.
Under this identi�cation, c�0(x) = �c�(x) and h�0(x) = h�(x). Consequently,
Sk;�(X1; : : : ; Xk) converges in distribution as k !1 toY

x2�

U + c�(x)

h�(x)
:
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