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Abstract

This paper introduces a split-and-merge transformation of inter-
val partitions which combines some features of one model studied by

Gnedin and Kerov [12, 11] and another studied by Tsilevich [30, 31]
and Mayer-Wolf, Zeitouni and Zerner [21]. The invariance under this

split-and-merge transformation of the interval partition generated by
a suitable Poisson process yields a simple proof of the recent result of

[21] that a Poisson-Dirichlet distribution is invariant for a closely re-
lated fragmentation-coagulation process. Uniqueness and convergence
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to the invariant measure are established for the split-and-merge trans-
formation of interval partitions, but the corresponding problems for

the fragmentation-coagulation process remain open.

1 Introduction

There has been recent interest in models for the evolution of a random process
whose state may be regarded as an interval partition, that is a partition of
some �xed interval I into collection of disjoint subintervals Ij, whose lengths
sum to the length of I. Section 2 introduces a split-and-merge transformation
of interval partitions which combines some features of one model studied by
Gnedin and Kerov [12, 11] and another studied by Tsilevich [30, 31] and
Mayer-Wolf, Zeitouni and Zerner [21]. It is easily seen that the interval
partition generated by a suitable Poisson process is invariant for the model
of Section 2. As shown in Section 4, this yields a simple proof of the result
of [21] that a Poisson-Dirichlet distribution is invariant for a closely related
fragmentation-coagulation process. The transfer of ideas from Section 2 to
Section 4 relies on some basic results about size-biased random permutations,
which are recalled in Section 3. Uniqueness and convergence to the invariant
measure are established in Section 2 for the split-and-merge transformation
of interval partitions. The corresponding problems for the fragmentation-
coagulation process of Section 4 remain open, though for this model Tsilevich
[31] has proved convergence to the Poisson-Dirichlet law of binomial means
along the trajectory of the process started with only one part. Section 5
points out a connection between the uniqueness problem of Section 4 and
Kingman's theory of exchangeable random partitions. Finally, Section 6
presents a discrete analog of the fragmentation-coagulation process of Section
4, in terms of the cycle structure of a random permutation de�ned by a
suitable sequence of random transpositions.

See Durrett and Limic [7] for study of another model which may be re-
garded as a split-and-merge transformation of an interval partition. Their
model has the same invariant Poisson process as the model described in Sec-
tion 2 for suitably matched parameters, and their model behaves similarly
with respect to continuous monotonic transformations. But the equilibrium
state of the model decribed in Section 2 is reversible, whereas the equilibrium
state of Durrett-Limic model is not. See Aldous-Diaconis [2] and Sepp�al�ainen
[29] for study of a more sophisticated model of a similar kind.
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2 The split-and-merge transformation

For W � 0 and indicator variables 1s; 1m 2 f0; 1g, where 1s = 1 or 0 accord-
ing to a decision to split or not, and 1m = 1 or 0 according to a decision to
merge or not, de�ne a transformation TS" on the space S" of sequences (xn)
with

0 � x1 � x2 � � � � � x1 := lim
n
xn � 1

as follows. Let TS"((xn);W; 1s; 1m) := (x0n) where

(x01; x
0
2; x

0
3; x

0
4; : : :) =

8<
:

(W;x1; x2; x3; : : :) if W < x1 and 1s = 1
(x2; x3; x4; x5 : : :) if x1 � W and 1m = 1
(x1; x2; x3; x4 : : :) otherwise.

(1)

Note that in any case x01 = x1. Let x0 := 0 and regard the xn for n � 1 as
the endpoints of successive intervals In := [xn�1; xn) in a partition of [0; x1).
Then the x0n are the endpoints of intervals in the partition (I 0n) derived from
(In) by the operation of

� splitting I1 at W if W 2 I1 and 1s = 1;

� merging I1 and I2 if W =2 I1 and 1m = 1;

� otherwise leaving the partition unchanged.

Alternatively, the sequence (xn) may be regarded as encoding the set
of points fxn : xn < x1g, which is either �nite, or countably in�nite. Ties
among the xn would mean multiple points, but this possibility can be ignored
with little loss of interest. A split corresponds to appearance or birth of a
new point in the set, strictly to the left of the current left-most point, while
a merge corresponds to disappearance or death of the left-most point (or of
one of them if there is more than one). With this interpretation, and the
notation x ^ c for the minimum of x and c, for 0 � c < x1 the truncated
sequence (xn ^ c) encodes the restriction of the set of points to [0; c), that is
the necessarily �nite set of points fxn : xn < cg.

De�nition 1 Let W be a random variable with continuous probability dis-
tribution on [0;1), and let �m and �s be two probability parameters in (0; 1].
The (W;�m; �s)split-and-merge chain is the Markov chain with state space
S" such that given the current state is (xn), the next state is distributed as

3



TS"((xn);W; 1s; 1m) where 1s and 1m are indicator random variables indepen-
dent of W , with

P (1s = 1) = �s and P (1m = 1) = �m:

Note that the de�nition of the Markov chain depends only on the distribution
of W , and that repeated steps of the chain can be made using independent
copies of (W; 1s; 1m) at each step. The continuity assumption on the distri-
bution of W could be relaxed, but at the expense of minor complications
in the formulation of the following theorem. This model was introduced by
Gnedin and Kerov [12, 11] for �s = �m = 1 and 0 � W � 1. The extra
randomization, with the split probability �s and the merge probability �m,
was suggested by the model of [21] whose de�nition is recalled in Section
4. Letting W have values in [0;1) instead of [0; 1] allows W to have the
standard exponential distribution P (W > t) = e�t for t � 0. This is the
simplest choice of W , because the Poisson process appearing in the following
theorem is then homogeneous. This theorem is a development of results of
[12, 11] suggested by the model of [21] discussed in the next section.

Theorem 2 Let C := supfx : P (W > x) > 0g be the supremum of the
support of the distribution of W , and let X1 < X2 < � � � be the points of
a Poisson point process on [0; C] with intensity measure (�s=�m)�(�) where
�(dx) := P (W 2 dx)=P (W > x), or equivalently

�[0; x] := � log P (W > x) (0 � x < C):

(i) For each c 2 [0; C] the distribution of (Xn ^ c)n=1;2;::: is a reversible
equilibrium distribution for the (W;�m; �s) split-and-merge chain.
(ii) For each c 2 [0; C] the distribution of (Xn ^ c)n=1;2;::: is the unique equi-
librium distribution for the (W;�m; �s) split-and-merge chain that is concen-
trated on sequences (xn) with x1 = c.

(iii) Let (X(N)
n )n=1;2;::: denote the state of the (W;�s; �m) chain after N steps,

starting from an initial state (xn) with x1 = c � C. Then for each b < c

the law of the in�nite sequence (X(N)
n ^ b)n=1;2;::: converges in total variation

norm to that of (Xn ^ b)n=1;2;:::.
(iv) If the initial state (xn) has x1 = C, then for each k the distribution of

the random vector (X
(N)
n )1�n�k converges in total variation norm to that of

(Xn)1�n�k.
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Proof. As observed in [12, 11] in the special case �s = �m = 1, it follows im-

mediately from De�nition 1 that if (X
(N)
n )n=1;2;::: is the state of a (W;�s; �m)

chain after N steps, and g an increasing function such that g(W ) has a con-

tinuous distribution, then (g(X(N)
n ))n=1;2;::: is the state of a (g(W ); �s; �m)

chain after N steps. In view of this fact, and the well known transformation
rule for Poisson processes, it su�ces to prove the stated results for any partic-
ular continuous distribution of W . Now take W to be standard exponential,
so � is Lebesgue measure on [0;1). For X1 the �rst point of a homogeneous
Poisson process on [0;1) with intensity � > 0, and X1 independent of W ,
introduce the events

SPLIT := (W < X1; 1s = 1) and MERGE := (X1 < W; 1m = 1):

Since P (W < X1) = 1=(1 + �) and the event (X1 < W ) is independent of 1s
and 1m,

P (SPLIT) =
�s

1 + �
and P (MERGE) =

��m
1 + �

:

Thus
� = �s=�m , P (SPLIT) = P (MERGE) (2)

as will now be assumed. To check that the homogeneous Poisson point
process on [0;1) with rate � provides a reversible equilibrium, it must be
shown that (X 0

n) := TS"((Xn);W; 1s; 1m) is such that

((Xn); (X
0
n))

d
= ((X 0

n); (Xn)): (3)

The de�nition (1), the identity (2) and the fact that the Xn�Xn�1 are i.i.d.
reduce (3) to the equality of conditional bivariate distributions

(W;X1 �W ) given SPLIT
d
= (X1;X2 �X1) given MERGE: (4)

By independence of X1;W; 1s and 1m, the conditioning events SPLIT and
MERGE in (4) can be replaced by (W < X1) and (W � X1) respectively. It
is elementary and well known that given (W < X1) the random variables
W and X1 �W are independent exponential variables with rates 1 + � and
� respectively, and the same applies to X1 and X2 � X1 given W � X1.
This gives part (i) for c = C and the case c < C follows easily. Part (ii)
obviously follows from (iii), which is obtained as follows. The key observation,
already made in [12, 11] for �s = �m = 1, is that for b < c the truncated
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sequence (X
(N)
n ^ b)n=1;2;::: is a Markov chain, whose state when the sequence

identically equal to b, meaning [0; b) is empty of points, is a state which
is a positive recurrent and aperiodic atom which is reached almost surely
from any initial state (xn) with x1 = c � C. These properties of this
special state will be checked again below. It follows that the truncated chain
is Harris recurrent [5], hence the convergence in total variation norm by
a standard result for Harris chains. In the case �m = �s = 1, Gnedin
and Kerov [11] established the required properties of the special state by
explicit calculation of the distributions and expectations of various hitting
times. These calculations could be generalized to incorporate �s and �m,
but the required recurrence can be seen more quickly as follows. For small
enough b the result is obtained by coupling the number of points in [0; b)
(starting with some non-zero number, up to the time when the number �rst
reaches zero) below a random walk on the positive integers with negative
drift. Then the same result for 2b < c is obtained similarly, watching the
count of points in [b; 2b) only when [0; b) is empty; and so on, for 2mb < c for
any m = 1; 2; : : :. Part (iv) follows easily from (iii), by �rst taking b so large
that P (Xk < b) > 1 � ", then letting N !1 and �nally "! 0. 2

Consider now the particular case of Theorem 2 when 0 � W � 1 and
the initial sequence (xn) has x1 = 1. It is convenient to recode (xn) by its
sequence of di�erences pn := xn � xn�1 where x0 := 0. So (pn) 2 P where

P := f(pn) : pn � 0;�1
n=1pn = 1g

is the space of probability measures on the positive integers. Let TP de-
note the action on P induced by the transformation TS" in (1). That is
TP((pn);W; 1s; 1m) := (p0n) where

(p01; p
0
2; p

0
3; p

0
4; : : :) :=

8<
:

(W;p1 �W;p2; p3; : : :) if W < p1 and 1s = 1
(p1 + p2; p3; p4; p5 : : :) if p1 � W and 1m = 1
(p1; p2; p3; p4 : : : : : :) otherwise.

De�nition 3 For a random variable W with 0 �W � 1 let the (W;�m; �s)
split-and-merge chain with state space P be de�ned by the following tran-
sition mechanism. Given the current state is (pn) 2 P, the next state is
distributed as TP((pn);W; 1s; 1m) for Bernoulli variables 1s and 1m with pa-
rameters �m and �s, with W , 1s and 1m independent.
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The following lemma is elementary and well-known:

Lemma 4 An increasing sequence of positive random variables 0 < X1 <
X2 < � � � is the sequence of points of a Poisson process with intensity mea-
sure �(1 � x)�1dx on (0; 1) for some � > 0 if and only if the corresponding
di�erences Pn := Xn �Xn�1 with X0 := 0 can be represented as

Pn = Vn

n�1Y
i=1

(1 � Vi) (5)

where the Vi are i.i.d. variables with the beta(1; �) distribution P (Vi 2 dx) =

�(1� x)��1dx, so Vi
d
= U1=� � 1 for U with uniform distribution on [0; 1].

The law of (Pn) de�ned by (5), for independent beta(1; �) variables Vi, is
commonly known as GEM(�), after Gri�ths, Engen and McCloskey. See [9,
14, 22, 25] for background. Theorem 2 combined with Lemma 4 immediately
yields the following result, part (i) of which is due to Gnedin-Kerov [12, 11]
for �m = �s = 1.

Corollary 5 For � > 0 let W� have the beta(1; �) distribution on [0; 1]. Then
(i) The (W�; �s; �m) split-and-merge chain with state space P has a unique
invariant probability distribution, namely GEM(�) for � = ��s=�m.
(ii) The (W�; �s; �m) chain is reversible in its equilibrium state.

(iii) Let (P
(N)
n )n=1;2;::: denote the state of the (W�; �s; �m) chain after N steps

started with arbitrary initial state in P. Then for each k the distribution of
the random vector (P (N)

n )1�n�k converges in total variation norm to that of
(Pn)1�n�k for (Pn) with GEM(�) distribution.

3 Size-biased permutations

In many applications of random discrete distributions, for instance to com-
binatorics [13], population genetics [9], species sampling [25], and models
for coagulation and fragmentation [1, 6], the main feature of interest is the
sizes of atoms of the distribution, rather than their labels or locations in some
ambient space. For this reason, it is common to regard the state of some pro-
cess of interest as an element of the set partitions of 1 or ranked probability
distributions, say

P# := f(pn) : p1 � p2 � � � � � 0 and �pn = 1g � P:
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The analysis of the distribution of random states (Qn) 2 P#, and of mecha-
nisms for the time evolution of such states, is often simpli�ed by introduction
of some other encoding of the state involving additional structure or ran-
domization. In particular, the following construction has found numerous
applications [24, 25].

De�nition 6 For (Qn) a random element of P, a size-biased permutation
(SBP) of (Qn) is a random sequence (Pn) 2 P whose joint distribution with
(Qn) is that created by the following construction: let (Ij) be some parti-
tion of [0; 1] into disjoint intervals with the length of Ij equal to Qj, and
independent of (Ij) let U1; U2; : : : be a sequence of independent uniform [0; 1]
variables. Let P1 := QJ1 be the length of the interval IJ1 say which contains
U1, and for n � 2 let Pn := QJn be the length of the interval IJn which
contains the �rst Uj not in [

n�1
i=1 IJi, with the convention Pn := 0 if there is

no such interval.

Thus (Pn) describes the sequence of lengths (Qn) of intervals in a ran-
dom partition of [0; 1], in the length-biased random order in which they are
discovered by sampling with independent uniform variables. The operation
of size-biased permutation de�nes a regular conditional distribution for (Pn)
given (Qn), say

P ((Pn) 2 � j (Qn)) = SBP((Qn); �)

where SBP is a Markov transition kernel from P to P. The distribution
SBP((Qn); �) on P depends only the decreasing rearrangement of (Qn), de-
noted RANK(Qn) 2 P#. Some elementary and well known properties of the
Markov kernel SBP on P are mentioned now for ease of reference in later
discussion.

� The kernel SBP is idempotent : (SBP)2 = SBP.

� The formula � SBP = � sets up a bijection between probability distribu-
tions � on P# and probability distributions � on P which are invariant
under size-biased permutation, meaning � SBP = �.

The family of distributions on P that are invariant under SBP has been
characterized in a number of ways [24].

Following Kingman [16], the Poisson-Dirichlet distribution with parame-
ter � > 0, denoted PD(�), is de�ned as the distribution on P# of (Qn) :=

8



(Yn=�) where Y1 > Y2 > � � � are the points of a Poisson process on (0;1)
with intensity measure �y�1e�ydy, and � :=

P
n Yn. Two well known fea-

tures of this construction are that � has gamma(�) distribution, and that
� is independent of (Qn). Each of these features is known to characterize
the special form of the intensity measure of the Poisson process [22]. It is
well known that PD(�) is characterized by the following relation with the
GEM(�) distribution (5) on P, involving the ranking map from P to P# and
its inversion by the size-biased permutation kernel SBP:

PD(�)
SBP # " RANK
GEM(�)

(6)

To spell out the meaning of the diagram: if (Pn) has GEM(�) distribution and
(Qn) := RANK(Pn) then (Qn) has PD(�) distribution and (Pn) is a size-biased
permutation of (Qn). Hence of course, if (Qn) has PD(�) distribution and
(Pn) is a size-biased permutation of (Qn), then (Pn) has GEM(�) distribution.
Note the consequence, which is not obvious from the de�nition (5), that
GEM(�) is invariant under SBP. See [25] for further discussion and references
to earlier sources. See also [27] regarding the larger two-parameter Poisson-
Dirichlet family of distributions on P#, which shares some but not all of the
remarkable properties of PD(�).

Suppose now that a GEM(�) distributed sequence (Pn) has been con-
structed in accordance with (6) and De�nition 6 by size-biased sampling of
some interval partition whose ranked lengths have PD(�) distribution. For
positive integers n1; : : : ; nk with

Pk
i=1 ni = n, let (n1; : : : ; nk) denote the

event that in the sampling process with independent uniform variables Uj,
for 1 � j � n there are exactly ni values Uj in the ith interval discovered
by the sampling process, whose length is Pi. As a consequence of Ferguson's
well known updating rule for sampling from a Dirichlet prior [10],�

P1; : : : ; Pk; 1� �k
i�1Pi

�
given (n1; : : : ; nk)

d
= Dirichlet (n1; : : : ; nk; �) (7)

meaning that the joint density of (P1; : : : ; Pk) at (x1; : : : ; xk) given (n1; : : : ; nk)
is proportional to 

kY
i=1

xni�1i

! 
1 �

kX
i=1

xi

!��1

for xi � 0 and
kX

i=1

xi < 1: (8)

The probability of the event (n1; : : : nk) is given by a variant of the Ewens
sampling formula given in [4, (7.2)].
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4 A fragmentation-coagulation process

Following Mayer-Wolf, Zeitouni and Zerner [21], for a random variable W
with values in (0; 1) and �s; �m 2 (0; 1] as before, consider the (W;�s; �m)
fragmentation-coagulation chain with state-space P# de�ned as follows. Given
that the current state is (pn) 2 P#, let J1; J2, 1s, 1m and W be independent
random variables, with J1 and J2 distributed according to (pn), with 1s and
1m Bernoulli variables with parameters �s and �m

� if J1 = J2 = j say and 1s = 1, let the new state be obtained by replacing
pj by Wpj and (1 �W )pj and re-ranking;

� if J1 = i and J2 = j say with i 6= j, and 1m = 1, let the new state be
obtained by replacing the two atoms pi and pj by a single atom of size
pi + pj , and re-ranking;

� else no change in state.

Suppose now that W = U say has uniform distribution on [0; 1]. It is
easily seen that for an arbitrary random initial state (Qn) 2 P#, the state
(Q0

n) of the (U; �s; �m) fragmentation-coagulation chain after one step from
state (Qn) can be constructed as (Q0

n) = RANK(P 0
n), where (P

0
n) is the state

after one step of the (U; �s; �m) split-and-merge chain with state space P,
as constructed in Section 2, with initial state (Pn) which is a size-biased
permutation of (Qn).

Thus the transition mechanisms of these two processes are related accord-
ing to the following diagram:

(Qn)
(U; �s; �m) frag-coag

�! (Q0
n)

SBP # " RANK " RANK

(Pn)
(U; �s; �m) split-merge

�! (P 0
n)

(9)

It is obvious from the diagram how a reversible invariant measure for the
lower transition mechanism transfers to give a reversible invariant measure
for the upper transition mechanism. Thus Corollary 5 and (6) imply the
following result:
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Theorem 7 [30, 21] For U with uniform distribution on (0; 1), the PD(�)
distribution for � = �s=�m gives a reversible equilibrium distribution for the
(U; �s; �m) fragmentation-coagulation chain with state space P#.

This result may be compared to the characterization of PD(�) as the
unique stationary distribution of the in�nitely many alleles di�usion model
[8], and the characterization of PD(1) in terms of virtual permutations pro-
vided in [30].

To discuss the issue of uniqueness of the invariant measure for the (U; �s; �m)
fragmentation-coagulation chain with state space P#, suppose as above that
(Qn) is an arbitrary random initial state (Qn) 2 P#, and (Pn) is a size-biased
random permutation of (Qn). As remarked in [24], by exchangeability of
the sampling process in the construction of (Pn) from an interval partition
whose ranked lengths are given by (Qn), if (1; : : : ; 1)n denotes the event that
each of the n independent uniform variables falls in a di�erent interval of the
partition, then

the law of (P1; : : : ; Pn) restricted to the event (1; : : : ; 1)n is exchangeable.
(10)

In particular, if (Qn) has PD(�) distribution, then from (7) the law in (10)
has density at (x1; : : : ; xn) proportional to 

1�

nX
i=1

xi

!��1

on Sn := f(x1; : : : ; xn) : xi � 0 and �n
i=1xi < 1g:

Let An be the set of functions on Sn which are the restrictions to Sn of some
function which is real analytic in a neighbourhood of Sn. It was shown in
[21] that PD(�) for � = �s=�m is the only equilibrium distribution for the
(U; �s; �m) fragmentation-coagulation chain such that

for each n the restricted law (10) admits a density in An. (11)

It is known [24] that whenever (Pn) is the size-biased permutation of some
(Qn), the restricted law in (10) has density

Qn�1
i=1 (1 �

Pi
j=1 xj) relative to

the unconditional law of (P1; : : : ; Pn) at (x1; : : : ; xn). Therefore, the side
condition (11) can be reformulated as

the law of (P1; : : : ; Pn) admits a density in An: (12)
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The uniqueness result of Corollary 5 and diagram (9) show that PD(�)
for � = �s=�m is the only equilibrium distribution of (Qn) for the (U; �s; �m)
fragmentation-coagulation chain on P# such that

(P 0
n) is invariant under size-biased permutation (13)

where (P 0
n) is the state after one step of the (U; �s; �m) split-and-merge chain

with state space P, started with initial state which is a size-biased permu-
tation (Pn) of (Qn). It might be that (13) must hold for any equilibrium
distribution (Qn) of the (U; �s; �m) fragmentation-coagulation chain on P#.
But this does not seem to be at all obvious. Note that (13) may fail if
the assumption that (Qn) is an equilibrium is dropped. For instance, take
(Qn) = (1; 0; 0; : : :) and �s = �m = 1. Then (Pn) = (Qn), and P 0

1 and
P 0
2 = 1�P 0

1 are both uniform on (0; 1), so obviously not in size-biased order.
The previous discussion suggests the following construction. De�ne a new

Markov transition kernel on P, say (U; �s; �m) split-merge-SBP, by compo-
sition of the (U; �s; �m) split-merge and the SBP kernels on P. In terms of
interval partitions, this means �rst performing the (U; �s; �m) split-merge op-
eration on the �rst two intervals, then rearranging all the intervals according
to the order in which they are discovered by a process of uniform random
sampling of [0; 1]. If (P 00

n ) denotes the output of this process, starting from
some arbitrary initial (Qn) 2 P# as before, then the previous diagram (9)
implies

(Qn)
(U; �s; �m) frag-coag

�! (Q0
n)

SBP # " RANK SBP # " RANK

(Pn)
(U; �s; �m) split-merge-SBP

�! (P 00
n ):

(14)

Thus

(Qn) is an equilibrium for the (U; �s; �m) fragmentation-coagulation process
(15)

if and only if

(Pn) is an equilibrium for the (U; �s; �m) split-merge-SBP process: (16)

By application of the criterion of [28] for a function of a Markov chain to be
Markov, using the SBP kernel to invert the function RANK, the diagram (14)
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implies that if the P-valued (U; �s; �m) split-merge-SBP chain is started in
state (Pn) which is a SBP of (Qn), then the sequence in P# obtained by ranking
the state of this chain at each step is the P#-valued (U; �s; �m) fragmentation-
coagulation chain. Unfortunately, however, the (U; �s; �m) split-merge-SBP
chain does not seem to be nearly as easy to analyze as the (U; �s; �m) split-
merge chain.

5 Exchangeable random partitions

Kingman's theory of exchangeable random partitions [19] provides one ap-
proach to the analysis of Markov kernels on P#. See for instance [26]. For
an arbitrary random element (Qn) of P#, consider the corresponding ex-
changeable partition probability function (EPPF) [23] which is the symmetric
function of sequences of positive integers (n1; : : : ; nk) of arbitrary length k
de�ned by

P (n1; : : : ; nk) := E

2
4 X
(i1;:::;ik)

kY
j=1

Q
nj
ij

3
5 (17)

where the sum is over all permutations of k positive integers (i1; : : : ; ik). If
(Ij) is a random interval partition such that the length of Ij is Qj, then
P (n1; : : : ; nk) can be interpreted as follows. If U1; U2; : : : are independent
uniform (0; 1) variables, independent also of (Qj), then for each particular
partition of the �rst n integers into sets fA1; : : : ; Akg of sizes n1; : : : ; nk,
with the Ai in order of their least elements, P (n1; : : : ; nk) is the probability
that for each 1 � i � k, each of the Uj for j 2 Ai falls in the interval
of length Pi which is the ith interval discovered by the sampling process, as
discussed earlier around (7). See also [23, (5) and (21)]. The work of Kingman
[18] shows that the EPPF and the law of (Qn) on P# determine each other
uniquely. If (Pn) is any random element of P such that RANK(Pn) = (Qn),
then formula (17) holds just as well with (Qn) replaced by (Pn), by an obvious
symmetry argument. If (Pn) is a size-biased permutation of (Qn), there is
the alternative formula [23]

P (n1; : : : ; nk) := E

" 
kY

i=1

P ni�1
i

!
k�1Y
i=1

 
1 �

iX
j=1

Pj

!#
: (18)

which sets up a bijective correpondence between all distributions of (Pn) that
are invariant under size-biased permutation, and the EPPF associated with

13



the corresponding random element RANK(Pn) of P#.
According to a variant of the Ewens sampling formula [25, (30) and (36)]

the EPPF corresponding to PD(�) is given by the formula

P�(n1; : : : ; nk) :=
�k

[�]n

kY
i=1

(ni � 1)! (19)

where [�]n := �(�+1) � � � (�+n� 1). Thus a natural approach to uniqueness
problem considered in the previous section is to try to use the de�nition of
the (U; �s; �m) fragmentation-coagulation process to characterize the EPPF
of any equilibrium for this process. Apart from issues of notation and coding
of partitions, this is essentially the same approach suggested in Section 6
of [21]. With present notation, and � := �s=�m, the equations discussed in
Section 6 of [21] can be recast as follows. Let P 0(� � �) denote the EPPF of the
state of the (U; �s; �m) fragmentation-coagulation chain after one step started
in a state with EPPF P (� � �). Then the equilibrium condition P (n) = P 0(n)
holds if and only if

�
(n� 1)

(n+ 1)
P (n + 2) =

n�1X
k=1

�
n

k

�
P (k + 1; n� k + 1): (20)

For instance

�P (4) = 6P (2; 2); �P (5) = 12P (3; 2); �P (6) =
3

5
(8P (2; 4) + 6P (3; 3))

and so on. Note that with notation as in diagram (14), condition (20) for

all n is necessary and su�cient for P1
d
= P 00

1 , or again for E
P

n f(Qn) =
E
P

n f(Q
0
n) for arbitrary non-negative measurable f . Similarly, one can

check that the condition P (n;m) = P 0(n;m) holds i�

�

�
�

2n!m!

(n+m+ 1)!
P (2 + n+m) +

(n� 1)

(n+ 1)
P (2 + n;m) +

(m� 1)

(m+ 1)
P (2 +m;n)

�

= �2P (n+1;m+1)+

n�1X
a=1

�
n

a

�
P (a+1; n�a+1;m)+

m�1X
a=1

�
m

a

�
P (a+1;m�a+1; n)

and this for all n and m is equivalent to (P1; P2)
d
= (P 00

1 ; P
00
2 ).
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As remarked in [21], it is possible to check the PD(�) equilibrium by use
of these equations and the fact that a distribution on P# is determined by the
values of P (n1; : : : ; nk) for (ni) with ni � 2 for all i. But it seems di�cult to
establish uniqueness with this system of equations, as they are ill-determined
at every �nite stage k.

6 Random transpositions

This section makes a connection between the fragmentation-coagulation model
of Section 4 and a simple model for the evolution of a sequence of random
permutations. See also Tsilevich [30, 31] for closely related studies.

Let Sn be the symmetric group of permutations of [n] := f1; : : : ; ng. For
x; y 2 [n] let �x;y be the transposition of x and y. It is elementary and well
known that if � has k cycles then ��x;y for x 6= y has either k � 1 or k + 1
cycles according to whether x and y fall in the same or di�erent cycles of �.

For �s; �m 2 (0; 1] consider Markov chain with state-space Sn de�ned
as follows. Given that the current state is � 2 Sn, let X;Y; 1s and 1m be
independent random variables, with X and Y uniformly distributed on [n],
and 1s and 1m Bernoulli variables with parameters �s and �m respectively;
if either

� X and Y fall in the same cycle of � and 1s = 1, or

� X and Y fall in di�erent cycles of � and 1m = 1,

then let the next state be the product ��X;Y ; else let the next state be �.
This Markov chain describes a process of random transpositions whereby

at each step, either a cycle splits in two, or two cycles merge, or the permu-
tation remains unchanged, with probabilities determined in a simple way by
the cycle structure of the permutation and the split and merge probabilities
�s and �m. For �s = �m = 1 this is the process of random transpositions
studied by Diaconis-Shashahani [3] and Matthews [20]. In this simplest case,
the stationary distribution is obviously the uniform distribution on Sn.

Proposition 8 The process of random transpositions with state space Sn
de�ned above for �s; �m 2 (0; 1] has a unique equilibrium probability distri-
bution, namely

P�(�) = �j�j=[�]n (� 2 Sn)

15



where � = �s=�m, where j�j is the number of cycles of �, and

[�]n := �(� + 1) � � � (� + n� 1):

Moreover, the process in equilibrium is reversible.

Proof. The fact that P�(�) is a probability distribution on Sn is well known,
and it is obvious that all states communicate, so it su�ces to check the usual
condition for a reversible equilibrium, that is

P�(�)P (�; �
0) = P�(�

0)P (�0; �) (21)

where P (�; �) is the transition matrix on Sn determined by (�m; �s). In view
of how the cycles of �0 = ��x;y are related to those of �, both sides of (21)
are 0 unless j�0j = j�j � 1, so it is enough to consider � and �0 with j�j = k
and j�0j = k + 1 for some 1 � k < n. But then (21) reduces to

�k
2

n2
�s = �k+1

2

n2
�m

which holds if and only if � = �s=�m. 2

For a permutation � 2 Sn let �(�) denote the partition of n de�ned by the
sizes of the cycles of �. So �(�) 2 P#

n, the set of non-increasing sequences of
non-negative integers with sum n. It is easily seen that if (�N ; N = 1; 2; : : :)
is the Markov chain with state space Sn just described, then (�(�N ); N =
1; 2; : : :) is a a Markov chain with state space P#

n, with the following transition
mechanism. Given that the current state is � := (�i) 2 P#

n, where the �i
are positive integers with �1 � �2 � � � � � 0 and

P
i �i = n, let �� 2 P# be

the probability distribution de�ned by ��i = �i=n, and let J1; J2; 1s and 1m
be independent random variables, with J1 and J2 distributed on the positive
integers according to on ��, and 1s and 1m Bernoulli variables with parameters
�s and �m respectively;

� if J1 = J2 = j say and 1s = 1, let the new state be obtained by splitting
the part �j into Uj and �j � Uj and re-ranking, where Uj is uniformly
distributed on f0; 1; : : : ; �j � 1g;

� if J1 = i and J2 = j say with i 6= j, and 1m = 1, let the new state be
obtained by replacing the two parts �i and �j by a single part of size
�i + �j , and re-ranking;
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� else no change in state.

Proposition 8 implies that this chain with state space P#
n has a reversible

equilibrium which is the distribution of the partition of n induced by the
cycles of a random permutation with distribution P� on Sn, as in (21). It
is elementary and well known that this distribution on P#

n is given by the
Ewens sampling formula with parameter �. That is to say, for � = (�i) such
that the number of i with �i = j is mj for each 1 � j � n, where mj � 0
and

P
j jmj = n, the equilibrium probability of � is

P�f� 2 Sn : �(�) = �g =
n!

[�]n

nY
j=1

1

mj!

�
�

j

�mj

where � = �s=�m. This identi�cation of the equilibrium distribution of the
P#
n-valued process with parameters �m and �s is a particular case of a result

of Whittle [32] for a more general model of P#
n-valued processes of coagulation

and fragmentation. See also Kelly [15, Theorem 8.1] and [6]. Now regard P#
n

as a subset of P# by use of the normalization �! ��. As n!1 the transition
mechanism of P#

n-valued process with parameters (�s; �m) approaches that
of the (U; �s; �m) fragmentation-coagulation chain described in Section 4,
while the equilibrium distribution of the P#

n-valued process, determined by
the Ewens sampling formula (21), approaches PD(�) by a result of Kingman
[17]. Thus Theorem 7 could be deduced by a weak-convergence argument,
but this approach does not seem to help solve the uniqueness problem.
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