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Abstract

This paper describes a parametric deconvolution method (PDPS) appropriate for a particular
class of signals which we call spike-convolution models. These models arise when a sparse
spike train|Dirac deltas according to our mathematical treatment|is convolved with a �xed
point-spread function, and additive noise or measurement error is superimposed. We view
deconvolution as an estimation problem, regarding the locations and heights of the underlying
spikes, as well as the baseline and the measurement error variance as unknown parameters.
Our estimation scheme consists of two parts: model �tting and model selection. To �t a spike-
convolution model of a speci�c order, we estimate peak locations by trigonometric moments,
and heights and the baseline by least squares. The model selection procedure has two stages.
Its �rst stage is so designed that we expect a model of a somewhat larger order than the truth
to be selected. In the second stage, the �nal model is obtained using backwards deletion. This
results in not only an estimate of the model order, but also an estimate of peak locations and
heights with much smaller bias and variation than that found in a direct trigonometric moment
estimate. A more e�cient maximum likelihood estimate can be calculated from these estimates
using a Gauss-Newton algorithm. We also present some relevant results concerning the spectral
structure of Toeplitz matrices which play a key role in the estimation. Finally, we illustrate the
behavior of these estimates using simulated and real DNA sequencing data.

Abbreviated title: Parametric deconvolution

AMS 1991 subject classi�cation: Primary 62F10; Secondary 62F12, 86A22.

Key words and phrases: deconvolution, spike train, model selection, DNA sequenc-

ing, Toeplitz matrix.

�Supported by NSF grant DMS-9971698
ySupported by DOE grant DE-FG03-97ER62387



1 Introduction and background

Deconvolution is used in many scienti�c disciplines, including geophysics, spectroscopy, chromatog-
raphy and pharmacokinetics. In abstract form, an unobserved signal x(t) is blurred by a known

point spread function w, resulting in an observed signal y(t). Mathematically, this can be rep-
resented in terms of the convolution operation �: y = w � x. The task of deconvolution is to
reconstruct the unobserved signal x from the observed signal y. The point spread function is as-
sumed to be known throughout this paper. An additive measurement error is also assumed in y in

all discrete situations discussed.
Our motivation is the problem of base-calling in DNA sequencing. The Sanger sequencing

technique is a combination of enzymatic reactions, electrophoresis and uorescence-based detection,
see [1]. This procedure produces a four-component vector time series. Base-calling is the analysis

part of DNA sequencing, which attempts to recover the underlying DNA sequence from the vector
time series. Figure 1 shows a segment of one channel of such a series (This series is di�erent
from the original sequencing data because of the \cross talk" phenomenon. We here pass over this

issue, and refer to [21] for details). Typically, each major peak in the series corresponds to one
base. As sequencing progresses, electrophoretic di�usion spreads peaks more and more. In regions
where there are multiple occurrences of the same base, several successive peaks may merge into one
large block. In this situation, base-calling is far more di�cult. A number of studies exist of the

errors made by one widely-used base-calling system, see [3, 17, 18]. These reports show that errors
associated with runs of the same base constitute more than half of the total errors. Furthermore,
this kind of error causes more serious di�culties in later analysis than other kinds. For this reason,
it seems important to try and do better in resolving peaks, and this is the motivation of the research

we report here.

The literature on deconvolution is rich and scattered across a wide variety of �elds. Frequently,
deconvolution is an ill-posed inverse problem, see Jansson [13]. Two techniques, regularization

and exploiting bound or non-negativity constraints on the unknown functions, have been proved
to be useful in dealing with ill-posedness. Regularization was introduced by Tikhonov [30], and
has been well studied since then. For example, the long-standing iterative deconvolution method
of Van Cittert, see Jansson [13], can be viewed as a regularization method. Jansson [13] adjusted

this regularization method, adds non-negativity constraints to the unknown function, and applies
it successfully to problems in spectroscopy.

Maximum entropy deconvolution can also be regarded as a regularization procedure, one which
only applies to nonnegative signals, see [10, 11]. Donoho et al. [5] showed this procedure has certain

advantages such as signal-to-noise enhancement and super-resolution when the signal is nearly-
black. Stark and Parker [29] proposed some new algorithms to solve this type of constrained
minimization problems.

The deblurring method introduced by Shepp and Vardi [27], and Vardi and Lee [32] uses max-
imum likelihood estimation under a Poisson or a multinomial model. Again it is assumed that the
unknown function is nonnegative. Snyder et al. [28] obtained a similar algorithm as a solution
to a general Fredholm integral equation of the �rst kind. They derive the formula by minimiz-

ing Csisz�ar's I-divergence, which is closely related to the concept of likelihood. Richardson [26],
Kennett et al. [14, 15, 16], and Di Ges�u et al. [4] obtained the same result from a more intuitive
Bayesian point of view, and term it as \Bayesian deconvolution". All of these methods could be
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Figure 1: A segment slab gel electrophoresis sequencing data (provided by the engineering group

at Lawrence Berkeley National Laboratory).

used in the base-calling problem, and their behavior on DNA sequencing data can be found in [20].
Poskitt et al [25] described a double-blind deconvolution method to analyze post-synaptic cur-

rents in nerve cells. This analysis is based on an elegant statistical model, and the estimator is
derived by minimizing the quasi-pro�le-likelihood. Though the data from post-synaptic currents
in nerve cells are di�erent from DNA sequencing data, we �nd the likelihood structures of the two

models proposed for each problem have some similarities. Therefore, we can borrow some ideas
from [25] to study the deconvolution problem in DNA sequencing.

Motivated by the DNA sequencing data, we de�ne what we call the spike-convolution model,
in which the unknown function is represented as a linear combination of a �nite number of positive

spikes (Dirac functions) together with a constant baseline. In this model, deconvolution is nothing
but a standard parameter estimation problem, where the parameters include the number, locations
and heights of the underlying spikes, the baseline and the measurement error variance. Our esti-

mation procedure uses the spectral properties of Toeplitz matrices, least squares, and statistical

model selection techniques, and we call it parametric deconvolution of positive spikes (PDPS).
The paper is arranged as follows. In Section 2 we introduce the spike-convolution model and

some notation, discuss several aspects such as identi�ability, and outline the estimation procedure.

In Section 3 we study spectral structures of Toeplitz matrices constructed from trigonometric
moments, and present algorithms and asymptotics of the trigonometric moments estimates. In
Section 4 we describe the algorithms and asymptotics of the maximum likelihood estimates. In
Section 5 we propose our ultimate method, which is a package including a model �tting procedure

and a two-stage model selection procedure. Section 6 contains a simulation study of the proposed
methodologies. Finally, we apply PDPS to real DNA sequencing data, and compare the result with

that using another nonparametric deconvolution method. Several other practical issues of PDPS
are also discussed. The appendix contains the proofs and the relevant mathematical details.
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2 The spike-convolution model

Throughout the paper, the point spread function w(�) is assumed to be known, and to satisfy the
following conditions, where vk =

1
2�

R �
�� w(t)e

ikt dt are w's Fourier coe�cients.

1. It has �nite support (��1; �2), where 0 < �1; �2 < �;

2. w(�) 2 C2[��; �];
3. vk 6= 0, for k = 0 ;�1; � � � ;�K0.

The last assumption is described by people as requiring that there is no hole in the Fourier transform
of the point spread function. It worth mentioning that w(�) is not necessarily nonnegative or
causal. There exist studies of the shape of the point spread function in DNA sequencing, see [23]

for references, and the determination of the width of the point spread function is another matter
worthy of attention. However, these issues are not critical to the present work, and so we pass over
them here. The signal to be estimated is assumed to have the following form,

x(t) = A0 +
pX

j=1

Aj �(t� �j); (1)

where �(�) is the Dirac delta function. We assume the coe�cients Aj of the Dirac functions are
positive, and refer to them as \heights" of the spikes. Thus the underlying signal x(t) is a linear
combination of a �nite number of spikes with positive heights, together with a constant baseline.

We also assume �� + �1 < �1 < � � � < �p < � � �2. Hence the support of the convolution y of w
and x will stay in the range [��; �]. Explicitly, we have

y(t) = A0 +
pX

j=1

Aj w(t� �j) = (x � w)(t) ; t 2 [��; �] ; (2)

where the time range has been scaled to [��; �] for convenience. We have assumed there are no
peaks near the two ends. In real DNA sequencing, we can always cut the raw data into pieces at

valley points, and apply the deconvolution to each piece separately. The observations fz(tl)g are a
sample of the above model, corrupted by measurement errors which are assumed to be additive:

z(tl) = y(tl) + �(tl) = A0 +
pX

j=1

Aj w(tl � �j) + �(tl); (3)

where tl =
2� l
n
, l = �[n2 ]; � � � ; 0; � � � ; [n2 ]� 1 if n is even, or l = �[n2 ]; � � � ; 0; � � � ; [n2 ] if n is odd. The

f�(tl)g are supposed to be i.i.d. with E(�(tl)) = 0, V ar(�(tl)) = �2, and a �nite third moment.
Before we proceed, we introduce some notation. We denote the signal in the spike-convolution

model (2) by SC(w; p;A; � ) where A and � respectively represent fAjg and f�jg, and formally
denote the signal x in (1) by SC(�; p;A; �). We de�ne the inner product of two functions y1(t) and
y2(t), belonging to L2 [��; �], by < y1; y2 >=

1
2�

R �
�� y1(t) y2(t) dt. For functions z1(t) and z2(t)

well de�ned at the lattice points tl =
2� l
n
, we also de�ne the following inner product

< z1; z2 >n=

8<
:

1
n

P[n2 ]

l=�[n
2
] z1(tl) z2(tl); if n is odd

1
n

P[n2 ]�1

l=�[n
2
] z1(tl) z2(tl); if n is even

:
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The norms induced by < � ; � > and < � ; � >n are denoted by k � k and k � kn respectively.

The Hilbert-Schmidt theory for Fredholm integral equations of the �rst kind assumes that the
signal x(t) is in L2[�; �], and thus excludes the Dirac functions. Consequently, the signal recon-
structed by methods within that framework will not contain any Dirac functions. This means that

only incomplete deconvolution would be achieved if (2) were the truth. We prefer to regard decon-
volution as a problem of parameter estimation, and this can result in a complete deconvolution.

The parameters in a SC(w; p;A; � ) model include the number, locations and heights of the
peaks, and the baseline. Although these parameters are closely related, they play quite di�erent

roles from the perspective of statistical estimation, and it seems very di�cult to estimate them
all, simultaneously and e�ciently, in one step. The di�culty lies in the irregular structure of the
the parameter space. For example, suppose we have a spike-convolution model with three positive
peaks. If we let the height of one peak tend to zero, then the limiting model can only be regarded as

a spike-convolution model with two peaks, for we require peak heights to be positive. Following this
limiting process, the dimension of the parameter space changes. However, we have the following
result saying that a spike-convolution model of order p cannot arbitrarily well be approximated by

models of smaller orders.

Theorem 2.1 Let y(t) be a SC(w; p;A; �) model. Then we have: inf�y k y � �y k= d > 0, where

the in�mum is taken over all �y 2 SC(w; l; �A; �� ), l < p.

A relating problem in signal processing is to estimate the so-called hidden frequencies !j in the
following model

st =
pX

j=1

Aj cos(t !j + �j) + �t ; (4)

where the Aj are positive and �t is white noise. In fact, the spectral density function of the above
process, in the generalized sense, is a constant plus jumps occurring at the !j, with corresponding

heights Aj . This is exactly the signal to be reconstructed in Model (2). Apart from the point

spread function, the two problems are Fourier duals of each other. In order to estimate the hid-
den frequencies, Pisarenko [24] suggested a method using the Toeplitz matrices constructed from
autocovariance functions. We exploit a similar idea as part of our estimation procedure.

Our estimation procedure consists of several steps. In Algorithm 3.1, we estimate the peak
locations by connecting deconvolution with the spectral structure of Toeplitz matrices constructed
from the Fourier coe�cients of the observations. The peak heights of the estimated locations
can be estimated either by a trigonometric moment method|Algorithm 3.2, or by least squares,

where the latter exploits the connection between spike-convolution models and hypothetical linear
regressions, see Algorithm 5.1. This leaves us with the task of estimating the number of peaks,
one usually regarded as a model selection problem. In our method, models of each candidate order
have to be �tted before model selection takes place. The model selection strategy described in

Algorithm 5.2 consists of two stages. First we choose a model which should come close to including
the true model as a submodel, as over�tting is not completely suppressed at this step. We then use
a modi�ed GIC criterion together with a backward deletion procedure to obtain our �nal model.

The resulting estimate can further be tuned by an optional step: maximizing likelihood if the
distribution of the measurement errors is assumed known, see Section 4. Under the assumption of
normal errors, we calculate the Fisher information matrix of the spike-convolution model, whose
inverse gives the nominal standard errors of estimates. Note that these standard errors will not
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have taken into account the model selection process. The computation of the maximum likelihood

estimate or one-step estimate can be carried out by Gauss-Newton algorithm. Please keep in mind
that Section 3 and 4 are about inference given the model order m|the number of spikes included
in the spike-convolution model. This is a brief description of PDPS, which will be explained more

fully in the rest of the paper.

3 The trigonometric moment estimates

Throughout this section, we assume the model order m is given. The connection between the
trigonometric moments and the parameters in a spike-convolution model can be given using the
spectral structure of Toeplitz matrices as follows.

Theorem 3.1 Let the Fourier coe�cients of y(t), which follows SC(w;m;A; �) with m � K0, be

fk =< y(t); eikt >, for k = 0 ;�1; � � �. First, write g0 = f0 and gk = fk v0=vk, for 0 < k � K0.

Next, form the Toeplitz matrices Gm = (gj�i)i;j=0;���;m. Finally, write U (m)(z) =
Qm

j=1(z � ei�j ) =Pm
j=0�j z

j. Then we have

1. (
f0 = A0 + (

Pm
j=1Aj)v0

fk = (
Pm

j=1Aj e
ik�j )vk; k 6= 0

: (5)

2. A0 is the smallest eigenvalue of Gm with multiplicity one and eigenvector (�0; � � � ; �m)T .
3. The fAjg satisfy the following linear system:

v0

0
BBBB@

1 1 � � � 1
ei�1 ei�2 � � � ei�m

...
...

. . .
...

ei(m�1)�1 ei(m�1)�2 � � � ei(m�1)�m

1
CCCCA

0
BBBB@

A1

A2
...

Am

1
CCCCA =

0
BBBB@
g0 �A0

g1
...

gm�1

1
CCCCA : (6)

Note: When a Toeplitz matrix has distinct eigenvalues, the relation between eigenvalues and
eigenvectors is one-to-one. For simplicity, we will use expressions such as \smallest eigenvector"
to refer to the eigenvector corresponding to the smallest eigenvalue. The converse of the above
theorem is also true in the following sense.

Theorem 3.2 Suppose we are given 2m+ 1 complex numbers ffj;�m � j � mg, where m � K0,

fj = f�j. Let g0 = f0, and gk = fk v0=vk , for 0 < k � K0. Assume that the smallest eigenvalue

A0 of the Toeplitz matrix Gm = (gj�i)i;j=0;���;m has multiplicity 1. Let the smallest eigenvector be

� = (�0; � � � ; �m)T , and U (m)(z) =
Pm

j=0 �j z
j. Then

1. U (m)(z) has m distinct roots exactly on the unit circle, which are denoted by fei�jg.
2. Furthermore, if �� + �1 < �1 < � � � < �m < � � �2, then there exists a SC(w;m;A; �)

whose �rst m+ 1 Fourier coe�cients are ffj; 0 � j � mg. Its baseline and heights fAjg are

determined by the linear system (6), and the resulting heights are positive.
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This result is of great signi�cance for practical model �tting from the computational point of

view, since the peak locations could be found by restricting the search of roots of U (m)(z) to the
unit circle. Starting from data z(tl), we estimate the trigonometric moments by f̂k =< z; eikt >n.
Based on Theorem 3.2, for any given nonnegative integer m � K0, we can input these empirical

trigonometric moments into the following two algorithms.

Algorithm 3.1 Trigonometric moment estimates of peak locations.

1. Deconvolution: let ĝ0 = f̂0, ĝk = f̂k v0=vk, for k = �1; � � � ;�m.

2. Computing the smallest eigenvalue-vector of the Toeplitz matrix: construct the Toeplitz matrix

Ĝm = (ĝj�i), and compute its smallest eigenvalue Â
(m)
0 (assuming its multiplicity is one), and

corresponding eigenvector �̂(m) = (�̂
(m)
0 ; � � � ; �̂(m)

m ).

3. Solving a polynomial: on the unit circle, �nd the m distinct roots of Û (m)(z) =
Pm

j=0 �̂
(m)
j zj,

which we denote by fei�̂
(m)
j g, j = 1; � � � ;m.

Algorithm 3.2 Trigonometric moment estimates of heights.

Solve the following Vandermonde linear system:

v0

0
BBBBB@

1 1 � � � 1

ei�̂
(m)
1 ei�̂

(m)
2 � � � ei�̂

(m)
m

...
...

. . .
...

ei(m�1)�̂
(m)
1 ei(m�1)�̂

(m)
2 � � � ei(m�1)�̂

(m)
m

1
CCCCCA

0
BBBBB@
Â
(m)
1

Â
(m)
2
...

Â
(m)
m

1
CCCCCA =

0
BBBB@
ĝ0 � Â

(m)
0

ĝ1
...

ĝm�1

1
CCCCA :

The output of these two algorithms is a SC(w;m; Â(m); �̂ (m)) whose �rstm+1 Fourier coe�cients

are f̂k; k = 0 ; � � � ;m. We make some remarks here. First, we have ignored the case when the
multiplicity of A0 is greater than 1, since the Lebesgue measure of this singular case is zero. Second,

strictly speaking, the �tted model makes sense only when �� + �1 < �̂
(m)
1 < � � � < �̂

(m)
m < � � �2.

We thus delete those peaks outside the legitimate range in the regression stage discussed later, and
then estimate estimate the heights of the remaining peaks by least squares, see Algorithm 5.1 for
more details. Third, our numerical experiments carried out in MATLAB show these two algorithms

are robust to round o� and noise in the data. For example, the roots of Û (m)(z) do indeed lie on

the unit circle to the necessary accuracy. Finally, in the case that the observations are generated
from a SC(w; p;A; � ), if we take m = p, then �̂j and Âj are the trigonometric moment estimates,

which are consistent. Indeed, we have the following central limit theorem.

Theorem 3.3

p
n [(Â0; Â1; � � � ; Âp; �̂1; � � � ; �̂p)T � (A0; A1; � � � ; Ap; �1; � � � ; �p)T ] d�!N(0; V ) : (7)

where V = 4�2Q�1 P Q�T ,

P =
�2

2
diag(2; jv0

v1
j2; � � � ; jv0

vp
j2; jv0

v1
j2; � � � ; jv0

vp
j2) ; (8)
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and

Q =

0
BBBBBBBBB@

1 1 1 � � � 1 0 0 � � � 0

0 cos �1 cos �2 � � � cos �p �A1 sin �1 �A2 sin �2 � � � �Ap sin �p
...

...
...

. . .
...

...
...

. . .
...

0 cos p�1 cos p�2 � � � cos p�p �pA1 sin p�1 �pA2 sin p�2 � � � �pAp sin p�p
0 sin �1 sin �2 � � � sin �p A1 cos �1 A2 cos �2 � � � Ap cos �p
...

...
...

. . .
...

...
...

. . .
...

0 sin p�1 sin p�2 � � � sin p�p pA1 cos p�1 pA2 cos p�2 � � � pAp cos p�p

1
CCCCCCCCCA

: (9)

More algebra shows that the asymptotic variances of the fAjg depends only on the f�jg, while the
asymptotic variances of the f�jg depend not only on the con�guration of the f�jg, but also on the
heights fAjg. In fact, if we de�ne A=� to be the local signal-to-noise ratio, then the asymptotic

standard deviation of �̂j is proportional to the reciprocal of its local signal-to-noise ratio.

4 The maximum likelihood estimates

Throughout this section, we assume the model order m is given. In general, trigonometric moment
estimates are not as e�cient as maximum likelihood estimates. However, starting from trigono-

metric moment estimates, which are
p
n-consistent, we can construct one-step estimates or �nd

maximum likelihood estimates using Fisher scoring. In either case, we need to specify the error
distribution to calculate the Fisher information matrix. Under the assumption of normal errors,
the �2 loglikelihood of the observations generated from Model (3) is

n log(2� �2) +
1

�2

X
l

fz(tl)�A0 �
pX

j=1

Aj w(tl � �j)g2 : (10)

More notation is needed in this section. We write � = (A0; A1; � � � ; Ap; �1; � � � ; �p)T , and some-
times we use y�(t) to denote SC(w; p;A; � ). Denote the gradient vector by r� = (@logL=@�)T ,

and r(�;�2) = (r�
T ; @logL=@�2)T . As usual, the Fisher information matrix is de�ned by I(�;�2) =

1
nE[r(�;�2)r(�;�2)

T ], and I� =
1
nE[r�r�

T ].

Proposition 4.1 Let 	� = ( A0 ;  A1 ; � � � ;  Ap
;  �1 ; � � � ;  �p)T , where  A0 = 1,

 Aj
= w(t� �j),  �j = �Ajw

0(t� �j), j = 1; � � � ; p. Then

I(�;�2) =

 
I� 0Tp
0p

1
2�4

!
; (11)

where 0p is a vector with p zeros, and

I� =
1

�2
< 	�;	

T
� >n�! 1

�2
< 	�;	

T
� > : (12)
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Here < 	�;	
T
� > is de�ned by

0
BBBBBBBBBBBB@

<  A0 ;  A0 > <  A0 ;  A1 > � � � <  A0 ;  Ap
> <  A0 ;  �1 > � � � <  A0 ;  �p >

<  A1 ;  A0 > <  A1 ;  A1 > � � � <  A1 ;  Ap
> <  A1 ;  �1 > � � � <  A1 ;  �p >

...
...

. . .
...

...
. . .

...

<  Ap
;  A0 > <  Ap

;  A1 > � � � <  Ap
;  Ap

> <  Ap
;  �1 > � � � <  Ap

;  �p >

<  �1 ;  A0 > <  �1 ;  A1 > � � � <  �1 ;  Ap
> <  �1 ;  �1 > � � � <  �1 ;  �p >

...
...

. . .
...

...
. . .

...

<  �p ;  A0 > <  �p ;  A1 > � � � <  �p ;  Ap
> <  �p ;  �1 > � � � <  �p ;  �p >

1
CCCCCCCCCCCCA
;

and similarly for < 	�;	
T
� >n. Using a similar notation, we compute the gradient vector as follows.

1

n
r� =

1

�2
< 	�; �� >n

=
1

�2
(<  A0 ; �� >n; <  A1 ; �� >n; � � � ; <  Ap

; �� >n; <  �1 ; �� >n; � � � ; <  �p ; �� >n)
T ;

where ��(t) = z(t)� y�(t).

Just as with i.i.d. observations, the MLEs are both consistent and asymptotically e�cient under
the assumption of normal errors.

Theorem 4.1 The maximum likelihood estimates are consistent; indeed, as n �!1, we have

p
n [(~�; ~�2)T � (�; �2)T ]

d�!N(0; I�1
(�;�2)) :

In order to compute the maximum likelihood estimate, we can use Fisher scoring as follows, taking
the trigonometric moment estimates as the starting value. 

�new
�2new

!
=

 
�old
�2old

!
+

1

n
I�1
(�;�2)r(�;�2)j(�old ;�2old) :

Because of the orthogonality of � and �2, we can �rst use Fisher scoring method to improve the

estimate of �. This leads to the well known Gauss-Newton algorithm.

Algorithm 4.1 Gauss-Newton.

1. Let �old be a
p
n-consistent estimate of �.

2. Calculate �new by the following

�new � �old =
1

n
I�1
� r�j�old = [< 	�old ;	

T
�old

>n]
�1 < 	�old ; z � y�old >n

= [
X
l

	�old(tl)	�old(tl)
T ]�1 [

X
l

	�old(tl)(z(tl)� y�old(tl))] : (13)

Although we can iterate the above procedure, the following result shows one step is enough for the
consideration of e�ciency.
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Theorem 4.2 p
n (�new � �)T

d�!N(0; I�1
� ) :

Finally, �2 can be estimated as

�2new =k z(t)�A0;new �
pX

j=1

Aj;new w(t� �j;new) k2n :

5 Hypothetical regressions and model selection

In this section, we deal with the case of m unknown.

5.1 The least squares estimates and model �tting

Because of the linear dependence of the signal on the baseline and heights in a SC(w; p;A; � ),
once the number and locations of the peaks are obtained, we can use least squares to estimate the
baseline and peak heights. Combining this idea with Algorithm 3.1, we are led to the following

model �tting algorithm.

Algorithm 5.1 Model-�tting.

Starting with the empirical trigonometric moments f̂k, for any given nonnegative integer m � K0,

1. Use the method of trigonometric moments to estimate the peak locations f��jg using Algorithm
3.1.

2. Eliminate those peaks falling outside [�� + �1; � � �2], and denote the locations of the re-

maining peaks by f��j ; j = 1; � � � ; �mg, where �m � m.

3. Estimate the heights �Aj corresponding to these peaks by minimizing the following

k z(t)� �A0 �
�mX

j=1

�Aj w(t� ��j) k2n : (14)

This results in the least squares estimates of the baseline and heights.

The output of this algorithm is a SC(w; �m; �A( �m); �� ( �m)). Next the problem of model selection
arises because we can �t a spike-convolution model for each nonnegative integer in a given range.

5.2 Model selection

Suppose that the data is generated from a SC(w; p;A; � ), and noise is added. In light of Theorem
2.1, models SC(w; �m; �A( �m); �� ( �m)) with �m < p are not good. When �m � p, we might expect a
subset of f��jg will be close to the real peak locations f�jg. This is the basis of our model selection
procedure, whose motivation will be clearer following the next result.

Proposition 5.1 Suppose that a Toeplitz matrix Gm has smallest eigenvalue A0 with multiplicity

r > 1.

10



1. Let m�r+1 = p. Then the Toeplitz sub-matrix Gp has the same smallest eigenvalue A0 with

multiplicity 1.

2. Let fei�j , j = 1; � � � ; pg be the roots corresponding to the eigenvector of Gp associated with the

eigenvalue A0.Then any polynomial whose coe�cients form an eigenvector in the invariant

space of Gm corresponding to A0 has fei�j , j = 1; � � � ; pg as a subset of its roots.

Let us consider Algorithm 3.1 in light of this result. Supposing that m � p, we explain the

situation from two perspectives. From the computational perspective, in the absence of errors,
any polynomial (not unique) whose coe�cients form an eigenvector in the invariant space of Gm

corresponding to the smallest eigenvalue always has fei�j , j = 1; � � � ; pg as a subset of its roots,

where �j are the real peak locations. But in general it is not true that all its zeros are on the unit

circle. In the presence of errors, Theorem 3.2 implies that the multiplicity of the smallest eigenvalue
is one (apart from a set of Lebesgue measure zero), and the resulting (unique) polynomial has all its
roots on the unit circle. This attractive feature, in the computational sense, is the \positive" aspect

of noise. From the perspective of spectral structures, the situation here has a close connection to
the perturbation theory of matrices, see [8]. In the absence of errors, the distance between the
invariant space S of Gm corresponding to the smallest eigenvalue and other invariant spaces is
positive. In other words, it is well separated from other invariant spaces. In the presence of errors

and when the sample size is large enough, on the one hand, the last m� p+1 eigenvalues could be
close to each other, and their eigenvectors could be \wobbly" (see [8]) under small perturbation of
the noise. On the other hand the invariant space Ŝ de�ned by these possibly \wobbly" eigenvectors

is stable. This is true because when the sample size is large enough, Ŝ is close to S, which is
well separated from other invariant spaces. Therefore we expect a subset of the roots obtained
from Algorithm 3.1 to be close to fei�j , j = 1; � � � ; pg when the sample size is large enough. It is
so because the eigenvector from which these roots are obtained belongs to Ŝ, and is close to one

eigenvector belonging to S and having the property as shown in Proposition 5.1. Now let us return

to model �tting. The above argument means the regressors 1; w(t� ��1); � � � ; w(t� �� �m) will include
a subset of \explanatory variables" close to the true regressors 1; w(t� �1); � � � ; w(t� �p). For large
enough n we can therefore expect model selection criteria to behave as they do in the context of

variable selection in regression. Our model selection procedure has two stages. We assume the
model order has an upper bound M(� K0).

Algorithm 5.2 Two-stage model selection.

1. First stage. Among all the SC(w; �m; �A( �m); �� ( �m)) models �tted by Algorithm 5.1, choose the

one that minimizes the following

MGIC1(r) = ��(r)2 +
c1(n) log n

n
r ; (15)

where ��(r)2 is the quantity in (14), and c1(n) � 0 is a penalty coe�cient. Denote this model

by SC(w; �m0; �A
( �m0); �� ( �m0)).

2. Second stage. We regard the model selected in the �rst stage as a hypothetical regression

model, and use a backward deletion procedure to select the �nal model. That is, starting

11



from SC(w; �m0; �A
( �m0); �� ( �m0)), we delete the peak that is least signi�cant in terms of sum of

squares. Compare the two models according to the following statistic

MGIC2(r) = ��(r)2 +
c2(n) log n

n
r ; (16)

where ��(r) 2 is the sum of squares �tted by a model with r peaks, and c2(n) > 0 is another

penalty coe�cient possibly depending on n. Choose the one that minimizes MGIC2. If one

peak can be deleted according to this criterion, then we iterate this procedure until we cannot

delete any more peaks.

We make some remarks about this procedure. First, existing model selection procedures such as
AIC and BIC cannot be applied here, for the parameter estimates are not maximum likelihood
ones. Second, the penalty term c1(n) is used in the �rst stage to compare all models obtained

from Algorithm 5.1, and over�tting is not suppressed but encouraged to some extent. In fact,
we would like to �nd the "best over�tting" model in this stage. The penalty term c2(n) is used
in the second stage to eliminate those false peaks in the model obtained in the �rst stage. This
suggests that we impose another restriction c1(n) < c2(n). Third, the purpose of this two-stage

model selection procedure is not only estimating the model order, but also producing a parameter
estimate with much smaller bias and variance than that of the trigonometric moment estimate
if the order could be assumed to be known, see the numerical example in Section 6 for details.
Fourth, the determination of the two penalty terms needs more investigation in both theory and

implementation, though some experience has been gained for the dataset we have been working
on. Use of the bootstrap or cross validation is possible. For example, in the analogous problem of
estimating the number of hidden frequencies in Model (4), Ulrych and Sacchi [31] chose the number

using Kullback divergence as the risk, and a bootstrap method to estimate the risk of each model.

Fifth, when applying this methodology to DNA sequencing data, we can set a lower bound as well
as an upper bound on the model order, since the numbers of the four kinds of DNA bases in a given
range can be estimated. Our experience shows moderate over�tting is not an issue for DNA traces.

Finally, in the sequel, we refer to the procedures in Algorithm 3.1, 5.1, 5.2 as PDPS (parametric
deconvolution of positive spikes). If the error distribution is known to be normal, Algorithm 4.1
(Gauss-Newton) could be included in PDPS to improve the accuracy of the estimate.

6 Examples and discussion

6.1 A simulated example

Our simulation study is based the following model.

Example 6.1

z(tl) = 0:5 + w(tl + 1:9) + 1:25w(tl + 1:6) + 1:25w(tl + 1:3) + w(tl) +

1:25w(tl � 0:5) + 1:1w(tl � 1:0) + 1:25w(tl � 2:5) + �(tl) ;

where the sample size n = 1024, w(t) is a Gaussian function bp
2�

expf� b2 t2

2 g with the scale param-

eter b = 8 being truncated at �4 SD. Errors are normally distributed with mean 0 and standard
deviation 0.3. Figure 2 shows a simulated sample from this model. The signal contains seven peaks,
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Figure 2: A simulated sample of Example 6.1

and the three on the left are quite close to one another. The peak heights are generally similar,
which is typical for sequencing data. Simulations in this section are carried out in MATLAB, and
are repeated 1000 times for each method we have studied. We apply three estimation procedures
to this example. First, we assume the model order is known, and use the method of trigonometric

moments. Second, we use PDPS to estimate the parameter. The penalty coe�cients c1(n) and
c2(n) are taken to be 2 and 10 respectively. The upper bound of the model order is taken to be
20. Out of the 1000 replications, all but one of the �nal-�tted models had order 7, which is the
truth. Finally, this result was further tuned by the Gauss-Newton algorithm. Two iterations were

used. The statistics of estimates of the peak locations and heights are summarized in Table 1. The
estimate tuned by the Gauss-Newton algorithm is almost unbiased, and its standard errors are close
to the nominal ones. It is quite surprising that the accuracy of the trigonometric moment estimate

is so poor, even though the order is assumed to be known. In comparison, PDPS has achieved
an accuracy much closer to that of the maximum likelihood estimate. This means that modest

over�tting in the �rst stage can greatly control the bias and variance of the estimate. In other
words, even when the number of peaks is known, PDPS is better than the direct trigonometric

moment estimate in terms of bias and variance. In this case, we set a lower bound by the known
order at the �rst stage, and stop the backward deletion when the number of left peaks equals the

known order at the second stage. The frequency of the model orders selected at stage one is shown
in Table 2. We see that most models selected at stage one have orders ranging from 9 to 12.

6.2 Real trace data

Next we apply PDPS to the sequencing trace shown in Figure 1. The point spread function is
taken to be a truncated Gaussian function. The result is shown in Figure 3. (Maximum likelihood

estimation was not used.) For a comparison, a nonnegative least squares deconvolution was carried
out, see Lawson and Hanson [19]. The results are displayed in Figure 4. The two methods yield
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parameter Method of PDPS Gauss-Newton

trigonometric moments without MLE tuning algorithm

truth bias SD CV bias SD CV bias SD CV Nominal
(�103) (�102) (%) (�103) (�102) (%) (�103) (�102) (%) SE (�102)

�1 -1.9 -211 32 -8 2 0 0.4 0.4

�2 -1.6 0 19 3 4 0 0.4 0.4

�3 -1.3 315 48 11 2 0 0.3 0.3

�4 0.0 64 14 -2 1 0 0.3 0.3

�5 0.5 78 16 -2 1 0 0.2 0.2

�6 1.0 97 26 -1 1 0 0.3 0.3

�7 2.5 2 4 -6 1 0 0.2 0.2

A1 1.0 -216 67 85 -8 11 11 0 2.1 2 2.1

A2 1.25 506 20 11 52 6 5 0 2.1 2 2.1

A3 1.25 -158 68 62 -30 11 9 -1 2.1 2 2.1

A4 1.0 62 18 17 -1 2 2 0 1.7 2 1.7

A5 1.25 21 8 6 -1 2 2 -1 1.7 1 1.7

A6 1.1 -170 36 38 0 2 2 0 1.7 2 1.7

A7 1.25 -9 13 10 -1 2 1 -1 1.7 1 1.7

A0 0.5 -6 2 4 -1 2 3 1 1.3 3 1.2

Table 1: Statistics of the three estimates of the parameters in Example 6.1 (1000 replications).

model orders 8 9 10 11 12 13 14

frequency 48 248 212 202 244 45 1

Table 2: Frequency of model orders selected at the �rst stage.
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Figure 3: Parametric deconvolution.
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Figure 4: NNLS deconvolution (carried out by
the Lawson and Hanson algorithm).

quite di�erent results. First, that obtained from the parametric deconvolution is cleaner. Second,
the relative heights of the major spikes following the parametric deconvolution are more similar to

those in the original data. Third, parametric deconvolution is more e�cient from the computational
point of view. On a Sun Ultra-2 workstation, the Lawson and Hanson algorithm took more than
one hour while the parametric method took only two minutes. A more systematic comparison of

this parametric deconvolution method with others can be found in [20].

6.3 Colored noise and reblurring

The result in this paper can be generalized to situations when the errors are serially correlated.

We might approximate such errors by an autoregressive process. That is, we could assume that

the errors � in (2) can be modeled by

�t +
pX

k=1

�k�t�k = �t ; (17)

where the �t is i.i.d. N(0; �2). Then we could prewhiten the signal as follows,

(� � z)(t) = (� � w � x)(t) + �(t) : (18)

By replacing z(t) by (� � z)(t), we could use our original scheme PDPS to do the deconvolution.
This reblurring idea have been used in other similar situations, see [7, 13].

6.4 Implementations

The numerical implementation of PDPS hinges on linear regression and computation of smallest

eigenvalues and their eigenvectors of Toeplitz matrices. Because of the special structure of Toeplitz

matrices, e�cient algorithms do exist, and we refer to [12, 22]. Though we have discussed maximum
likelihood estimates within the assumption of Gaussian errors in this paper, we may skip the MLE
tuning in applications, since either the assumption of normal errors may not be appropriate, or
highly accurate estimates of the peak positions and heights may not be necessary.
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7 Appendix

This section contains the proofs and relevant mathematical facts. The following theorem is in
essence the so called trigonometric moment problem solved by Carath�eodory, see [9]. We present
a version under the framework of the spike-convolution model.

Theorem 7.1 1. Given a SC(�;m;A; � ), let Gm be the Toeplitz matrix constructed from its

Fourier coe�cients fgkg. Then A0 is the smallest eigenvalue of Gm with multiplicity one and

eigenvector (�0; � � � ; �m)T . The fAjg satisfy the following linear system:

1
2�

0
BBBB@

1 1 � � � 1
ei�1 ei�2 � � � ei�m

...
...

. . .
...

ei(m�1)�1 ei(m�1)�2 � � � ei(m�1)�m

1
CCCCA

0
BBBB@

A1

A2
...

Am

1
CCCCA =

0
BBBB@
g0 � A0

g1
...

gm�1

1
CCCCA : (19)

2. Conversely, suppose we are given 2m+1 complex numbers fgj;�m � j � mg, where gj = g�j.

Assume that the smallest eigenvalue A0 of the Toeplitz matrix Gm = (gj�i)i;j=0;���;m has

multiplicity 1. Let the smallest eigenvector be � = (�0; � � � ; �m)T , and U (m)(z) =
Pm

j=0 �j z
j.

Then there exists a unique SC(�;m;A; � ) whose �rst m+ 1 Fourier coe�cients are fgj ; 0 �
j � mg. The f�jg are determined from the m distinct roots fei�jg of U (m)(z) lying exactly on
the unit circle. The fAjg are determined by the linear system (19), and the resulting heights

are positive.

Proof: The �rst part is easy to check. As for the second part, an algebraic proof can be found in
[9]. Li [20] gives a measure-theoretic proof.
Proof of Theorem 2.1: Let the Fourier coe�cients of the corresponding x(t) and �x(t) be fgkg,
f�gkg respectively. According to the Parseval identity, k y � �y k2= P1

k=�1 jvk(gk � �gk)j2 �
(min0�k�p jvkj2)

Pp
k=0 jgk � �gkj2. Thus if there were a sequence SC(w; l; �A(l); �� (l)); l < p which

could approach SC(w; p;A; �), then their Fourier coe�cients �g
(l)
k �! gk, for 0 � k � p. Therefore

their Toeplitz matrices �T
(l)
p will converge to Tp as do their characteristic polynomials. But this

is impossible because Tp's smallest eigenvalue has multiplicity 1 according to Theorem 7.1, while
�T
(l)
p 's smallest eigenvalue has multiplicity larger than 1, as can be easily checked.

Proof of Theorem 3.1: This can be checked by direct calculation.

Proof of Theorem 3.2: By Theorem 7.1, we can �nd a function x of the form (1) with Fourier
coe�cients fgkg. Next the proof is completed by convolving x with w and using the convolution

theorem.

Proof of Theorem 3.3: Without loss of generality, assume n is even. A trigonometric moment

f̂k can be decomposed into three parts,

f̂k = fk +

[n
2
]�1X

l=�[n
2
]

[
2�

n
y(tl)e

iktl
�

Z tl+1

tl

y(t)eikt dt] +
1

n

[n
2
]�1X

l=�[n
2
]

�(tl)e
iktl ; (20)

for k = 0 ;�1; � � � . Denote the second and third terms by �fk and ~fk respectively. Suppose initially
the order p of the model is known in advance, and let ĝ0 = f̂0, ĝk = f̂kv0=vk, for 0 < k � K0.
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Similarly, decompose ĝk into three parts, gk, �gk and ~gk corresponding to fk, �fk and ~fk, respectively.

Under the smoothness condition on w(t), the e�ect of �fk is of order O(1=n) using Taylor expansion
and the bounded property of w0(�), and is thus negligible compared with that of ~fk. Next, notice
that ~fk =< �(t); eikt >n. According to the Lyapunov Central Limit theorem, ~f0; ~f1; � � � ; ~fp are

asymptotically normally distributed:

p
n ( ~f0; ~f1; � � � ; ~fp)T d�!N(0; �2 Ip+1):

Consequently, we have a CLT for the f̂k,

p
n [(f̂0; f̂1; � � � ; f̂p)T � (f0; f1; � � � ; fp)T ] d�!N(0; �2 Ip+1):

Thus p
n [(ĝ0; ĝ1; � � � ; ĝp)T � (g0; g1; � � � ; gp)T ] d�!N(0; �2 diag(jv0

vk
j2)):

For k 6= 0, we can split each term gk into its real part gk;r and its imaginary part gk;i. Then another
form of the above CLT is given by

p
n [(ĝ0; ĝ1;r; � � � ; ĝp;r; ĝ1;i; � � � ; ĝp;i)T � (g0; g1;r; � � � ; gp;r; g1;i; � � � ; gp;i)T ] d�!N(0; P ) ;

where P is given by (8). The mapping between the trigonometric moments and the parameters
is continuous. Thus we can �nd the CLT for the trigonometric moment estimates using the delta

method. Now we calculate the Jacobian matrix. From

0
BBBB@
g0
g1
...
gp

1
CCCCA =

1

2�

0
BBBB@

1 1 1 � � � 1

0 ei�1 ei�2 � � � ei�p

...
...

...
. . .

...
0 eip�1 eip�2 � � � eip�p

1
CCCCA

0
BBBBBB@

A0

A1

A2
...
Ap

1
CCCCCCA
;

we have

@(g0; g1; � � � ; gp)

@(A0; A1; � � � ; Ap; �1; � � � ; �p)
=

1

2�

0
BBB@

1 1 1 � � � 1 0 0 � � � 0
0 ei�1 ei�2 � � � ei�p iA1e

i�1 iA2e
i�2

� � � iApe
i�p

...
...

...
. . .

...
...

...
. . .

...
0 eip�1 eip�2 � � � eip�p ipA1e

ip�1 ipA2e
ip�2

� � � ipApe
ip�p

1
CCCA :

Rewriting this as a square matrix by splitting the derivative into real and imaginary parts, we get

@(g0; g1;r; � � � ; gp;r; g1;i; � � � ; gp;i)
@(A0; A1; � � � ; Ap; �1; � � � ; �p) =

1

2�
Q :

Therefore V = 4�2Q�1 P (Q�1)T . We refer to [24] for the invertibility of Q.

Proof of Proposition 4.1: This can be checked by direct calculation.

Proof of Theorem 4.1
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1. Let l(�; �2) be the log likelihood evaluated at (�; �2). To prove the consistency, we need to

show that for any �xed (�0; �0
2) 6= (�; �2), where (�; �2) is the truth,

P (l(�0; �
2
0) < l(�; �2)) �! 1; as n �!1 (21)

. Notice that

l(�; �2)� l(�0; �
2
0) = [l(�; �2)� l(�; �20)] + [l(�; �20)� l(�0; �

2
0)] : (22)

Denote �0 = (A0;0; A1;0; � � � ; Ap;0; �1;0; � � � ; �p;0)T , and let �(t) = y(t)� [A0;0+
Pp

k=1Ak;0w(t�
�k;0)]. Then

R �
�� �(t)

2 dt > 0 for �0 6= � because of the identi�ability of the parameterization.

By the law of large numbers, (cf. [2, 6]), the second term in (22) is,

1

n
[l(�; �20)� l(�0; �

2
0)] =

1

2n�20
[
X
l

(�(tl)� �(tl))
2 �

X
l

�(tl)
2]

=
1

2n�20
[
X
l

�(tl))
2 � 2

X
l

�(tl)�(tl)]�!
p

1

2�20

Z �

��
�(t)2 dt � 0 :

The �rst term is:

1

n
[l(�; �2))� l(�; �20)] = [�1

2
log �2 � 1

2n�2

X
l

�(tl)
2]� [�1

2
log �20 �

1

2n�20

X
l

�(tl)
2]

�!
p
[�1

2
log �2 � �2

2�2
]� [�1

2
log �20 �

�2

2�20
] � 0 ;

since the function x(s) = � log s� �2

s
has its unique maximum at �2. Hence (21) is true.

2. Let D be the matrix with entries of second derivatives of the log-likelihood. Since the MLE
(~�; ~�2) is consistent, the following Taylor expansion can be checked straightforwardly,

1p
n
[r(~�; ~�2)�r(�; �2)] = 1p

n
D(�; �2)(~�� �; ~�2 � �2)T + Opk(~� � �; ~�2 � �2)k2 : (23)

Thus
p
n(~� � �; ~�2 � �2)T

d�!�[D(�; �
2)

n
]
�1r(�; �2)p

n
;

where the �rst term converges to I�1
(�;�2) in probability and the second term converges to

N(0; I(�;�2)) in distribution. The remainder is an application of the Slutsky theorem.

Proof of Theorem 4.2: Notice that by Taylor expansion,

y�old � y = 	T
� (�old � �) + op(k �old � � k) ;

where the second term is uniform with respect to the variable t, and so

z � y�old = �� (y�old � y) = ��	T
� (�old � �) + op(k �old � � k) :
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Inserting this into line 2 of the following, we obtain

p
n(�new � �) =

p
n(�new � �old) +

p
n(�old � �)

=
p
n[< 	�old ;	

T
�old

>n]
�1 < 	�old ; z � y�old >n +

p
n(�old � �)

=
p
n[< 	�old ;	

T
�old

>n]
�1 < 	�old ; � >n

�[< 	�old ;	
T
�old

>n]
�1 < 	�old ;	� >n

p
n(�old � �)

+
p
n(�old � �) + op(k

p
n(�old � �) k)

�!
p

p
n[< 	�;	

T
� >n]

�1 < 	�; � >n +
p
n[< 	�;	

T
� >n]

�1 < 	�old �	�; � >n +op(1) :

Here we need the
p
n-consistency of �old. The second term in the last line is op(1), since we can

apply a Taylor expansion to 	�old �	� at �. Then we complete the proof by applying the central
limit theorem to the �rst term and using the Slutsky theorem.

Proof of Proposition 5.1: The dimension of the invariant space corresponding to the smallest
eigenvalue A0 is r. By Gaussian elimination, we can always �nd a vector in this space with the form

� = (�0; � � � ; �p; 0; � � � ; 0)T . Of course, (�0; � � � ; �p)T is a eigenvector of Gp with eigenvalue A0. A0

is the smallest eigenvalue of Gp because of the monotone property of eigenvalues of nested matrices.
Its multiplicity is one. Otherwise, by repeating the above reasoning, we can �nd an eigenvector
of Gm�r with the form of (�0; � � � ; �m�r)

T . Then by extending this vector into m + 1 Euclidean

space by adding zeros in the beginning and the end, we can construct r + 1 linear independent
eigenvectors of Gm corresponding to A0, which would imply that the multiplicity of A0 is greater
than r, a contradiction. In order to prove the second part, notice that (�0; � � � ; �p; 0; � � � ; 0)T ,
(0; �0; � � � ; �p; 0; � � � ; 0)T , � � �, (0; � � � ; 0; �0; � � � ; �p)T is a basis of the invariant space corresponding

to A0. Consequently, any polynomial whose coe�cients are an eigenvector corresponding to A0 is
a linear combination of polynomials with common roots fei�j , j = 1; � � � ; pg. The rest is obvious.
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