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Abstract. Kau�man and Levin (1987) introduced a class of models for the
evolution of hereditary systems which they called \NK �tness landscapes". In-
spired by spinglasses, these models have the attractive feature of being tunable,
with regard to both overall size (through the parameter N) and connectivity
(through K). There are N genes, each of which exists in two possible alleles
(leading to a system indexed by f0;1gN); the �tness score of an allele at a
given site is determined by the alleles of K neighboring sites. Otherwise the
�tnesses are as simple as possible, namely i.i.d., and the �tnesses of di�erent
sites are simply averaged.

Much attention has been focused on these �tness landscapes as paradigms
for investigating the interaction between size and complexity in making evo-
lution possible. In particular, the e�ect of the interaction parameterK on the
height of the global maximum and the heights of local maxima has attracted
considerable interest, as well as the behavior of a \hill-climbing" walk from a
random starting point. Nearly all of this work has relied on simulations, not
on rigorous mathematics.

In this paper, some asymptotic features of NK �tness landscapes are re-
duced to questions about eigenvalues and Lyapunov exponents. When K is
�xed, the expected number of local maxima grows exponentially with N at a
rate depending on the top eigenvalue of a kernel derived from the distribution
of the �tnesses, and the average height of a local maximum converges to a
value determined by the corresponding eigenfunction.

The global maximum converges in probability as N ! 1 to a constant
given by the top Lyapunov exponent for a system of i.i.d. max{plus random
matrices, and this constant is non-decreasing with K. Various such quantities
are computed for certain special cases when K is small, and these calculations
can, in principle, be extended to larger K.

Short title: NK Fitness

1. Introduction

1.1. Background. Early in the twentieth century Sewall Wright (see, for example,

[Wri32]) proposed what has become one of the dominant metaphors in the analysis

of biological evolution: the �tness landscape. Biological evolution is modelled as
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gradual motion through an abstract space, which represents the possible genomes

and other heritables. To every point in this space is assigned a number, the \�tness

function", that summarizes the relative success of an organism with this particular

endowment in the struggle for existence. The graph of this �tness function, with its

narrow peaks of high functioning and broad valleys of dissolute DNA, is conceived

as being a \�tness landscape". Natural selection appears as a random walk of a

species along this landscape, with a bias toward upward steps.

The �tness landscape, with its associated diagrams, can be a misleading image.

The landscape is viewed as stable, though of course coevolution of species and

their environments is universal. The space of possibilities itself is not �xed, as the

machinery of heredity evolves. And the �tness of a particular genome depends very

much on the number and type of its conspeci�cs, a complication concealed by the

naive picture of a solitary point scaling its Sierras of success.

Even closing an eye to all of these defects, we see something basically de�cient

about the intuitions that the �tness-landscape story conjures up. One tends to

imagine a smooth, undulating, two-dimensional terrain: here a bit �tter, there a

bit less �t. But even the crudest models of genetic space are nothing at all like

Euclidean space. They are high-dimensional discrete spaces, such as the \DNA

space" fA;C;G; TgL, or the \Mendelian space" f0; 1; : : :; r�1gN , representing the

possible genomes when there are N genetic loci, each with r possible alleles. There

will be only slivers of high �tness looming up above the vast genomic tohubohu. An

evolving organism is not roaming through the whole space, but creeping along these

�tness spines. Neighborhoods are de�ned by small Hamming distance, meaning

di�erences in a small number of alleles, but synergies may give these small changes

enormous e�ect. From any given point a small step in most directions is a calamity:

the �tness landscape is, in the vernacular, \rugged". How �t will the organism get,

seeking its highest level in such a landscape?

The answer may or may not depend on the precise details of the model, but a

rigorous answer does require at the least a model that is rigorously de�ned. One

class of models that has received a signi�cant amount of attention in recent years
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is Kau�man and Levin's NK �tness landscape [KL87, Kau93]. Based on spinglass

models in statistical physics, this is a stochastic process indexed by the Mendelian

space with two possible alleles at each of N loci. The quantity K is an interaction

parameter that tunes the ruggedness. Each locus is assumed to rely for its �tness

on K other loci. Beyond that, �tness is random; that is, each of the 2K+1 possible

assignments of alleles to the gene and its entourage gets an independent random

value. Since these sets overlap, there is no easy way to �nd the optimal choice for

all N alleles: a choice that improves one �tness will likely detract from another.

While no one would mistake this abstract system for a realistic model of genetic

evolution, it has the virtues of a good foundational model: It is easy to describe, yet

contains a wealth of structure that is neither obvious nor super�cially accessible.

Before we can analyze a more realistic model, it would seem that we must �rst

come to grips with models such as this one. At the same time, we may hope that

some general features of this model will carry over to something like the real world.

1.2. The Model. We begin with the genetic space S = f0; 1gN . A �tness function

is a map from S to the real numbers. Gene interactions are con�ned to a range

of K: a gene interacts with its K successors, and the �tness contribution of allele

number i and itsK successors is given by a function Fi : f0; 1gK+1 ! R. Successors

are de�ned cyclically, that is, modulo N . The contributions of di�erent genes are

assumed additive, so that the total �tness function is

GN;K(x0; : : : ; xN�1) =
1

N

N�1X
i=0

Fi(xi; : : : ; xi+K):

This di�ers from Kau�man's model in two small ways. Kau�man considered two

versions of the interaction, one in which a locus's K neighbors were determined in-

dependently at random, and the other where the interaction was con�ned to a range

of K=2 on either side. For K even our process is equivalent to the latter; our choice

to put the neighbors all on one side was purely a matter of notational convenience.

Kau�man also performed his simulations where the �tness distribution was uniform

on the interval [0; 1], while conjecturing that much would remain unchanged if this

were replaced by another distribution. While we have some things to say about
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general distributions for the Fi, we have had the most success in obtaining explicit

quantitative information when the Fi are exponentially distributed.

Kau�man was primarily concerned to ask, if an imaginary organism starts in a

random place in this vast genomic space, and then walks upward to the nearest local

maximum, how far will it get? How far will the �tness be above average? Clearly

in the case K = 0, where �tnesses of di�erent loci are completely uncorrelated,

there is only one local maximum, so the process eventually will reach the global

maximum. At the other extreme, when K = N � 1, the global maximum will

be larger, but it will never be reached, since local maxima will be ubiquitous. In

Kau�man's computer simulations with small values of N (generally up to N = 96)

the local maxima actually attained were largest for small values of K, around 4.

Other work, such as [Wil98] and [SBTG99], attempts to generalize the model,

admitting in the one case time-dependent �tness landscapes, in the other non-i.i.d.

�tnesses and �tnesses whose standard-deviations decrease with N (to illustrate how

the \complexity catastrophe", the tendency of the local maxima to collapse to mere

average behavior as K increases, may be mitigated.) These results rely primarily

on simulations, hence on small values of N , to make their points. (One paper

[SJ94] does present simulations for large values of N , facilitated by making the Fi's

Bernoulli variables.) The only exception we have found is the paper [Wei91], which

purports to derive asymptotic formulae for the number of local maxima, when N

andK are large and the �tnesses are normally distributed. However, it appears that

at a crucial step an error term is discarded which seems to dominate the favored

approximation.

Independent work related to ours appears in [DL01]. We will describe the con-

nection between that paper and our work in the course of outlining our results in

the next section.

1.3. Outline of results. We begin in Section 2 by presenting some general results

about the global maximum. Lemma 1 connects the maximum to the max{plus

\product" of certain random matrices. Unrelated to this, we then show in Proposi-

tion 2 that the maximum is stochastically non-decreasing in K, in the special case
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when the �tnesses are Gaussian. In Section 3 we show that, for K �xed, the global

maximumconverges in probability to a constant as N !1, and that this constant

is the solution of a certain variational problem. This a priori in�nite dimensional

variational problem turns out to be �nite dimensional when the �tnesses have expo-

nential distributions. Explicit numerical computations are therefore \just" a matter

of �nite dimensional linear algebra, although these calculations quickly grow infea-

sible as K increases. We carry through the particularly tractable example ofK = 1.

We also establish for general �tness distributions that the asymptotic value of the

global maximum is non-decreasing in K.

In Section 4 we show, under the assumption that the support of the �tness dis-

tribution is bounded below, that the expected number of local maxima increases

geometrically in N , by a power that is computable, in theory, as the spectral radius

of a certain operator derived from the �tness distribution. Section 5 applies the

same principles to the limit of the expected height of a typical local maximum.

In both sections the computations are actually carried out for the special cases

K = 1 and K = 2, where the �tnesses are exponentially distributed. For exponen-

tially distributed �tnesses (and, more generally, �tnesses distributed according to

a gamma distribution with integer shape parameter), the a priori in�nite dimen-

sional problem of determining the spectral radius reduces to a �nite dimensional

one. However, the dimension grows rapidly with K.

The height of a typical local maximum is investigated in [DL01] using tools that

di�er from those used here (primarily the theory of R-recurrent Markov chains). In

particular, explicit calculations are carried out in [DL01] for the case where K = 1

and the �tnesses are the negatives of exponentially distributed random variables.

Our result for K = 1 and exponentially distributed �tnesses with mean 1 is that

the expected height of a typical local maximum converges to 1:61651 as N ! 1,

whereas a result in [DL01] implies that the expected height of typical localminimum

for the same model converges to 0:480971. A central limit theorem for the height

of a typical local maximum and a large deviation result for the global maximum

are also given in [DL01].
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Section 6 o�ers an alternative representation of the probability for a point to

be a local maximum, in the exponential case, with general K. Not only does this

representation provide a way of estimating the expected number of local maxima for

�nite N via a Monte{Carlo approach that is considerably simpler than simulating

the model itself and then determining which points are local maxima, but it also

provides an interesting coupling between models with di�erent values of K. This

coupling may be useful for further analytic investigations of the dependence on K

of the expected number of local maxima.

Section 7 states a version of the Perron{Frobenius Theorem for in�nite{

dimensional operators, which we use in Sections 4 and 5. We did not �nd this

result in the form we needed in the literature, but it can be proved by a fairly

straightforward adaptation of the classical result for matrices.

2. The global maximum

We de�ne 2K � 2K R[ f�1g-valued matrices indexed by f0; 1gK:

Ai(x0; : : : ; xK�1; y0; : : : ; yK�1)

:=

8><>:
Fi(x0; : : : ; xK�1; yK�1) if (x1; : : : ; xK�1) = (y0; : : : ; yK�2);

�1 otherwise.

For the moment, the �tnesses Fi are just arbitrary functions on f0; 1gK+1. We

view these as matrices in the (_;+) algebra (where a _ b denotes the maximum of

a and b), so that the product A0A1 is given by

A0A1(~x; ~y) :=
_

~z2f0;1gK

n
A0(~x; ~z) + A1(~z; ~y)

o
:

We denote the maximum �tness by

G�N;K :=
_

(x0;:::;xN�1)2S

GN;K(x0; : : : ; xN�1):

Lemma 1.

G�N;K =
1

N

_
~x2f0;1gK

A0A1 � � �AN�1(~x; ~x):
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Proof. Let

Mn = A0A1 � � �An

for 0 � n � N � 1. We prove by induction that

Mn(~x; ~y) =
_n nX

i=0

Fi(zi; : : : ; zi+K) : zi = xi for 0 � i � K � 1 and(1)

zn+1+i = yi for 0 � i � K � 1
o
:

For n = 0 the statement is merely the de�nition of A0. Suppose it is true for

n� 1. Let G�n(~x; ~y) be the right-hand side of (1). Then

Mn(~x; ~y) =
�
G�n�1 �An

�
(~x; ~y)

=
_n

G�n�1(~x; (0; y0; : : : ; yK�2)) + Fn(0; y0; : : : ; yK�1) ;

G�n�1(~x; (1; y0; : : : ; yK�2)) + Fn(1; y0; : : : ; yK�1)
o

= G�n(~x; ~y):

�

For the rest of the paper, take the Fi(~x)'s to be given by N � 2K+1 i.i.d. random

variables, with distribution function F. (We will use F� to denote the distribution

function of the sum of K+1 i.i.d. copies of a random variable with distribution F.)

Proposition 2. If the �tnesses are normal variables, the maximum is stochastically

non-decreasing in K. That is, for any �xed N and any real number z,

(2) P
�
G�N;K+1 � z

	 � P�G�N;K � z
	
:

Proof. By the obvious linearity, we may as well assume that the �tnesses are stan-

dard normal. The average �tness GN;K (~x) is a Gaussian process, indexed by

f0; 1gN . For any ~x; ~y 2 S, the covariance of GN;K(~x) and GN;K(~y) is

1

N2

N�1X
i=0

E
�
Fi(xi; : : : ; xi+K)Fi(yi; : : : ; yi+K)

�
=

1

N2
#
�
i : (xi; : : : ; xi+K) = (yi; : : : ; yi+K )

	
:
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If i is an index such that (xi; : : : ; xi+K+1) = (yi; : : : ; yi+K+1), then (xi; : : : ; xi+K) =

(yi; : : : ; yi+K). The covariance of GN;K(~x) and GN;K(~y) is is thus nonincreasing in

K. Hence, the Gaussian processes GN;K and GN;K+1 have the same expectations

and variances at each point, but the covariances of GN;K+1 are smaller for any pair

of points. The inequality (2) is then an immediate consequence of Slepian's Lemma

[Kah85, Section 15.2]. �

We will show in Section 3 below that, for each �xed K, G�N;K converges in

probability as N ! 1 to a constant �K . The following general asymptotic result

complements the special �nite N result of Proposition 2.

Proposition 3. For an arbitrary �tness distribution F, the asymptotic global max-

imum �K is non-decreasing in K.

Proof. Fix K. To emphasize the rôle of K, let AK
0 ; A

K
1 ; : : : be the 2

K�2K matrices

de�ned above for the NK model, and let AK+1
0 ; AK+1

1 ; : : : be the analogous 2K+1�
2K+1 matrices for the N (K + 1) model. From the proof of Lemma 1 and Section

3 below we see for any �xed L > K that the matrices AK
0 ; A

K
1 ; : : : ; A

K
N�L are i.i.d.

and that

�K = lim
N!1

1

N

_
fAK

0 A
K
1 � � �AK

N�L(~x; ~y) : ~x; ~y 2 f0; 1gKg:

A similar remark holds withK replaced by K+1. In order to show that �K+1 � �K

it certainly su�ces to show for a �xed L > K + 1 and all N � L that

_
fAK+1

0 AK+1
1 � � �AK+1

N�L(~x; ~y) : ~x; ~y 2 f0; 1gK+1g

stochastically dominates

_
fAK

0 A
K
1 � � �AK

N�L(~x; ~y) : ~x; ~y 2 f0; 1gKg:
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Using the �tnesses Fi for the NK model de�ne new 2K+1 � 2K+1
R[ f�1g-

valued matrices indexed by f0; 1gK+1 by

~AK+1
i (x0; : : : ; xK; y0; : : : ; yK)

:=

8><>:
Fi(x0; : : : ; xK�1; yK�1) if (x1; : : : ; xK�1) = (y0; : : : ; yK�2);

�1 otherwise.

It is not hard to see that_
fAK

0 A
K
1 � � �AK

N�L(~x; ~y) : ~x; ~y 2 f0; 1gKg

=
_
f ~AK+1

0
~AK+1
1 � � � ~AK+1

N�L(~x; ~y) : ~x; ~y 2 f0; 1gK+1g:

It thus su�ces to show that

_
fAK+1

0 AK+1
1 � � �AK+1

N�L(~x; ~y) : ~x; ~y 2 f0; 1gK+1g

stochastically dominates

_
f ~AK+1

0
~AK+1
1 � � � ~AK+1

N�L(~x; ~y) : ~x; ~y 2 f0; 1gK+1g;

which in turn will follow if we can establish for 0 � k � N � L� 1 that

_
fAK+1

0 AK+1
1 � � �AK+1

k
~AK+1
k+1 � � � ~AK+1

N�L(~x; ~y) : ~x; ~y 2 f0; 1gK+1g

stochastically dominates

_
fAK+1

0 AK+1
1 � � �AK+1

k�1
~AK+1
k � � � ~AK+1

N�L(~x; ~y) : ~x; ~y 2 f0; 1gK+1g:

This, however, follows from the independence of the matrices in the products

and Lemma 4 below with m = 2K+1, f1; : : : ;mg identi�ed with f0; 1gK+1,

and the partition � of f0; 1gK+1 � f0; 1gK+1 such that two pairs of indices

(x0; : : : ; xK; y0; : : : ; yK) and (x00; : : : ; x
0
K; y

0
0; : : : ; y

0
K) are in the same block of �

if and only if

(x0; : : : ; xK�1; y0; : : : ; yK�1) = (x00; : : : ; x
0
K�1; y

0
0; : : : ; y

0
K�1):

�
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Lemma 4. Let B be a random m�m R[ f�1g-valued matrix with independent

entries. Suppose that � is a partition of f1; : : : ;mg � f1; : : : ;mg with the property

that if (i; j) and (k; `) belong to the same block of �, then Bij and Bk` have the

same distribution. Let ~B be another random m�m R[ f�1g-valued matrix with

the properties:

� For each pair (i; j), Bij and ~Bij have the same distribution.

� If (i; j) and (k; `) belong to the same block of �, then ~Bij = ~Bk`.

� If �1; : : : ;�n are the blocks of �, then the collections of random variables

f ~Bij : (i; j) 2 �hg, 1 � h � n, are independent.

Then for any two constant m�m R[f�1g-valued matrices A and C the random

variable
Wf(ABC)ij : 1 � i; j � mg stochastically dominates the random variableWf(A ~BC)ij : 1 � i; j � mg.

Proof. By truncation and taking limits, we may suppose that all matrices are real{

valued.

We need to show that

P

n_
f(ABC)ij : 1 � i; j � mg � x

o
� P

n_
f(A ~BC)ij : 1 � i; j � mg � x

o
for all x. Now

P

n_
f(ABC)ij : 1 � i; j � mg � x

o
= P

0@\
ijk`

fAij + Bjk + Ck` � xg
1A

=
nY

h=1

Y
(j;k)2�h

P

(
Bjk �

^
i`

(x�Aij � Ck`)

)
:

On the other hand, writing B̂h for the common value of ~Bjk, (j; k) 2 �h, we have

P

n_
f(A ~BC)ij : 1 � i; j � mg � x

o
=

nY
h=1

P

8<:B̂h �
^

(j;k)2�h

^
i`

(x �Aij �Ck`)

9=; :

For 1 � h � n choose (j�; k�) 2 �h such that

^
(j;k)2�h

^
i`

(x�Aij �Ck`) =
^
i`

(x� Aij� �Ck�`):
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Then

Y
(j;k)2�h

P

(
Bjk �

^
i`

(x�Aij �Ck`)

)
� P

(
Bj�k� �

^
i`

(x� Aij� �Ck�`)

)

= P

(
B̂h �

^
i`

(x� Aij� � Ck�`)

)

= P

8<:B̂h �
^

(j;k)2�h

^
i`

(x�Aij �Ck`)

9=; ;

and the result follows. �

3. Asymptotics of the global maximum

We may use Lemma 1 to elucidate the asymptotic behavior of the maximum

G�N;K , where K is �xed. (In this section, we will take K as �xed and drop it from

the notation.) Asymptotically, G�N is equal to

G��N :=
_
~x2S

1

N

N�K�1X
i=0

Fi(xi; : : : ; xi+K):

Since the end does not wrap around, G��N is the maximum entry of the max{plus

product A0A1 � � �AN�K�1, with the A's i.i.d. matrices. The sequence of random

variables NG��N is subadditive with respect to the standard shift: that is,

_
~x;~y

A0 � � �AN�K�1(~x; ~y) �
_
~x;~y

A0 � � �Am(~x; ~y) +
_
~x;~y

Am+1 � � �AN�K�1(~x; ~y):

By Kingman's subadditive ergodic theorem, this implies that G��N , hence also G�N ,

has an almost-sure limit �. Since the A's are i.i.d., Kolmogorov's zero{one law

applies and � must be a constant, the max{plus top Lyapunov exponents. We

refer the reader to [Bac92, JM94] for an indication of the literature on Lyapunov

exponents for products of max{plus matrices.

This � satis�es the max{plus version of the Furstenberg{Kifer theorem, namely

Lemma 5. Let � be the distribution of an n � n R[ f�1g-valued matrix with

no row identically �1, and P(�) the set of laws on R[ f�1g-valued n-vectors

such that if W has distribution � and Y has distribution � 2 P(�), with W and Y
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independent, �_
j

(W (i; j) + Y (j)) �
_
k;j

(W (k; j) + Y (j))
�n
i=1

also has law �.

Then if W0;W1; : : : are i.i.d. max{plus matrices with common distribution �,

lim
N!1

1

N

_
i;j

(W0 : : :WN�1)(i; j)

= sup
n
E�
�

h_
i

_
j

(W (i; j) + Y (j))
i
: � 2 P(�)

o
:

(3)

The proof is a straightforward adaptation of the proof of the analogue of the

Furstenberg{Kifer theorem for i.i.d. non-negative matrices given in Section 4.5 of

[HM95].

We now take � to be the distribution of the matrices A for our problem. The co-

ordinates of Y and A are naturally indexed by f0; 1gK. The invariant distributions
P(�) are signi�cantly constrained. A measure on R2K will be called coordinatewise

stationary if it is invariant under coordinate transformations of the form

(4) (x0; : : : ; xi; : : : ; xK�1) 7! (x0; : : : ; 1� xi; : : : ; xK�1)

for any �xed i. If this property holds for i � j, we will call the measure j-stationary.

Lemma 6. The measures in P(�) are all coordinatewise stationary.

Proof. Let Y and A be independent random variables, with A having law � and Y

law � 2 P(�). We also de�ne

Y 0(~x) :=
�_

~y

(A(~x; ~y) + Y (~y))�
_
~z;~y

(A(~z; ~y) + Y (~y))
�
:

Because of the de�nition of A, this reduces to de�ning

Y 00(x0; : : : ; xK�1) :=
_n

F (x0; : : : ; xK�1; 1) + Y (x1; : : : ; xK�1; 1) ;

(5)

F (x0; : : : ; xK�1; 0) + Y (x1; : : : ; xK�1; 0)
o
; and

Y 0(x0; : : : ; xK�1) := Y 00(x0; : : : ; xK�1) �
_
~z

Y 00(~z):



NK FITNESS 13

Suppose that Y is (j � 1)-stationary. We want to show that Y 00 has the same

distribution as eY 00, de�ned by

eY 00(x0; : : : ; xj; : : : ; xK�1) = Y 00(x0; : : : ; 1� xj; : : : ; xK�1):

De�ne

eF (x0; : : : ; xK) := F (x0; : : : ; 1� xj; : : :xK) and

eY (x0; : : : ; xK�1) := Y (x0; : : : ; 1� xj; : : : ; xK�1):

Then eY 00 may be computed from (5) simply by substituting eF for F and eY for Y .

Observe now that eF and F have the same distribution. Also, since Y is

(j � 1)-stationary, the joint distributions of Y (x1; : : : ; xj; : : : ; xK; xK) and of

Y (x1; : : : ; 1� xj ; : : : ; xK ; xK) are identical. Since F and Y are independent, it

follows that eY 00 has the same distribution as eY . It follows then that Y 0 is also

j-stationary, and Y and Y 0 have the same distribution. The result is that Y is

coordinatewise stationary. �

We now consider the case ofK = 1. The matrixA is then 2�2, with i.i.d. entries,
while Y is an R2-valued random variable, with identically distributed coordinates.

Observe that one of the coordinates of Y 0 is 0, while we may represent the other

coordinate as �Ŷ ; since the coordinates are identically distributed, it follows that

Y (hence Y 0 as well) takes on the values (�Ŷ ; 0) and (0;�Ŷ ) each with probability

1
2 .

Suppose that Fi has density f and distribution function F, and suppose that Ŷ

has distribution �. The distribution function of Y 00 is then

P
�
Y 00
1 � w; Y 002 � z

	
= E

�
F(w� Y1)F(w � Y2)F(z � Y1)F(z � Y2)

�
= F(w)F(z) E

�
F(w + Ŷ )F(z + Ŷ )

�
= F(w)F(z)

Z
F(w+ y)F(z + y)�(dy):
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The random variable Y 00 has a density

g(w; z) = f(w)f(z)

Z
F(w + y)F(z + y)�(dy)

+ f(w)F(z)

Z
F(w+ y)f(z + y)�(dy)

+ F(w)F(z)

Z
f(w + y)f(z + y)�(dy)

+ F(w)f(z)

Z
f(w + y)F(z + y)�(dy):

Since jY 001 � Y 002 j has the same distribution as Ŷ , we see that � must have a density

�(dy) = h(y) dy, with

(6) h(u) =

Z 1

�1

�
g(w;w + u) + g(w;w � u)

�
dw

for u positive.

Consider now the case in which F has the exponential distribution with expec-

tation 1. Then, letting ~h be the Laplace transform of h,

g(w; z) = e�w�z
�
1 + 2~h(1) + ~h(2)

�
+
�
e�2w�z + e�2z�w

���2~h(1)� 2~h(2)
�

+ 4e�2w�2z~h(2) :

Substituting into the (6) then yields

(7) h(u) = e�u +

�
2

3
e�u � 4

3
e�2u

�
~h(1) +

�
2

3
e�2u � 1

3
e�u

�
~h(2):

Multiplying by e�u or e�2u and integrating out, we conclude that

~h(1) =
1

2
� 1

9
~h(1) +

1

18
~h(2);

~h(2) =
1

3
� 1

9
~h(1) +

1

18
~h(2):

These equations have the unique solution

~h(1) =
53

114
; ~h(2) =

34

114
:

This means that there is a unique distribution in P(�), with density given by (7),

h(u) =
23

19
e�u � 8

19
e�2u:

The Lyapunov exponent is then given according to Lemma 5 by

E
�
(F (0; 0)�H) _ (F (1; 0)�H) _ F (0; 1)_ F (1; 1)�;
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where the F 's and H are independent, with H having density h, and the F 's having

exponential distribution with expectation 1. If we let S = F (0; 0) _ F (1; 0), and
T = F (0; 1)_ F (1; 1), then S and T are independent, with

PfS � xg = PfT � xg = (1� e�x)2; x � 0;

and

PfS�H � xg = 1� 53

57
e�x +

17

57
e�2x; x � 0:

Hence the Lyapunov exponent is

E
�
(S �H) _ T � = Z 1

0

Pf(S�H) _ T > xg dx

=

Z 1

0

1�Pf(S�H) � xg PfT � xg dx

=
407

228
:

We may conclude that

lim
N!1

G�N;1 =
407

228
� 1:78509:

Observe that this is signi�cantly larger than the expected height of a local maxi-

mum, which is 1:61651. We note that this example was worked out using somewhat

di�erent methods (and in a di�erent context) as Proposition 4.3 in [JM94].

4. Counting local maxima

To compute the expected number of local maxima,we need to �nd the probability

of any given point | for example, the point �0N , the N -vector of all zeroes | being

a local maximum. If K = 0 and F is a continuous distribution, then there is clearly

only one local maximum. We therefore suppose for the remainder of this section

that K � 1.

Letting ejk be the k-vector with a single 1 in the j-th place (counting modulo N :

if j is not between 0 and k modulo N , then ejk := �0k), we see that �0N is a local

maximum precisely when

GN;K (�0N ) � GN;K (e
j
N )
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for all 0 � j � N � 1, which is equivalent to

(8)
KX
i=0

Fj�K+i(�0K+1) �
KX
i=0

Fj�K+i(e
K+1�i
K+1 )

for all 0 � j � N � 1, where indices of the F 's are taken modulo N .

De�ne

Xi := Fi(�0K+1);

Zj :=
KX
i=0

Fj�K+i(e
K+1�i
K+1 ):

Then the condition for �0N to be a local maximum is

(9) Xj�K +Xj�K+1 + � � �+Xj � Zj ; 0 � j � N � 1:

The random variables Xj and Zj are all independent. Conditioned on the values

of the Xj's, the probability of this event is thus

(10) F�(X0 + � � �+XK)F�(X1 + � � �+XK+1) � � �F�(XN�1 +X0 + � � �+XK�1):

The probability of a point being a local maximum is then the expectation of (10)

for X0; : : : ; XN�1 i.i.d. with distribution F.

We wish to estimate this probability for large N . We begin by estimating

(11) P� := E

24�(K+1)�1Y
i=0

F�(Xi +Xi+1 + � � �+Xi+K)

35 ;
where � = bN=(K + 1)c � 1. For u; u0 2 RK and x 2 R, de�ne

H(u; x; u0) := F�(u0 + � � �+ uK�1 + x)F�(u1 + � � �+ uK�1 + x+ u00)

� � �F�(uK�1 + x+ u00 + � � �+ u0K�2)F�(x+ u00 + � � �+ u0K�1):

Then, if we let Ui := (Xi(K+1); Xi(K+1)+1; : : : ; Xi(K+1)+K�1),

P� = E
�
H
�
U0; XK ; U1

�
H
�
U1; X2K+1; U2

�
� � �H�U��1; X(��1)(K+1)+K ; U�

��
:

The terms XK ; X2K+1; : : : ; X(��1)(K+1)+K may be integrated out, yielding

(12) P� = E
�
�(U0; U1)�(U1; U2) � � � �(U��1; U�)

�
;
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where

�(u0; : : : ; uK�1; u
0
0; : : : ; u

0
K�1)

:=

Z
R

F�(u0 + � � �+ uK�1 + z)F�(u1 + � � �+ uK�1 + z + u00)

� � �F�(z + u00 + � � �+ u0K�1)F(dz):

The kernel � is bounded above by 1, and if the �tness variables are bounded below

| that is, if F(c) = 0 for some �nite c | then � is bounded away from 0 when

the domain is restricted to [c;1)K � [c;1)K. Assume for the moment that this

condition holds. By the obvious linearity, we may take c = 0 without loss of

generality.

The distribution F de�nes an inner product on functions from R
K
+ to R by

hf; gi :=
Z
RK+

f(u)g(u)F(du0) � � � F(duK�1);

the corresponding space of square-integrable functions we will call simply L2. The

kernel � gives rise to an operator � on this space by

(13) �f(u) :=

Z
RK+

�(u; v)f(v)F(dv0) � � � F(dvK�1) for f 2 L2:

The adjoint operator �� is

��g(v) :=

Z
RK+

�(u; v)g(u)F(du0) � � � F(duK�1) for g 2 L2:

Then

P� =

Z
RK+

���11F(du0) � � � F(duK�1);

where 1 is the constant function with value 1.

It is observed in Section 7 that the common spectral radius � of � and ��

is an eigenvalue with multiplicity one for both operators. Let � and  be the

corresponding eigenfunctions of � and �� respectively, both chosen to be posi-

tive and bounded away from 0, and normalized to have norm 1. We note that

 (u0; : : : ; uK�1) = �(uK�1; : : : ; u0). We may apply the Perron-Frobenius Theorem
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in the version given here as Theorem 9 (in Section 7). This tells us that for any g

and g� in L2(RK
+),

lim
�!1

��� E
�
g(U0)�(U0; U1)�(U1; U2) � � ��(U��1; U�)g�(U�)

�
=
hg; �ihg�;  i

h�;  i :

The probability that we are looking for is

P
�
�0N is a local max

	
= E

�
�(U0; U1)�(U1; U2) � � � �(U��1; U�)

� F�(X�(K+1)+1 + � � �+X(�+1)(K+1))

� � �F�(XN�K + � � �+XN�1 +X0) � � �F�(XN�1 +X0 + � � �+XK�1)
�
:

De�ne a function


(u0; : : : ; uK�1; v0; : : : ; vK�1)

:=

Z
� � �
Z
F�(v0 + � � �+ vK�1 + x(�+1)(K+1))(14)

� � �F�(vN�K��(K+1) + � � �+ vK�1 + x�(K+1)+K + � � �+ xN�1 + u0)

� � �F�(xN�1 + u0 + � � �+ uK�1)F(dx�(K+1)+K) � � � F(dxN�1):

This function is in L2(Rm+2K
+ ) (where the inner product is again de�ned by the

tensor power of the distribution F, and m = N � (� + 1)(K + 1) + 1). Integrating

out the X's with indices between (� + 1)(K + 1)� 1 and N � 1, we �nd

(15) P
�
�0N is a local max

	
= E

�
�(U0; U1)�(U1; U2) � � ��(U��1; U�)
(U0; U�)

�
:

Since we may approximate 
 by linear combinations of products of the form


i(U0)
0i(U�), we may conclude that

lim
�!1

��� P
�
�0N is a local max

	
=

1

h�;  i
Z
RK+

Z
RK+


(u; v) (u)�(v)F(du0) � � � F(duK�1)F(dv0) � � � F(dvK�1):

Observe that 
 is everywhere positive and less than 1. Since � and  are strictly

positive, we have
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Theorem 7. Suppose that K � 1 and the �tness distribution satis�es F(0) = 0. If

� is the operator de�ned by (13) and � its spectral radius, then

1 � lim
n!1

��N=(K+1)
P
�
�0N is a local max

	
> 0:

Consequently,

lim
N!1

E
�
# local maxima

�1=N
= 2�1=(K+1):

The value of � appears to depend on the distribution F. We �rst compute it

for the case of an exponential distribution with expectation 1. (Because any other

exponential random variable is simply a constant multiple of this one, a di�erent

choice of expectation would lead to the same spectral radius.) In this case,

F�(z) = 1� e�z
KX
i=0

zi

i!
:

We de�ne the Laplace transform of the kernel � with respect to the �rst variable

by

~�(�; v) :=

Z
RK+

e���u�(u; v)du0 � � �duK�1(16)

=

Z
RK+

Z
R+

e���u�zF�(u0 + � � �+ uK�1 + z)

� � �F�(z + v0 + � � �+ vK�1)F(dz)du0 � � �duK�1;

and de�ne the Laplace transform of the Perron-Frobenius eigenfunction � by

~�(�0; : : : ; �K�1) :=

Z
RK+

�(u0; : : : ; uK�1)e
���udu0 � � �duK�1:

Then

(17) �~�(�) =

Z
RK+

~�(�; v)�(v)e�v0�v1�����vK�1dv0 � � �dvK�1:

Consider the case K = 1. We get

~�(�0; v0) =

Z 1

0

Z 1

0

e��0w0�z
�
1� e�w0�z(1 + w0 + z)

�
�
�
1� e�v0�z(1 + v0 + z)

�
dw0 dz:
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Write (with � = �0 and v = v0),

~�(�; v) =
1

108�(1 + �)2

h
(108 + 81�+ 27�2)

� (81 + 46�+ 13�2)e�v + (54+ 24�+ 6�2)ve�v
i
:

Plugging this into (17) yields

�~�(�) =
1

108�(1 + �)2

h
(108 + 81�+ 27�2)~�(1)

� (81 + 46�+ 13�2)~�(2) + (54 + 24�+ 6�2)~�0(2)
i
:

The vector [~�(1) ~�(2) ~�0(2)]> is then a right-eigenvector of the 3� 3 matrix

1

3888

0BBB@
1944 �1260 756

756 �450 252

�504 329 �198

1CCCA
The largest eigenvalue is � � :316611, which means, by Theorem 7, that

lim
N!1

P
�
�0N is a local maximum

	1=N �
p
:316611 � :562682:

This means, in turn, that the expected number of local maxima grows approxi-

mately as 1:12536N .

In principle, the same method could be applied to any �xed value of K. In

practice, the computations quickly become unmanageable. For example, when

K = 2, we get, in place of the above matrix, an unprintable 22 � 22 matrix, and

the principle eigenvector corresponds to the Laplace transform ~� and various of its

mixed derivatives up to total order 4 evaluated at pairs of arguments taken from

f1; 2; 3g. The principle eigenvalue is approximately :228558, with cube root :611409.

Thus, for K = 2, the expected number of local maxima grows approximately as

1:22282N.

A similar reduction via Laplace transforms to a �nite dimensional eigenvalue

problem occurs when F is any gamma distribution with integer shape parameter.

For example, when the shape parameter is 2 (so that F is the distribution of the sum

of two i.i.d. exponentials) and K = 1, the expected number of local maxima grows

approximately as 1:12915N . In particular, this growth rate di�ers (albeit slightly)
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from the K = 1 growth rate for exponentially distributed �tnesses { bolstering the

belief that the growth rate depends on the details of F in a rather complex manner.

5. Heights of the local maxima

For any point in f0; 1gN | in particular, for the point �0N | the expected value

of GN;K is the same as the expected value of Fi. If the point is known to be a local

maximum, on the other hand, this should increase the expected value of GN;K . We

have

E
�
GN;K(0; 0; : : : ; 0)

�� �0N is a local max
�

=
E
�
F[N=2](0; : : : ; 0)1f�0N is a local maxg�

P
�
�0N is a local max

	 :(18)

Of course, the expectation would be the same for any Fi in place of F[N=2]; we

choose the coordinate in the middle merely to keep it away from the messy indexing

behavior that occurs when we arbitrarily break the loop of dependencies between

coordinate N � 1 and 0.

Recall our notation Xi = Fi(0; : : : ; 0). As usual, we consider the indices modulo

N . The Xi's are independent random variables with distribution function F. Then

the numerator in (18) is

E
�
X[N=2]F�(X0 + � � �+XK ) � � �F�(XN�1 + � � �+XK�1)

�
;

and the denominator is the same without the factor of X[N=2].

From Section 4 we know that when K � 1 and F(0) = 0 (so that the Xi are

non-negative)

lim
N!1

��N=(K+1)
P
�
�0N is a local max

	
=

1

h�;  i
Z
RK+

Z
RK+


(u; v) (u)�(v)F(du0) � � � F(duK�1)F(dv0) � � � F(dvK�1):
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Furthermore, if we slip a third function h into the middle of the product | so

h(U�), where � and � � � both go to in�nity | we get

lim
�!1; ���!1

��� E
�
g(U0)�(U0; U1) � � ��(U��1; U�)h(U�)

� �(U�; U�+1) � � � �(U��1; U�)g�(U� )
�

=
hg; �ihg�;  ihh�;  i

h�;  i2 :

It follows that

lim
N!1

��N=(K+1)
E
�
X[N=2]F�(X0 + � � �+XK ) � � �F�(XN�1 + � � �+XK�1)

	
=

1

h�;  i2
Z
RK+

 (u)�(u)u0F(du0) � � � F(duK�1)

�
Z
RK+

Z
RK+


(u; v) (u)�(v)F(du0) � � � F(duK�1)F(dv0) � � � F(dvK�1):

The conclusion is the following.

Theorem 8. Suppose that F(0) = 0. The expected height of the �tness function at

a point, conditioned on the point being a local maximum, converges toR
RK+

 (u)�(u)u0 F(du0) � � � F(duK�1)R
RK+

 (u)�(u)F(du0) � � � F(duK�1) ;

as N !1, where � (respectively,  ) is the Perron{Frobenius eigenfunction for the

operator � (resp. ��), de�ned in (13).

Consider the case when F is the exponential distribution with expectation 1.

The expected height of an ordinary point is 1 for all K. When K = 0 the expected

height of a point conditioned on it being a local maximum is readily seen to be

the expectation of the maximum of two independent exponential random variables,

each with expectation 1, and hence this conditional expected value is 3=2 = 1:5.

When K = 1 we have already computed
p
� � :562682 and the Laplace transform

of the corresponding eigenfunction. By inverting the Laplace transform we see that

the eigenfunction is

�(v) =  (v) � 2:18043� 1:45895e�v � 0:896269ve�v:
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The integral of � against e�v is about 1:65561, while the integral against ve�v is

about 2:67631. Thus, the expected height of a local maximumconverges to 1:61651.

In the case K = 2, the expected height of a local maximum is, by similar

computations, asymptotic to 1:86367. This increase with K of the expected height

of local maxima is noteworthy, inasmuch as Kau�man found that the height of the

local maximum attained by hill-climbing from a random starting point seemed to

increase in K, at least for the �rst few values of K. He explained this by saying

that higher peaks have larger basins of attraction.

We note that if F is the distribution of the sum of two i.i.d. exponential random

variables with common expectation 1, then the expected height of a local maximum

converges to 2:88039 for K = 1. The expected height for K = 0 is 11=4 = 2:75.

6. An alternative representation

We want to give an alternative expression for the probability that a point, say �0N

is a local maximumin the case when the �tnesses are exponential random variables.

(The probability is obviously invariant under rescaling of the �tnesses, so we can

take the �tnesses to have mean 1.)
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This probability that �0N is a local maximum is (recalling the notation Xi :=

Fi(�0K+1))

E

24N�1Y
j=0

F�(Xj + � � �+Xj+K)

35
= E

24N�1Y
j=0

(
1X

k=K+1

exp(�(Xj + � � �+Xj+K))
X

`0+���+`K=k

X`0
j

`0!
� � �X

`K
j+K

`K !

)35
= E

"
1X

k0=K+1

� � �
1X

kN�1=K+1

X
`0;0+���+`0;K=k0

� � �
X

`N�1;0+���+`N�1;K=kN�1

exp(�(X0 + � � �+XK))
X
`0;0
0 � � �X`0;K

K

`0;0! � � �`0;K ! � � � �

� � � � exp(�(XN�1 + � � �+XN�1+K))
X
`N�1;0
N�1 � � �X`N�1;K

N�1+K

`N�1;0! � � �`N�1;K !

#

= E

"
1X

k0=K+1

� � �
1X

kN�1=K+1

X
`0;0+���+`0;K=k0

� � �
X

`N�1;0+���+`N�1;K=kN�1

exp(�(K + 1)X0)
X
`�K;K+`

�(K�1);K�1+���+`0;0
0

`�K;K !`�(K�1);K�1! � � �`0;0!

� exp(�(K + 1)X1)
X
`1�K;K+`1�(K�1);K�1+���+`1;0
1

`1�K;K !`1�(K�1);K�1! � � �`1;0!
� � � �

� � � � exp(�(K + 1)XN�1)
X
`N�1�K;K+`N�1�(K�1);K�1+���+`N�1;0
N�1

`N�1�K;K !`N�1�(K�1);K�1! � � �`N�1;0!

#
:

Because

Z 1

0

exp(�(K + 1)x)x` exp(�x) dx =
�

1

K + 2

�`+1
`!;
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the quantity we seek is

X 1

K + 2

�
K + 1

K + 2

�`�K;K+`�(K�1);K�1+���+`0;0
� (`�K;K + � � �+ `0;0)!

`�K;K ! � � �`0;0!
�

1

K + 1

�`�K;K
� � �
�

1

K + 1

�`0;0
� 1

K + 2

�
K + 1

K + 2

�`1�K;K+`1�(K�1);K�1+���+`1;0
� (`1�K;K + � � �+ `1;0)!

`1�K;K ! � � �`1;0!
�

1

K + 1

�`1�K;K
� � �
�

1

K + 1

�`1;0
�

� � �

� 1

K + 2

�
K + 1

K + 2

�`N�1�K;K+`N�1�(K�1);K�1+���+`N�1;0
� (`N�1�K;K + � � �+ `N�1;0)!

`N�1�K;K ! � � �`N�1;0!
�

1

K + 1

�`N�1�K;K
� � �
�

1

K + 1

�`N�1;0
;

where the sum is over all non-negative integers `0;0; : : : ; `N�1;K such that

`0;0 + `0;1 + � � �+ `0;K � K + 1;

`1;0 + `1;1 + � � �+ `1;K � K + 1;

: : : ;

`N�1;0 + `N�1;1 + � � �+ `N�1;K � K + 1:

This last expression has a simple probabilistic interpretation. Let S0; : : : ; SN�1

be independent, identically distributed, non-negative, integer-valued random vari-

ables with

PfSj = sg = 1

K + 2

�
K + 1

K + 2

�s
; s = 0; 1; 2; : : :

That is, Si has the distribution of the number of failures before the �rst suc-

cess in a sequence of i.i.d. Bernoulli trials with success probability 1
K+2

. Given

S0; : : : ; SN�1, let the random vectors Tj = (Tj�K;K ; Tj�(K�1);K�1; : : : ; Tj;0), 0 �
j � N � 1, be conditionally independent, with the conditional distribution of Tj
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being multinomial(Sj ;
1

K+1 ;
1

K+1 ; : : : ;
1

K+1 ). Equivalently,

E

24N�1Y
j=0

�
Tj�K;K
j�K;K �

Tj�(K�1);K�1
j�(K�1);K�1 : : : �

Tj;0
j;0

35
=

N�1Y
j=0

�
K + 2� (�j�K;K + �j�(K�1);K�1+ � � �+ �j;0)

��1
Set Uk := Tk;0 + Tk;1 + � � �+ Tk;K, 0 � k � N � 1, so that

E

"
N�1Y
k=0

�Ukk

#
=

N�1Y
j=0

�
K + 2� (�j�K + �j�(K�1) + � � �+ �j)

��1
:

It is easy to see (for example, by using the above probability generating functions)

that each Uk is distributed as the number of failures before the (K + 1)st success

in i.i.d. Bernoulli trials with success probability 1
2 . In particular, E[Uk ] = K + 1.

Of course, the Uk are not independent, but (U0; : : :UN�1) is a stationary process

on the group of integers modulo N . Then

Pf�0N is a local maximumg = PfUk � K + 1; 0 � k � N � 1g:

It is apparent from the probability generating function that the collection of ran-

dom vectors (Tj�(K�1);K�1; Tj�(K�2);K�2; : : : ; Tj;0), 0 � j � N � 1, has the same

joint distribution as the analogue of the Tj 's for the N (K � 1) model. Therefore,

if we set ~Uk := Tk;0+Tk;1+ � � �+Tk;K�1, 0 � k � N � 1, then the probability that

�0N is a local maximum for the N (K � 1) model is

Pf~Uk � K; 0 � k � N � 1g:

The N ! 1 asymptotics for K = 0; 1; 2 obtained in Section 4 suggest that for

�xed N the probability �0N is a local maximum for the NK model might increase

with K (at least for exponentially distributed �tnesses). The \coupling" of the

NK and N (K �1) models we have just described suggests a route to verifying this

conjecture, but we are unable to supply a proof.
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7. Some Perron{Frobenius Theory

Suppose that on some probability space (�;A; �) we have an A�A{measurable

kernel � : ���! R that satis�es 0 < c � � � C <1 for constants c; C. De�ne a

compact operator � on the complex Hilbert space L2(�) by

�g(x) :=

Z
�

�(x; y)g(y)�(dy);

so that � has adjoint �� given by

��f(y) :=

Z
�

f(x)�(x; y)�(dx):

As compact operators, � and �� have a common spectrum that is discrete outside

any neighborhood of 0. All nonzero elements of the spectrum are eigenvalues with

�nite multiplicity. Write � for the common spectral radius of � and ��. That is, �

is the modulus of the largest eigenvalue. Equivalently,

� = lim
n
k�nk 1

n = lim
n
k��nk 1

n :

Clearly, c � � � C.

The following result can be proved along the same lines as the classical Perron{

Frobenius theorem for positive matrices (see, for example, [HJ85]). It is probable

that this result exists in the literature, but we have been unable to �nd a suitable

reference.

Theorem 9. The spectral radius � is an eigenvalue of � and �� and is the unique

eigenvalue with modulus �. Moreover, � is simple for both � and ��. Let � and

 be normalized eigenfunctions of � and �� for the eigenvalue � (so that � and  

are unique up to constants of modulus 1). It is possible to choose constants so that

� � 0 and  � 0, �{a.e., in which case 0 < ess inf � � ess sup� < 1 and 0 <

ess inf  � ess sup < 1. Finally, limn k��n�n � �k = limn k��n��n � ��k = 0,

where � is the rank one operator de�ned by

�g(x) :=
�(x)h ; gi
h�;  i :
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