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Abstract

This paper presents a systematic approach to the discovery, inter-
pretation and verification of various extensions of Hurwitz’s multino-
mial identities, involving polynomials defined by sums over all subsets
of a finite set. The identities are interpreted as decompositions of for-
est volumes defined by the enumerator polynomials of sets of rooted
labeled forests. These decompositions involve the following basic for-
est volume formula, which is a refinement of Cayley’s multinomial
expansion: for R C S the polynomial enumerating out-degrees of ver-
tices of rooted forests labeled by S whose set of roots is R, with edges
directed away from the roots, is
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1 Introduction

Hurwitz [21] discovered a number of remarkable identities of polynomials in
a finite number of variables x4, s € S, involving sums of products over all
219 subsets A of some fixed set Q C S, with each product formed from the
subset sums

Tp =) 04 ¥ and x5 = xg x4, where A:=0Q <A (1)

For instance, for S <Q = {0,1}, with @ substituted for z¢ and y for z; to
ease the notation, there are the following:

Hurwitz identities [21, II’, 111, IV]

Y a2 = (2 4y + 20) (2)

ACQ

Yo a(rta) Yy +a )M =@ty @ty )Tt (3)

AC|9|
D (etaaly+an)= 3 (@tytaa)?Bl [[o (1)
ACIQ| BC|9| beB

For || = n and x4 = 1, by summing first over A with |A| = k, these Hurwitz
sums reduce to corresponding Abel sums [1, 48]

n

e = Y () o+ 0y 5)

k=0

for particular integers v and §. Especially, (2) with 25, = w and y = z &nw
reduces to Abel’s binomial theorem [1]

n

k=0

and (4) for x5 = w reduces to a classical identity due to Cauchy. Strehl
[56] explains how Hurwitz was led to such identities via the combinatorial
problem, which arose in the theory of Riemann surfaces [20], of counting
the number of ways a given permutation can be written as a product of a
minimal number of transpositions which generate the full symmetric group.
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This paper develops a systematic approach to the discovery, interpre-
tation and verification of identities of Hurwitz type such as (2)-(4). This
method is related to, but not the same, as Knuth’s method in [32] and [31,
Ex. 2.3.4.30]. There Hurwitz’s binomial theorem (3) was proved by inter-
preting both sides for positive integer z, y and x,, s € {) as a number of rooted
forests with @ + y + xq + || vertices, subject to constraints depending on
the 5. The present method is closer to the approach of Francon[18], who de-
rived (2) and (3) using a form of Cayley’s multinomial expansion over trees,
expressed in terms of enumerator polynomials for mappings from S to S.
Section 2 introduces the notion of forest volumes, defined by the enumerator
polynomials of sets of rooted labeled forests, with emphasis on a general-
ization of Cayley’s multinomial expansion over trees, called here the forest
volume formula. This formula relates Hurwitz type identities to decomposi-
tions of forest volumes. Probabilistic interpretations of forest volumes were
developed in [40, 41, 42, 43]. This paper, written mostly in combinatorial
rather than probabilistic language, is a condensed version of [40]. A com-
bined version of [40] and [41] appears in the companion paper [44]. Section
3 offers two different extensions of the forest volume formula. Then Section
4 presents a number of Hurwitz type identities, with proofs by forest volume
decompositions. Finally, Section 5 points out some specializations of these
Hurwitz identities which give combinatorial interpretations of Abel sums.

2 Forest volumes

Rooted labeled forests. Francon’s approach to Hurwitz identities is sim-
plified by working exclusively with various subsets of the set

F5 := {all rooted forests ' labeled by S}

whose enumerative combinatorics has been extensively studied [37, 2.4 and
3.5], [54, 5.3]. Each F' € Fs is a directed graph with vertex set S, that is a
subset of S x 5, each of whose components is a tree with some root r € S5,
with the convention in this paper that the edges of I are directed away from
the roots of its trees. The set of vertices of the tree component of F' rooted
at r is the set of all s € S such that there is a directed path from r to s in F,

denoted r ~» s, meaning either r = s or there is a sequence of one or more
F F F F
edges r — - -+ — s, where s; — sy means (s1,2) € F. Let Fy:={a:s = a}



denote the set of children of s in F. So |Fy| is the out-degree of vertex
s in the forest F. Note that the F, are possibly empty disjoint sets with
UsesFs = S <roots(F'), where roots(F') is the set of root vertices F'. So the
total number of edges of I'is 3 o |Fi| = |S| & |roots(F)| and |roots(£)| is

the number of tree components of F'.

Forest volumes. For B C F§, the enumerator polynomial in variables
5,8 €S

Vs[F € Bl :=Vs[F € Bl(zs,s € 5) =Y = (6)
FeB seS
is called here the volume of B, to emphasise that B — Vs[F € B] is a
measure on subsets B of Fs, for each fixed choice of (5,5 € S) with x; > 0.
As explained later in this section, this notion of forest volumes includes both
the probabilistic interpretations developed in [43, 41, 42, 40], and the forest
volume of a graph defined by Kelmans [29, 26, 27].

Consider the volume of all forests I' € Fg with a given set of roots K.
This volume decomposes according to the set A = U,cpF, of children of
all root vertices of F'. With Q := 5 & R, this gives the recursive volume
decomposition

Viaua[roots(F) = R] = Z $|]%A|VQ[TOOtS(F) = A] (7)

where each side is a polynomial in variables x,,s € S, and S = QU R with
RN Q =10. Consideration of (7) for small |S| leads quickly to the following
generalization of Cayley’s multinomial expansion over trees [13, 47]:

Theorem 1 (The forest volume formula) [13, 45, 47, 18, 11, 40]
For R C S, the volume of forests labeled by S whose set of roots is R is

Vs[roots(F') = R] = ap :1;|S| Fl=L (8)

Proof. Observe first that (8) transforms (7) into the following Hurwitz type
identity of polynomials in variables xp and x4, s €

J}R(J}R —|— J}Q)'Q'_l = Z $|RA| T A $|§§2|_|A|_1. (9)

ACQ
But (9) is very easily verified directly, and (8) follows from (7) and (9) by
induction on |S]. O



History and alternative proofs of the forest volume formula. Cayley
[13] formulated the special case of (8) with R = {r}, call it the tree volume
formula, along with the special case of (8) with general R and z, =1,s € 5,
that is the enumeration

{F' € Fs with roots(F) = R}| = |R| |S||S|—|R|—1 (10)

which for |R| = 1 yields the Borchardt-Cayley formula n"~2 for the number
of unrooted trees labeled by a set of n vertices. These special cases of the
forest volume formula are among the best known results in enumerative com-
binatorics. See for instance [45, 47, 43, 42, 54, 7] for various proofs of the
tree volume formula and [19, 36, 37, 57, 51, 3] for (10). The preceding proof
of the forest volume formula parallels a proof of (10) by induction, using the
consequence of (7) that the number in (10) is #(|S], |R|) with the recursion

n

Bk +n, k) = ; (Z)k“#(n,a). (11)

Moon [37, p. 33] attributes this proof of (10) to Gébel [19]. The forest
volume formula can also be derived by the method of Priifer codes [45],
which has been applied to obtain a host of other results in the same vein
[30],[37, Chapter 2]. Another approach to the forest volume formula is to
combine any of the proofs of the tree volume formula cited above with the
following:

Reduction of forest volumes to tree volumes. Fix some arbitrary
r € R, and decompose the volume Vg[roots(F') = R] according to the tree
T = tree(F') derived by identifying all root vertices of F' with r. So T is
labeled by {r} U (S < R), and the sets of children of T" are T, := UsepFs and
T, := F; for s € S & R. For each possible tree T', it is easily seen that

Vs[I’OOtS(F) = R, tree(F) — T] — l"]?' H J?LTS'.

SES—R

Now sum over all 7" and apply the tree volume formula to deduce the forest
volume formula.

Reformulation in terms of mappings. The forest volume formula is
easily recast as a formula for the enumerator of mappings from S to S whose
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set of cyclic points is a set of fixed points equal to R. This mapping enu-
merator was derived by Francon [18, Prop. 3.1 and proof of Prop. 3.5] from
the Foata-Fuchs encoding of mappings [17] for |R| < 2. The corresponding
enumerator for general R can be inferred from the discussion in [18, p. 337]
and derived the same way. As indicated in [40, 7], a probabilistic form of
the forest volume formula, expressed in terms of random mappings, can be
read from Burtin [11]. The general form (8) of the forest volume formula was
given in [40, Th. 1] with a roundabout proof via random mappings.

Variations of the forest volume formula. For each vector (¢, s € 5)
of non-negative integers with ) ¢, = |5| <|R)|, the identity of coefficients of
;2% in (8) reads

|S| < |R| <1)!
HSESCS! ‘

In the tree case |R| = 1, this is easily verified by a direct argument [43, §5.1].
The same argument gives the identity of coefficients of II;2$* in the formula

{F € Fs: |F)| = ¢, forall s € S}| = n

(12)

for the volume of all forests with exactly k tree components [42, §2]:

|51 <:>1> 11—k

Vs[F with k trees] = ( b JTS (13)

This in turn is the identity of coefficients of 2% in the tree volume formula
applied to S U {0} instead of S for some 0 ¢ S. See Stanley [54, Th. 5.3.4]
for two other proofs of (13). It is obvious that (8) implies (13) by summation
over R with |R| = k, but less obvious how to recover (8) from (13). Neither
does it seem easy to check the coefficient identities (12) directly for general
R. By summation of (13) over k, the total volume of all forests labeled by S
is

Vs[F - Fs] = (1 + $5)|S|_1. (14)

Hurwitz’s multinomial formula. An argument suggested by Frangon|[18,
p. 337] in terms of mapping enumerators can be simplified as follows. The
forest volume Vg(roots(F) = R) can be decomposed by classifying F' accord-
ing to the sets B, of non-root vertices of the tree components of F', as r
ranges over R. For given (B,,r € R), there is an obvious factorization of



the forest volume over disjoint tree components, and the tree volume formula
can be applied within each component. Therefore

Vs[roots(F Z H (x, + xp,) |BT|_1 (15)

B;) reR

where the sum is over the | R|*I=1El possible choices of disjoint, possibly empty
sets (B,,r € R) with U,egB, = 5 < R. The equality of right hand sides of
(8) and (15) is Hurwitz’s multinomial formula [21, VI]:

rr(tr+ xq) |Q| ! Z H (x, + xB,) |BT|_1 (16)

B;) reR

whose binomial case |R| = 2 is (3). As a check on this circle of results,
(16) is easily derived by induction on |R| from its binomial case, which was
interpreted combinatorially by Knuth [32] and [31, Ex. 2.3.4.30]. The forest
volume formula can then be read from the consequence (15) of the tree volume
formula.

Probabilistic interpretations. Suppose in this paragraph that (z,s €
S) is a probability distribution on S, meaning x5 > 0 for all s € S and
xs = 1. Let F} denote a random tree distributed according to the forest
volume distribution restricted to forests with a single tree component. That
is to say, for each tree T' labeled by S, the probability that F}" equals T' is

P(F; =T) =[] ="

SES

where the probabilities sum to 1 over all trees T' by (13) for & = 1. For
0 < p < 1let £ denote the random forest obtained by retaining each edge e
of F with probability p, and deleting it with probability 1 <p, independently
as e ranges over the set of |S] &1 edges of F}'. According to [43, Theorem
11 and (43)] the distribution of Fp* on Fs is given by the formula

P(F; € B) = pP Vs qy) [ € B (17)

where .
Vs.[F € B):=z"" ZZkVS[F has k trees and F' € B] (18)

k=1



is a polynomial in variables z and (x5, s € S). For for z = o with 0 ¢ S, this
polynomial is z; ' times the volume of trees labeled by {0} U S whose restric-
tion to S is a forest in B. The probabilistic interpretation of forest volumes
(17) makes an important connection between the theory of measure-valued
and partition-valued coalescent processes and the asymptotic structure of
large random trees [6, 4, 12, 15].

Forest volumes of graphs. In the particular case when B is the set of
all forests contained in some directed graph G with vertex set S, Kelmans,
Pak and Postnikov [26, 27] call the polynomial (18) the forest volume of
GG. They obtain a formula for the forest volume of a graph G built up
by a composition operation from simpler graphs, and apply this formula to
obtain some Hurwitz type identities by the same method of forest volume
decompositions used in this paper. In [26, 27] the basic building block for
explicit formulae is taken to be the tree volume formula([26, 12.1] and [27,
3.2]) rather than the forest volume formula. But the forest volume formula
yields Hurwitz type sums more easily, as can be seen by comparing the
previous discussion around (15)-(16) with the treatment of the same result
in [26, §13] and [27, 4.2]. There seems to be little overlap between the
variations and extensions of Hurwitz’s identities found in Section 4 of this
paper, by consideration of volumes Vs(F € B) for various subsets B of F,
and the family of Hurwitz type identities found in [27] by consideration of
forest volumes of graphs. The basic method of forest volume decompositions
is doubtless capable of generating still more identities in the same vein.

Other related work. Abramson [2] derived the particular case of Hur-
witz’s multinomial formula (16) with ;, = 1,s € Q by Knuth’s method,
along with more complicated multinomial identities associated with a di-
rected graph. Presumably the results in this paper could be also recovered
by Knuth’s method, but the present approach seems much simpler. See also
Stam [52] for another kind of extension of Hurwitz’s identities, involving
polynomials of binomial type. Some other papers which treat aspects of
Abel and Hurwitz identities and their connections to rooted labeled trees are

[10, 22, 49, 50, 55, 58].



3 Extensions of the forest volume formula

Theorems 2 and 3 in this section present two different extensions of the
forest volume formula. Only the first of these extensions is needed for the
applications to Hurwitz identities in Section 4.

An oriented percolation volume. The following formula was discovered
in connection with the problem, solved by Corollary 5 in the next section, of

finding the probability of the event r L s for a random forest F' distributed
according to the forest volume distribution conditioned on forests of k trees.

Theorem 2 For each R C S and each fized choice of an r € R and an
s€SEeR,

Vs[roots(F) = R and r 4 s] =z, :1;!5'_']%'_1. (19)

Proof. Let Fsp denote the set of F' € Fg with roots(F') = R. For r,r' € R
there is a bijection between

{F € Fsp with r L s} and {F' € Fsp with ' = s}

whereby F' is derived from F' by deleting the first edge, r — ¢ say, on the
path from r to s in F', and adding the edge " — ¢. Denote the the volume
on the left side of (19) by Vs r(r ~ s). The bijection gives

Lyt

Vsr(r ~ s) = Vs r(r' ~ s).
,

Sum this over v’ € R and use the forest volume formula (8) to get (19). O

Probabilistic applications. To simplify the next two displays (20) and
(21), let
Vs[--+ and F has k trees]

Vs[F has k trees]
where the denominator is given explicitly by (13). Assuming that x5 > 0 for

PS,k[‘ . ] —

all s, this ratio can be interpreted as the probability of the event [---] for
a random forest F' distributed according to the normalized volume measure
on forests of k trees labeled by S, as considered in [43, 41, 40]. Sum (19)



over appropriate R to obtain for each choice of distinct r,s € S, and each
1 <k<n:=|5|,

F (n<k) x,

Ps[r € roots(F),r~ s| = (n 1) 75 (20)
and - Lo
Ps[r € roots(F),r o6 s] = " zl. (21)

According to (21), for each choice of non-negative integers ¢,,v € S with
Y ves Cv = nek, among all forests I of k trees labeled by S such that v has ¢,
children in F' for every v € S, the fraction of F' such that both r € roots(F')

and r 72 s equals (k<1)/(n <1). This rather surprising result can also be
checked by direct enumeration as in [42, §2].

Adding the right sides of (20) and (21) gives a simple formula for the
probability Ps[r € roots(F')]. This formula can be checked by summation
of the forest volume formula over all R containing r with |R| = k. Obvi-
ous variations of this argument yield formulae for Psjy[roots(F) O A] and

Ps p[roots(F') C A] for A C S.

The volume of forests containing a given subforest. Another general-
ization of the forest volume formula with interesting probabilistic applications
[41] can be formulated as follows:

Theorem 3 For each GG € Fs with g tree components T.(G),r € roots((),
and each R C roots((),

Vs[roots(F) = R and F DO (] = (Z J}TT(G)> :1;%_|R|_1 H:L'LGSl. (22)

reR SES

Proof. This is similar to the condensation argument used in Section 2 to
reduce the forest volume formula to the tree volume formula. For f' € Fy
with F D @, define a G-condensed forest F, with vertex set roots((), by the
following adaptation of Moon’s construction in [34, 37]: collapse each tree
component T,.(G) onto its root r, and link these components according to F'.

That is, G-condensed(F') = F' where for s,t € roots((),
F~' 7 F !
s =t & s =t for some s € Ty(G).
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It is easily checked that F' € Foos(ry and roots(F) = R. Moreover, for
each such F the volume of I' € Fs with roots(F') = R, I' D G and
G-condensed (F') = F is easily found to be

[T &) 1A

réeroots(G) sES

and (22) follows by summation over all F e F o5y with roots(ﬁ) = R,
using the forest volume formula and

Z xTT(G) = Is. (23)

réeroots(G)

a

By summation of (22) over R C roots((), using (23), for each GG € Fs
with ¢ tree components
Vs(F has k trees and F' O () = (g zi>xfg—k I;IS:I;LGS| (24)
which was found by a different method in [41]. The case of (24) with z, =1
is a result of Stanley [53, Ex. 2.11.a], which goes back to Moon [34] and [37,
Th. 6.1] for & = 1. See also Pemantle [39, Th. 4.2], where a determinantal
formula was found for the probability P(T' O ) for T' a uniform random
spanning tree of a graph. Other related papers are [38, 28, 14]. In contrast
o (24), there is no simple general formula for Vs[F has k trees and F C (]
for a general directed graph G. But see [26] for expressions of the generating
function (18) of these volumes for graphs with special structure. Such expres-
sions, which can be related to (24) by the method of inclusion and exclusion,
extend classical results on the enumeration of the numbers of spanning trees

and spanning forests of G, discussed in Moon [37, Chapter 6] and Stanley
[53, Ex. 2.11.a].

4 Hurwitz identities

This section presents five extensions and variations of Hurwitz’s identities
(2)-(4) as corollaries of the forest volume formulae provided by Theorems 1
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and 2. Each identity is derived from its interpretation as a decomposition of
forest volumes. Throughout the section, € is a finite set disjoint from {0, 1},
and the notation (1) is used. First, an interpretation of Hurwitz’s identity
(2) as a forest volume decomposition:

Proof of (2). Let @ = g,y = 21, and multiply both sides of (2) by x4, so
that (2) can be rewritten

> wo(wo+ wa) M ey (21 + 2 )M = (2o + 20+ 20 (25)
ACQ

By the tree volume formula, the right side of (25) is the volume of trees

T with root 1 labeled by {0,1} U Q. The left side classifies these trees T

according to the set A ={v e Q:0 L v} of non-root vertices of the fringe
subtree of T' rooted at 0. By applications of the tree volume formula, the
factor xo(xo + :L'A)|A|_1 is the volume of trees rooted at 0 labeled by {0} U A,
while the factor x1(x; + J}A)|A| is the volume of trees rooted at 1 labeled by
{0,1} U A in which 0 is a leaf vertex (and the variable z¢ is set equal to 0 to
achieve this constraint). O

The particular case m = 0 of the next result gives another interpretation
of the same Hurwitz identity (2). See also [40] for discussion of further inter-
pretations of (2) in terms of random mappings, including those of Francon
[18, p. 339], and Jaworski [23, Theorem 3], whose equivalence with the inter-
pretations given here can be explained using Joyal’s bijection [24] between
marked rooted trees and mappings [9].

Corollary 4 For 0 <m < |Q|

> wo(wo + wa) 47! ('2') (1 +x5)A™ = ('2') (o + @1 + 20) ¥ (26)

ACQ
= :1;51‘/{071}UQ[F with m + 1 trees: 0 € roots(F') and 0 L 1]. (27)

Proof. The right side of (26) equals (27) by summation of (19) with r =0
over R C {0} UQ with 0 € R and |R| = m + 1. So does the left side, by
decomposing the volume in (27) according to the set A of all s € Q such that
there is a directed path from 0 to s in F' which does not pass via 1, using

(13). O

12



As a check, (26) can also be deduced from its special case m = 0 by
replacing x; by z; + 0 and equating equating coefficients of ™. The same
remark applies to the next identity, whose special case m = 0 is Hurwitz’s
identity (4).

Corollary 5 For 0 <m < |Q|

Z($o+$A)|A|<|:L|>($1—|-$A)|A|_m = Z(xo+x1+x9)|B|_m<|i|> B! T =

ACQ BCQ sEB
= :1:51‘/{071}UQ[F with m + 1 trees: 0 - 1]. (28)

Proof. On the left side I is classified by the set A of s € £ such that 0 Los
and 1 does not lie on the path from 0 to s, and the volume is evaluated with
the help of (19). On the right side F'is classified by the set B of s € {2 such
that s lies on the path in F' which joins 0 to the root of its tree component
in F', and the volume for given B is computed by consideration of the forest
obtained from F' by cutting the edges along this path. O

The last proof used the idea, adapted from Meir and Moon [33] and Joyal
[24], of generating a forest by cutting the edges along some path in a tree.
The same idea yields the following identity:

Corollary 6

> (w4 za)(@ + o) AL 2 = (2 + 20) (29)

ACQ s€EA

Proof. For x = x¢ + x; the right side is :1;51\/{071}U9[trees F with root 0],
by the tree volume formula. On the left side the trees are classified by the
set A of all vertices that lie on the path in the tree from 0 to 1. Cutting the
edges along this path makes a forest labeled by {0,1} U Q whose set of roots
is {0,1} U A. So the required volume is easily found using the forest volume
formula. O

As a final example of Hurwitz type sums over subsets, (13) yields easily:

13



Corollary 7 For 1 < m < |Q]

S (M2 ot et = () o )

e m <1

which is the the volume of forests I' of m + 1 rooted trees labeled by {0} U Q,
with I classified on the left side by the set A of vertices other than 0 in the
tree component of F' that contains 0.

More exotic Hurwitz type identities, involving sums over partitions, can
be obtained in a similar way. For instance:

Corollary 8 The volume of all trees labeled by {0} U Q and rooted at 0 is

€2

2.
h=1 (I,

where the inner sum is over all ordered partitions of 0 into h non-empty
subsets Ly, ..., Ly, and the trees are classified according to the set L; of all
vertices of all vertices at level j of the tree (meaning at distance j from the

h
o [T, = wolwo+ wq) ! (31)
..... Lh) j:2

root 0) with h representing the maximum height of all vertices of the tree.

Proof. This follows easily from the tree volume formula by iteration of the
argument leading to (7). O

The instance of (31), with x5, = 1 for all s € Q and x( a positive integer,
was discovered by Katz [25], who used it to show that the number C(n, k)
of mappings from an n element set to itself whose digraph is connected with
exactly k cyclic points is

n

C(n, k) = <k>(k 1) (kn"F 1), (32)

As remarked by Rényi [46], the transparent combinatorial meaning of the
factors in (32) allows either of the formulas (10) and (32) to be derived
immediately from the other. See Moon [37, 3.6] for further discussion, and
[23, 40] for the extension of this argument which gives the distribution of the
number of cyclic points in the digraph of a random mapping s — M, when
the M, are independent with a common probability distribution which might
not be uniform.

14



Remarks. The identities in this section were first obtained in [40] by find-
ing the probability of some event determined by a random forest in two differ-
ent ways. More identities of this kind can be gleaned from [40] or derived by
the same method. The technique of conditioning on a suitable subtree yields
Hurwitz type sums for many other probabilities of interest. A polynomial
sum of 2" terms is of course hard to compute for large n, but not as hard
as the typical sum of n"~! terms which defines the probability, and large n
asymptotics of many Hurwitz sums can be handled as in [5, 4, 8, 12].

5 Abel 1identities

For #;, = 1 the Hurwitz type identities and their interpretations described
in the previous section reduce to corresponding results for Abel sums. For
instance, the Abel type identity derived from (30) is

nif (Z) (n :Lﬂ;?l) (z + E)f(n k)" = (Z) (x4+n)"™  (33)

k=0

for 1 < m < n. The Abel type identity derived from (29) is the case b =0
of the telescoping sum

n

S (mhele + B) (e + )" = (e 4 0) (0<b<n).  (34)

k=b

Probabilistic interpretation of an Abel sum. Corollary 5 specializes
for m = 0 to give the following probabilistic interpretation of the Abel
sum A%%(x,y) defined by (5), with an asymptotic expression obtained by
a straightforward integral approximation using the local normal approxima-
tion to the binomial distribution [16]:

Corollary 9 For T a random tree distributed according to the forest volume
distribution conditioned on the set of all trees labeled by S := {0,1,...,n+1},
with vo = x,vy =y and x3 = 1 for 1 < s <n+1, the probability that there
is a directed path from 0 to 1 in T is

T v A% (z,y) T T
PO~ 1) = - ~y = : 35
( ~~ ) (n—l—x—l—y)”"‘l Qﬁasn—M)o ( )
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In the particular case when x = y = 1, the distribution of T'is uniform on
the (n 4 2)"*! rooted trees labeled by S, so (35) implies that for all distinct
u,v €8 :={0,1,...,n+1}

Plu~v) = A2°(1,1)/(n +2)"*", (36)
So A%°(1,1) is the number of rooted trees labeled by S in which there is a
directed path from u to v. It is easy to deduce from (36) the result of Moon

[35, Theorem 1], that the conditional expectation of the size |[{v: 0 L v} of
the fringe subtree of T" with root 0, given that 7" has some root other than 0,
is A%°(1,1)/(n +2)"™. The asymptotic evaluation in (35) agrees with Moon’s
asymptotic formula y/mn /2 for this conditional expectation. As observed by
Moon, this conditional expectation is also the expected distance in T' between
any two distinct vertices u,v € 5. See [8] for a study of the asymptotic
behaviour for large n of the distribution of the size of the fringe tree {v :

05 v} for T distributed according to a non-uniform volume distribution on
trees labeled by S, and [4, 12] for further study of the asymptotics of large
random trees of this kind.
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