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Abstract

Basic relations between the distributions of hitting, occupation,

and inverse local times of a one-dimensional di�usion process X , �rst

discussed by Itô-McKean, are reviewed from the perspectives of mar-

tingale calculus and excursion theory. These relations, and the tech-

nique of conditioning on L
y
T , the local time of X at level y before a

suitable random time T , yield formulae for the joint Laplace transform

of L
y
T and the times spent by X above and below level y up to time

T .
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1 Introduction

Itô-McKean [17, Sections 2.6,4.6,4.10,6.1,6.2] established some basic relations
between the distributions of the following functionals of a di�usion process
X with state space some subinterval I of R: the hitting times

Hy := infft > 0 : Xt = yg (y 2 I);

the occupation times

Ay;+
T :=

Z T

0

1(Xs > y)ds and Ay;�
T :=

Z T

0

1(Xs � y)ds; (1)

for T which might be either a �xed or random time; and the inverse local
times

� y` := infft : Lyt > `g (` � 0) (2)

where (Lyt ; t � 0) is a continuous local time process for X at level y. Itô-
McKean [17, Sections 6.1 and 6.2] assumed X was a recurrent di�usion,
and left to the reader the necessary modi�cations for transient X. Such
modi�cations were indicated without proof by Pitman-Yor [30, (9.8)(ii)] and
Borodin-Salminen [6, II.2].

This paper reviews the basic relations between hitting, occupation, and
inverse local times, from the perspectives of two di�erent approaches to one-
dimensional di�usions, martingale calculus and excursion theory [37, 36],
which have been developed largely since the publication of Itô-McKean [17].
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We also show how these basic relations, combined with the technique of
conditioning on LyT , yield general expressions for the Laplace transform

Px[exp(��LyT � �Ay;+
T � 
Ay;�

T )] (3)

for various random times T . Here Px stands for the probability or expectation
operator governing the di�usion process X started at X0 = x 2 I. Typically,
such formulae have been derived in the literature for particular di�usions
X by some combination of martingale calculus, excursion theory, and the
method of Feynman-Kac [21]. But the simplicity of general expressions of
these formulae, and their close connection to the basic relations described by
Itô-McKean [17], does not seem to have been fully appreciated.

Following Itô-McKean [17], Rogers-Williams [37, V.44-54], Revuz-Yor [36,
VII (3.12)], we assume that X is a regular di�usion whose state space is some
interval I � R, with no killing and in�nitesimal generator

G :=
1

2
a(x)

d2

dx2
+ b(x)

d

dx
(4)

acting on a domain of functions subject to appropriate smoothness and
boundary conditions discussed in [17, 6, 37, 36]. Throughout the paper,
we assume for simplicity that for x 2 int(I), the interior of I,

a(x) is strictly positive and continuous and b(x) is locally integrable. (5)

Then, without regard to boundary conditions, G can be rewritten as

G =
1

m(x)

d

dx

1

s0(x)

d

dx
(6)

where m(x) is the density of the speed measure of X relative to Lebesgue
measure, and s0(x) is the derivative of the scale function s(x). These functions
are related to a(x) and b(x) via the formulae [6, II.9]

s0(x) = exp

�
�
Z x 2b(y)

a(y)
dy

�
and m(x) =

2

s0(x)a(x)
: (7)

So both m(x) and s0(x) are continuous and strictly positive. In particular, for
a(x) � 1 and b a bounded Borel function, Zvonkin [48] showed that X with
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state space I = R can be constructed with X0 = x as the unique pathwise
strong solution of the stochastic di�erential equation

Xt = x+Bt +

Z t

0

b(Xs)ds (8)

where (Bt; t � 0) is a standard Brownian motion with B0 = 0. More gener-
ally, X can be constructed from B by the method of space transformation
after a suitable time change [17], [37, V.47].

There is the following well known formula for the Px Laplace transform
of the hitting time Hy : for x; y 2 I and � � 0

Px[exp(��Hy)] =

�
��;�(x)=��;�(y) if x < y
��;+(x)=��;+(y) if x > y:

(9)

for a pair of functions ��;�, with ��;� increasing and ��;+ decreasing, which
are determined uniquely up to constant factors as a pair of increasing and
decreasing non-negative solutions � of the di�erential equation

G� = �� (10)

subject to appropriate boundary conditions [17],[6]. For many particular
di�usions of interest in applications, the di�erential equation (10) yields ex-
plicit expressions for ��;� in terms of classical special functions [6, 30]. The
Laplace transform (9) can often be inverted by a spectral expansion, which
in some cases (e.g. the Bessel process started at x = 0) leads to the conclu-
sion that the Px distribution of Hy is that of the sum of an in�nite sequence
of independent exponential variables [23, 24]. While such expansions are of
interest in a number of contexts [4], the corresponding representations of the
density or cumulative distribution function of Hy can be di�cult to work
with.

Consider next the local times (occupation densities)

Lyt := Lyt (X) := a(y) lim
�#0

1

2�

Z t

0

1(jXs � yj � �)ds (11)

where the limit exists and de�nes a continuous increasing process (Lyt (X); t �
0) almost surely Px for all x. The factor a(y), which is the di�usion coe�cient
in the generator (4), has been put in the de�nition (11) of Lyt (X) to agree
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with the general Meyer-Tanaka de�nition of local times of a semimartingale,
which we review in Section 4.

Assuming now that X is recurrent, meaning that Px(Ly1 = 1) = 1 for
all x; y 2 int(I), the right continuous inverse (� y` ; ` � 0) of (Lyt ; t � 0) is
a subordinator, that is an increasing process with stationary independent
increments, with � y` < 1 almost surely. It is a well known consequence of
the decompositions

Ay;+
�y
`

=
X
0<s�`

Z �
y
s

�ys�

1(Xt > y)dt and Ay;�
�y
`

=
X
0<s�`

Z �
y
s

�ys�

1(Xt � y)dt

and Itô's excursion theory [36, XII] that the processes (Ay;+
�y
`

; ` � 0) and

(Ay;�

�
y

`

; ` � 0) are two independent subordinators, and for `; � > 0 and � = +

or � there is the formula

Py[exp(��Ay;�
�y
`

)] = exp
��`  y;�(�)� (12)

for a pair of Laplace exponents  y;�(�). With the choice (11) of normalization
of local time, there is the following key formula for these Laplace exponents
in terms of the functions ��;� and their derivatives �0�;�:

� y;�(�) = �1

2

�0�;�(y)

��;�(y)
= �1

2

d

dx

����
x=y�

Px[exp(��Hy)] (13)

where the second equality is read from (9). These formulae (9), (12) and
(13) are the basic relations involving the distributions of hitting, occupation
and inverse local times of a recurrent di�usion process X, and the solutions
��;� of G� = ��. As discussed in Section 2, the key formula (13) is the
Laplace transform of an expression for the corresponding L�evy measures due
to Itô-McKean [17, 6.2].

The rest of this paper is organized as follows. In Section 2 we present
in Theorem 1 an expansion of the above discussion to include X which may
be either recurrent or transient. We then give a proof of Theorem 1 using
Itô's excursion theory. In Section 3, we apply the results of Theorem 1
to give general expressions of the joint Laplace transform (3) for various
random times T . At the end of that section, we explain brie
y how our
method is related to the method of Feynman-Kac for deriving the distribution
of additive functionals of di�usion processes [21], [25, 4.2.4], [19]. Finally,
Section 4 presents a generalization and proof of the key formula (13), using
the Meyer-Tanaka theory of local times of semi-martingales.
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2 Hitting times and inverse local times

Suppose throughout this section that X is a di�usion process with state space
an interval I � R, with generator (4) subject to the regularity assumption
(5), and let y 2 int(I). Note that we assume that Px(Xt 2 I) = 1 for all
x 2 I and t � 0. But, the boundary points inf(I) and sup(I), if one or
both belongs to I, might be either instantaneously or slowly re
ecting, or
absorbing. We note that the results can also be adapted to di�usions with
killing, but leave that to the reader.

2.1 Inverse local time processes

Let (� y` ; ` � 0) denote the right continuous inverse of the local time process
(Lyt ; t � 0) with the Meyer-Tanaka normalization (11). By the strong Markov
property of X, the process (� y` ; ` � 0) is a subordinator, with some Laplace
exponent  y(�) de�ned by the formula

Py [exp(��� y` )] = exp [�`  y(�)] : (14)

Note in particular that

Py(L
y
1 > `) = P (� y` <1) = e�` 

y(0): (15)

It is elementary and well known [17, 6] that either X is recurrent, in which
case  y(0) = 0 and Py(�

y
` <1) = 1 for all `, or X is transient, in which case

 y(0) > 0 and the process (� y` )`�0 jumps to 1 at local time ` = Ly1 which
is exponentially distributed with rate  y(0).

Theorem 1 [17, x6.1], [30, (9.8)(ii)] The Laplace exponent  y(�) in (14) is
given by the formula

 y(�) =  y;+(�) +  y;�(�) (16)

where for � = + or �

� y;�(�) = �1

2

�0�;�(y)

��;�(y)
= �1

2

d

dx

����
x=y�

Px[exp(��Hy)] (17)

where ��;� and ��;+ are increasing and decreasing solutions � of G� = ��.
Moreover,

 y;�(�) =

Z
]0;1]

(1� e��t)�y;�(dt) = �

Z 1

0

e��t�y;�[t;1]dt (18)
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or equivalently

�y;�[t;1] = �1

2

d

dx

����
x=y�

Px(Hy � t) (0 < t � 1) (19)

for some L�evy measures �y;� on (0;1], with atoms at in�nity of magnitudes

 y;�(0) = �y;�[1;1] = �� 1

2
lim
�#0

�0�;�(y)

��;�(y)
: (20)

Itô-McKean [17, 6.2] gave equivalents of these formulae in the recurrent case
when  y;�(0) = 0, with d=ds(x) instead of (1=2)d=dx, and ~� y` := inffu : ~Lyu >
`g instead of � y` , where (

~Lxu) is the jointly continuous family of local times
with the Itô-McKean normalization so thatZ t

0

g(Xu)du =

Z
g(x)~Lxtm(x)dx (21)

for arbitrary non-negative Borel functions g. By comparing (21) and (11),
we �nd that

~Lxt =
s0(x)

2
Lxt and hence �x` (X) = ~�x`s0(x)=2: (22)

This allows the formulae of [17] to be rewritten in the form (17) and (19)
with d=ds(x) = (1=s0(x))d=dx multiplied by s0(x)=2 to obtain (1=2)d=dx.
The extension of these formulae for a transient di�usion X was indicated in
[30, (9.8)(ii)] and [6, II No. 14]. Note that the equality of middle and right
quantities in (17) follows immediately from the basic formula (9) for the Px
Laplace transform of Hy in terms of ��;�.

In Section 2.2 we indicate a proof of Theorem 1 by interpeting the Laplace
exponents  y;�(�) in terms of Itô's excursion theory. As we note in Section
2.4, some care is necessary in the transient case to avoid erroneous statements.
In Section 4 we o�er a di�erent approach to Theorem 1 by martingale calcu-
lus. The passage from (17) to (19) via (18) involves some smoothness in t of
�y;�[t;1). In fact it is known as a consequence of Krein's theory of strings
[2, 9.2.3], that �y;�[t;1) is a completely monotone function of t, so each of
the L�evy measures �y;� has a smooth density �y;�(dt)=dt =

R1
0 e�zt�y;�(dz)

for some measures �y;�.
De�ne intervals

Iy;� := ]�1; y] and Iy;+ := ]y;1[
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and as in (1) let

Ay;�
t :=

Z t

0

1(Xs 2 Iy;�)ds:

The proof of formula (17) given in Section 2.2 involves the following gener-
alization of the formulae (12) and (13) for a recurrent di�usion:

Corollary 2 [30, Remark (9.8) (ii)]. For each ` > 0, the processes (Ay;�
�y
h

)0�h�`

conditioned on (� y` < 1) are two independent subordinators parameterized
by [0; `], with Laplace exponents  y;�0 (�) given by

� y;�0 (�) =  y;�(0)� y;�(�) = �1

2

d

dx

����
x=y�

Px[exp(��Hy) jHy <1] (23)

for  y;�(�) as in (17) and (18). That is to say,

Py[exp(��Ay;�
�y
h

) j � y` <1] = exp
��h y;�0 (�)

�
(0 � h � `): (24)

Moreover, in the transient case when  y(0) > 0, provided h < ` formula (24)
holds also with conditioning on (Ly1 = `) instead of (� y` < 1) = (Ly1 > `),
where Ly1 has exponential distribution with rate  y(0).

2.2 Interpretation in terms of excursions

Let ny now denote the characteristic measure of Itô's (possibly terminating)
Poisson point process of excursions of X away from y, allowing additional �-
marking according to an independent PPP of rate �, as considered in [15],[37,
VI.49]. So ny(� � �) is the Poisson intensity of excursions of type � � � relative
to dLyt . According to Itô's theory of Poisson point processes of excursions
[16, 28], [37, VI.49], the process of excursions of X away from y, when in-
dexed by local time at y, is a homogeneous Poisson point process killed at
an independent random local time Ly1 which is exponentially distributed
with rate  y(0). There is the following basic interpretation of the Laplace
exponent:

 y(�) = ny(�-marked excursions): (25)

Note that a terminal excursion (if any) of in�nite lifetime is �-marked with
probability one. So (25) for � = 0 reduces to

 y(0) = ny(excursions with in�nite lifetime): (26)
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By continuity of paths of X, each excursion away from y is either a + excur-
sion which lies entirely in Iy;+ := [y;1[, or a � excursion which lies entirely
in Iy;� := ]�1; y]. Immediately from Itô's theory of excursions, it is clear
that (16) holds with

 y;�(�) = ny(�-marked � excursions); (27)

 y;�(0) = ny(� excursions with in�nite lifetime): (28)

For y < z with z 2 int(I), a + excursion of in�nite lifetime must �rst reach
z and then stay above y thereafter, so

 y;+(0) = ny(Hz <1)P z(Hy =1): (29)

Combine (29) with the following lemma, and let z # y to obtain the + case
of (17) for � = 0, or equivalently (19) for t =1.

Lemma 3 For inf(I) < y < z < sup(I),

ny(Hz <1) =
s0(y)

2(s(z)� s(y))
(30)

Proof. By the compensation formula of excursion theory [26, (9.7)]

Py(L
y
Hz
)ny(Hz <1) = Py(Hz <1):

But since s(Xt) is a semimartingale whose bounded variation part moves
only when X is at a boundary point [27], by Tanaka's formula (75) and the
change of variable formula (85) below, under Py with y < z, the processZ t

0

1(Xu > y)du(s(Xu)) = (s(Xt)� s(y))+ � s0(y)

2
Lyt

when stopped at Hz is a local martingale. This yields by optional sampling

s0(y)

2
Py(L

y
Hz
) = (s(z)� s(y))Py(Hz <1)

and (30) follows. 2

The equality of the left and right quantities in formula (17) can now be
derived as follows. Clearly, it is enough to deal with the + case. Since we
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have just checked the case � = 0, it su�ces to check (23). Let Ny;z(t) denote
the number of upcrossings of [y; z] by X up to time t. Given that there are
at least k such upcrossings, let Hz;y(k) denote the length of the subsequent
downcrossing. Then, under Py given �

y
` <1

Ay;+
�y
`

=

Ny;z(�y
`
)X

k=1

Hz;y(k) + �y;z(� y` ) (31)

where the last term, which counts time spent above y during upcrossings of
[y; z] up to time � y` , is less than the total time in [y; z] up to time � y` , so can
be neglected in the limit as z # y on the event � y` < 1. According to Itô,
given � y` <1, the number Ny;z(� y` ) is Poisson with mean

Py[N
y;z(� y` ) j � y` <1] = ` ny(Hz <1)Pz(Hy <1) =

`s0(y)Pz(Hy <1)

2(s(z)� s(y))
;

from (30), and given � y` <1 and Ny;z(� y` ) = n the Hz;y(k) for 1 � k � n are
independent with the Pz distribution of Hy given Hy <1. Thus, the sum in
(31) (ignoring the last term) is a compound Poisson variable whose Laplace
transform can be written in terms of Px[exp(��Hy) jHy <1]. Formula (23)
now follows easily by letting z # y.

The key to the formulae for Laplace transforms in Section 3 is the last
sentence of Corollary 2. This follows from Itô's excursion theory by an argu-
ment of Greenwood-Pitman [15].

To conclude this section, we recall from [31, x3] that the basic di�erenta-
tion formulae (17) and (19) for the L�evy measures �y;� can be extended to
corresponding formulae for the restrictions ny;� of ny to excursions in Iy;�.
See for instance [19, Cor. 3.4] for a typical application.

2.3 Remarks on the recurrent case

Suppose in this section that X is recurrent, that is  y(0) = 0. Then, ac-
cording to Corollary 2, the two processes (Ay;�

�y
`

; ` � 0) are simply two in-

dependent subordinators with Laplace exponents  y;�0 (�) =  y;�(�). Since
t = Ay;+

t +Ay;�
t there is the decomposition

� y` = Ay;+
�y
`

+Ay;�
�y
`

(` � 0): (32)
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So the sum of the two independent subordinators (Ay;�

�y
`

; ` � 0) is the subor-

dinator (� y` )`�0 with Laplace exponent  y(�) =  y;+(�) +  y;�(�).
It is well known [6, No. II.12] that the speed measure m(x)dx serves as

an invariant measure for a recurrent di�usion process X. As well as the local
formulae (17) and (19) for the Laplace exponents  y;�(�) and corresponding
L�evy measures �y;�, there are the global formulae

 y;�(�) =
�

a(y)m(y)

Z
Iy;�

m(x)dxP x[exp(��Hy)] (� > 0) (33)

and

�y;�[t;1] =
1

a(y)m(y)

Z
Iy;�

m(x)Px(Hy 2 dt)=dt (t > 0): (34)

Either formula can be deduced from the other via (18). As discussed in
[34, x4], apart from the normalization by a(y)m(y) which is dictated by our
choice of local times, formula (34) is a particular instance for one-dimensional
di�usions of a general formula which expresses Itô's law of excursions from
a point of a recurrent ergodic Markov process X in terms of the stationary
version of X. This formula was given by Bismut [5] for a one-dimensional
Brownian motion, and extended to a general recurrent Markov process X
by Pitman [29]. Formula (34) appears in the present setting of a recurrent
di�usion process X, with a(x) � 1, in Truman-Williams-Yu [41, Proposition
1]. In [34, (71)] we showed how to derive (33) from (17) assuming that X is
on natural scale (i.e. s(x) = x), by consideration of the di�erential equation
(10) satis�ed by ��;� and ��;+. (Note that the measure m(dx) in [34] is
related to the present m(x) by 2m(dx) = m(x)dx). The general case of (33)
is easily reduced to the case with natural scale by transformation from X to
s(X).

2.4 Remarks on the transient case

In the transient case, Corollary 2 is complicated by the fact that while (32)
still holds, the two processes (Ay;�

�y
`

; ` � 0) are not independent since Ly1 can

be recovered as a function of either one of them. Rather, the two processes
are conditionally independent given Ly1. If the last excursion of X away
from y is an upward one, which happens with probability  y;+(0)= y(0),
then the process (Ay;+

�y
`

)`�0 jumps to 1 at local time ` = Ly1, while the
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process (Ay;�

�y
`

)`�0 is stopped at local time Ly1. A similar remark applies if

the last excursion of X away from y is a downward one. Thus, with the
usual de�nition of a subordinator with state space [0;1], allowing a jump
to 1 at an independent exponential time, for each particular choice of sign
�, the process (Ay;�

�
y

`

)`�0 is a subordinator with L�evy measure �y;� only if

 y(0) =  y;�(0). Similarly, for each particular choice of sign �, formula (12)
holds for some exponent  y;�(�) if and only if  y(0) =  y;�(0), in which case
(12) holds with  y;�(�) given by (13).

2.5 Excursions below the maximum

From Theorem 1 we immediately deduce the result of [17, 4.10 and 6.2]
that under Px the right continuous inverse of the past maximum process
(max0�s�tXs)t�0, that is the �rst passage process (Hz+)z�x, is an increasing
process with independent increments, with Hz+ = Hz a.s. for each �xed
z > x, and Hz has the in�nitely divisible distribution on [0;1] with L�evy-
Khintchine representation

Px[e
��Hz] = exp

�
�
Z
[0;1]

(1� e��t)�x;z(dt)

�
(35)

for the L�evy measure on [0;1]

�x;z(�) = 2

Z z

x

�y;�(�)dy

with �y;� as in (18) the L�evy measure associated with the lengths of down-
ward excursions of X below level y. Consequently, the point process on
[x; sup(I)[�]0;1] with a point at each (y;Hy+�Hy) such that Hy+�Hy > 0,
is distributed under Px like the point process derived from a Poisson point
process with intensity dy �y;�(dt) by killing all points (y; t) such that y > Kx,
whereKx is the least y > x such that (y;1) is a point of the Poisson process,
with the convention that Kx := sup(I) if there is no such point. Thus the
Px distribution of suptXt is that of Kx.

This Poisson description of the jumps of the inverse (Hz+)z�x of the past
maximum process of X extends straightforwardly to the point process of
excursions of X below its past maximum process:
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Proposition 4 (Fitzsimmons [11]) For y with Hy < Hy+ let ey denote the
excursion of X below y over the interval [Hy;Hy+], so ey belongs to a suitable
measurable space 
exc of excursion paths which may start and end at any level
y with y > x. Under Px the point process on [x; sup(I)[�
exc with a point at
each (y; ey) such that Hy+ �Hy > 0, has the same distribution as that of a
Poisson point process with intensity 2dy ny;�(de) after killing all points (y; e)
such that y > Kx, where ny;� is the restriction of Itô's excursion law ny to
excursions below y, and Kx is the least y > x such that there is a point (y; e)
of the Poisson point process for which e has in�nite lifetime.

Fitzsimmons [11] formulated a generalization of this result for di�usions
with killing, and proved it by general techniques of Markovian excursion the-
ory [26]. Another proof can be given by supposing that X is constructed
from a Brownian motion B started at B0 = 0 by a suitable space trans-
formation and random time substitution [37, V.47 ]. The point process of
excursions of X below its past maximum process MX is then a push-forward
of the point process of excursions of B below its past-maximum process MB,
with suitable killing. The homogeneous Poisson character of excursions of
MB � B away from 0 is a well known consequence of L�evy's theorem that

MB�B d
= jBj. The description of excursions of X belowMX is then derived

by standard results on transformation of Poisson processes.
Greenwood-Pitman [15] and Fitzsimmons [11, 10] showed how the Poisson

structure of excursions below the maximumcould be used to derive Williams'
path decompositions [44] for L�evy processes or di�usions. See also [6, 8,
33] for further results related to the decomposition of di�usion paths at a
maximum.

2.6 Relation to the Green function

Let p(t;x; y) be the transition probability function of X relative to the speed
measure m(y)dy:

Px(Xt 2 dy) = p(t;x; y)m(y)dy: (36)

It is known [17, 4.11] that p(t;x; y) can be chosen to be jointly continuous
in (t; x; y) 2 (0;1) � (int(I))2, and that the corresponding Green function
is then

G�(x; y) :=

Z 1

0

e��tp(t;x; y)dt = w�
�1��;�(x ^ y)��;+(x _ y) (37)

13



where the Wronskian

w� :=
�0�;�(y)��;+(y)� ��;�(y)�0�;+(y)

s0(y)
(38)

depends only on � and not on y. For an explanation of (37) in terms of ex-
cursion theory, see [37, (54.1)]. Suppose that Px governs "� as an exponential
random variable with rate �, with "� independent of the di�usion process X
started at X0 = x. For ~Lyt the local time process at y with the Itô-McKean
normalization (21) there is the formula [17, 5.4]

Px(~L
y
"�
) = Px

�Z 1

0

�e��t ~Lyt dt

�
= Px

�Z 1

0

e��td~Lyt

�
= G�(x; y):

For our normalization of local time we �nd instead from (22) and (37) that

Px(L
y
"�
) = g�(x; y) :=

2

s0(y)
G�(x; y) =

2

s0(y)

��;�(x ^ y)��;+(x _ y)
w�

: (39)

Combine (16), (17) and (38) to see that the Laplace exponent  y(�) of our
inverse local time process (� y` ) is

 y(�) =
1

g�(y; y)
=

s0(y)

2G�(y; y)
=

s0(y)w�
2��;�(y)��;+(y)

: (40)

This is the equivalent via (22) of [17, 6.2.2)]. Borodin-Salminen [6, Appendix
1] tabulate the Green functions G�(x; y) and Wronskians w� for about twenty
di�erent di�usions X. The increasing and decreasing solutions ��;� of G� =
�� can be found by inspection of these formulae using (39).

2.7 The example of Brownian motion with drift

To quickly illustrate and check the formulae in the previous section, consider
the example with I = R, a(x) � 1 and b(x) � � > 0, so X is Brownian
motion on R with drift �. The scale function is

s(x) = �e�2�x (41)

The increasing and decreasing solutions � of G� = �� are

��;�(y) = exp(�� y(
p
2� + �2 � �): (42)

14



Hence from (17)

 y;�(�) = �� 1

2

�0�;�(y)

��;�(y)
=

1

2
(
p
2� + �2 � �) (43)

and the Laplace exponent of (� y` ; ` � 0) is

 y(�) =  y;+(�) +  y;�(�) =
p
2� + �2 (44)

which is correct also for � = 0. In connection with (40) we �nd

w� s
0(y) = 2

p
2� + �2 e�2�y (45)

and
2��;�(y)��;+(y) = 2e�2�y (46)

and (45) divided by (46) is (44) in keeping with (40). Using the above
expressions for  y;�(�), our later formula (68) in this case agrees with [6, p.
205 (1.6.1)].

2.8 The example of Bessel processes

Consider now BES(�), the Bessel process on [0;1[ with a(x) � 1 and b(x) =
(� +1=2)=x for some � > �1, with 0 an instantaneously re
ecting boundary
point if � 2 ]�1; 0[ and an entrance-non-exit boundary point if � 2 [0;1[.
It is well known [7, 22, 6] that we can take

��;�(x) = x��I�(
p
2�x); ��;+(x) = x��K�(

p
2�x) (47)

where I� and K� are the usual modi�ed Bessel functions. From (17) we
obtain as in [30, (9.s7)] the Laplace exponents

 y;�(�) =

r
�

2

I 0�
I�
� �

2y
=

r
�

2

I�+1
I�

(48)

 y;+(�) = �
r
�

2

K 0
�

K�
+

�

2y
=

r
�

2

K��1

K�
+
�

y
(49)

where all the Bessel functions and their derivatives are evaluated at
p
2�y,

and the expressions involving I�+1 and K��1 follow from classical recurrences

I 0�(z) = I�+1(z) + �I�(z)=z = I��1 � �I�(z)=z (50)
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K 0
�(z) = �K�+1(z) + �K�(z)=z = �K��1(z)� �K� (z)=z: (51)

Formulae (48) and (49) can be checked against formulae of [6, e.g. 6.4.4.1
and 6.4.5.1 for � > 0]. From (20) and the classical asymptotics of I�(z) and
K�(z) as z ! 0 we see that

 y;�(0) = 0 and  y(0) =  y;+(0) =
� _ 0

y
;

corresponding to the well known facts that BES(�) is recurrent for � 2
]�1; 0], and upwardly transient for � > 0, when, starting from any level
x 2 [0; y], by (15) the distribution of Ly1 is exponential with rate �=y, in
agreement with [30, (9.s1)] and [6, 6.4.02]. See [30] and [20] for further
applications of the formulae (48) and (49).

3 Some joint Laplace transforms

3.1 Last exit times

Consider �rst for a transient di�usion X and y 2 int(I) the last exit time

�y := supft : Xt = yg

and the timesAy;�
�y

spent above and below y up to time �y. As a consequence

of (24), by conditioning on Ly1, and using the fact that � yh " �y as h " Ly1,
we deduce the following generalization of results for Bessel processes found
in [30, (9.s5)], which was suggested in [30, Remark (9.8)(ii)]:

Corollary 5 For any transient di�usion X, the trivariate distribution of
(Ly1; A

y;+
�y
; Ay;�

�y
) is given by the following Laplace transform: for �; �; 
 > 0

Py[exp(��Ly1 � �Ay;+
�y

� 
Ay;�
�y

)] =
 y(0)

�+  y;+(�) +  y;�(
)
: (52)

for  y;� and  y =  y;+ +  y;� as in Theorem 1.

In particular, for � = 0 and � = 
 = � � 0, we �nd using (16) and (40) that

Py[exp(���y)] =  y(0)

 y(�)
=
G�(y; y)

G0(y; y)
: (53)
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By application of the strong Markov property of X and the �rst passage
Laplace transforms (9), as in [37, V (50.7)], formula (53) extends easily to

Px[exp(���y)] = G�(x; y)

G0(y; y)
(54)

and hence there is the following formula of [30, Theorem (6.1), (6.e)],[38]:

Px[�y 2 dt]
dt

=
p(t;x; y)

G0(y; y)
(t > 0) (55)

where p(t;x; y) is the transition density function of X relative to m(y)dy,
as in (36). For more about last exit times of one-dimensional di�usions, see
[38]. See also [13], [12], [26], [37, VI.50] regarding last exit times of more
general Markov processes.

We also deduce the following from Corollary 5:

Corollary 6 Suppose that X is a transient di�usion with limt!1Xt = sup I
almost surely, so that  y(0) =  y;+(0) > 0 for all y 2 int(I). Then the total
time Ay;�

1 that X spends below y has Laplace transform

Py[exp(�
Ay;�
1 )] =

 y(0)

 y(0) +  y;�(
)
(56)

for  y;� and  y =  y;+ +  y;� as in Theorem 1.

As indicated in [30], formula (56) combined with (9), (47) and (48) yields
after simpli�cation with (50) the famous result of Ciesielski-Taylor [7, 14]
that for y > 0 and � > 0 the distribution of Ay;�

1 for BES0(�) is identical to
the distribution of Hy for BES0(� � 1). See also [3, 45, 46] for alternative
approaches to this identity, and various extensions.

To give another application of formula (56), let us compute for a Brownian
motion with drift � > 0 started at 0 the Laplace transform of the total
time spent in an interval [�; �] for some 0 � � < � < 1. By obvious
reductions, this distribution depends only on the length of the interval, say
c := � � �, and is the distribution of the total time spent below c by a
Brownian motion on [0;1) with drift � > 0 and a re
ecting boundary at 0.
For this di�usion we identify ��;� and hence  y;+ and  y;� from the formulae
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of [6, Appendix 1.14], and deduce that the required Laplace transform in �,
with 
 :=

p
2� + �2 is

e�c

cosh(
c) + 
2+�2

2�

sinh(
c)

=
4
�

(
 + �)2e(
��)c � (
 � �)2e�(
+�)c
(57)

which agrees with a formula of Evans [9] for � = c = 1, and with the formula
of [47, p. 47] after correction of a typographical error whereby (���) should
be replaced twice by (� � �).

3.2 Hitting times

The following consequence of Corollary 5 extends results of [35, (12),(13)]
which were formulated in the recurrent case.

Corollary 7 For X which may be either transient or recurrent, and y 6= z,
let

�y;z := supft < Hz : Xt = yg
be the time of the last exit from y before the �rst hit of z. Let �; �; 
 > 0.
Then the trivariate distribution of (LyHz

; Ay;+
�y;z

; Ay;�
�y;z

) under Py is determined
by the Laplace transform

Py[exp(��LyHz
� �Ay;+

�y;z
� 
Ay;�

�y;z
)] =

 y;z(0)

�+  y;z;+(�) +  y;z;�(
)
(58)

where  y;z =  y;z;� +  y;z;+ for exponents  y;z;� determined by the formula

1

 y;z(�)
= g�(y; y)� (Pye

��Hz)g�(z; y) (� > 0) (59)

with  y;z;� =  y;� if y < z and  y;z;+ =  y;+ if y > z. Moreover, the random
variables �y;z and Hz � �y;z are independent, with Laplace transforms

Py[exp(���y;z)] =  y;z(0)

 y;z(�)
(60)

and

Py[exp(��(Hz � �y;z))] = Py(e
��Hz)

 y;z(�)

 y;z(0)
(61)

and the Py joint law of (LyHz
; Ay;+

Hz
; Ay;�

Hz
) is determined by

Py[exp(��LyHz
� �Ay;+

Hz
� 
Ay;�

Hz
)] =

Py(e��Hz) y;z(�)

�+  y;z;+(�) +  y;z;�(
)
: (62)
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Proof. Suppose �rst that y < z. Apply Corollary 7 to the di�usion process
on I \ (�1; z] with z as an absorbing boundary point, obtained by stopping
X at time Hz. This gives (58) with the Laplace exponents  y;z;� associated
with the di�usion stopped at Hz, and obviously  y;z;� =  y;� if y < z. Since
the right side of (59) is gz�(y; y) for g

z
� the Green function of the stopped

di�usion, with normalization as in (39), formula (59) is read from (40). The
argument for y > z is similar. The remaining formulae follow immediately
from (59) and the last exit decomposition at time �y;z. 2

To be more explicit, for y < z we �nd from (9), (39) and (59) that for
� > 0 and y < z

1

 y;z(�)
=

2

s0(y)w�

��;�(y)

��;�(z)
[��;�(z)��;+(y)� ��;�(y)��;+(z)]: (63)

As a check, we can calculate  y;z;+ in another way by application of (17) to
the di�usion X stopped at z. This gives

 y;z;+(�) = �1

2

�z�;+
0(y)

�z�;+(y)

where �z�;+ is the analog of ��;+ for X stopped on hitting z, which is a
decreasing solution of G� = �� with �(z) = 0, for instance

�z�;+(x) =
��;+(x)

��;+(z)
� ��;�(x)

��;�(z)
:

The identity (63) for  y;z =  y;z;++ y;z;� can now be veri�ed by elementary
algebra, using (17) for  y;z;� =  y;�, and (39).

For a transient di�usion X, the exponent  y;z(0) in (58) can be evaluated
by simply using (59) for � = 0. For a recurrent X, the right side of (59) for
� = 0 reads 1�1. But in either case  y;z(0) can be evaluated as  y;z(0+).
For y < z, by (28) applied to X stopped on hitting z, we can also express
 y;z(0) =  y;�(0) +  y;z;+(0) in terms of the scale function s(x) using (30),
which makes

 y;z;+(0) = ny(Hz <1) =
s0(y)

2(s(z)� s(y))
: (64)

Since  y;z;+(�)� y;z;+(0) is the rate of �-marked + excursions from y which
fail to reach z, this quantity decreases to 0 as z # y. Since  y;�(�) �
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 y;z(�)�  y;z;+(�) for y < z it follows that

 y;�(�) = lim
z#y

[ y;z(�)�  y;z;+(0)] (65)

where  y;z(�) is determined by (59) and  y;z;+(0) by (64). We apologize for
presenting this awkward evaluation of  y;�(�) in [35, (9)] without mentioning
the much simpler evaluation of  y;�(�) by (17).

3.3 Independent exponential times

For X a Brownian motion started at y, Kac [21] derived L�evy's arcsine law
for the distribution of Ay;+

t =t after determining the double Laplace transformZ 1

0

e��tPy

�
e��A

y;+
t

�
dt =

1p
�(� + �)

by what is now known as the method of Feynman-Kac. A number of gen-
eralizations of Kac's formula for this double Laplace transform have been
obtained using either Kac's approach or excursion theory: see for instance
Barlow-Pitman-Yor [1, (4.2)], Truman-Williams [39], [40], Truman-Williams-
Yu [41], Watanabe [42, Corollary 2], Weber [43], Jeanblanc-Pitman-Yor [19].
Usually, the processes involved have been assumed to be recurrent. The
following proposition presents a rather general result in this vein for a one-
dimensional di�usion X, without any recurrence assumption.

Corollary 8 For X which may be either transient or recurrent, and � > 0,
let "� denote an exponential variable with rate � which is independent of X.
Let �("�) := supft < "� : Xt = yg be the time of the last exit from y before
time "�, and set �y;�

� := Ay;�
"�

� Ay;�
�("�)

. Let �; �; 
 > 0. Under Py the

random vectors (Ly"� ; A
y;+
�("�)

; Ay;�
�("�)

) and (�y;+
� ;�y;+

� ) are independent, with
Laplace transforms

Py[exp(��Ly"� � �Ay;+
�("�)

� 
Ay;�
�("�)

)] =
 y(�)

�+  y;+(� + �) +  y;�(�+ 
)
(66)

where  y =  y;+ +  y;� for Laplace exponents  y;� determined by formula
(17), and

Py[exp(��(�y;+
� ) � 
(�y;+

� ))] =
�

 y(�)

�
 y;+(�+ �)

� + �
+
 y;�(� + 
)

� + 


�
(67)
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whence

Py

�Z 1

0

exp(��t� �Lyt � �Ay;+
t � 
Ay;�

t )dt

�
=

 y;+(�+�)
�+�

+  y;�(�+
)
�+


� +  y;+(� + �) +  y;�(�+ 
)
(68)

Proof. Much as in [19, 2.2], formula (66) follows from the Poisson character
of the excursions by the Poisson thinning argument of [15, p. 901], which
yields also the independence of the two random vectors, and

P ("� � �("�) 2 ds;X"� 2 Iy;�) =  y(�)�1�e��s�y;�[s;1]ds

which is easily seen to be equivalent to (67), using (18). Since the left side
of (68) is just ��1Py[exp(��Ly"� � �Ay;+

"�
� 
Ay;�

"�
)], formula (68) follows by

multiplying formulae (66) and (67) and cancelling the factor of �. 2

3.4 Relation to the method of Feynman-Kac

It is instructive to compare the derivation of (68) for � = 0 with the more
traditional approach of Feynman-Kac. That would be to show that the
function

F (x) := Px(S1) where St :=

Z t

0

f(Xs)�sds with �s := exp

�Z s

0

c(Xu)du

�
;

for suitable functions f and c, was the unique solution of a di�erential equa-
tion subject to appropriate boundary conditions. In the case at hand, we
would have f(x) � 1 and

c(x) = (� + �)1(x > y) + (� + 
)1(x � y): (69)

A well known martingale approach is to consider the martingale

Px[S1 j Ft] = St +�tF (Xt) (70)

which leads via Itô's formula to the equation

f(x) + GF (x) = c(x)F (x);

assuming that F belongs to the domain of the in�nitesimal generator G of
X. Assuming now that X is recurrent, we �nd it easier to recover (68) by
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optional sampling of (70) and related martingales at the times � y` . Indeed,
if we �x (y; �; �; 
), work from now on under Py, and consider for c(x) as in
(69) and f(x) � 1, then we �nd from (70) using X�y

`
= y a.s. that

(S�y
`
� F (y)��y

`
)`�0 is an (F�y

`
)`�0-martingale. (71)

On the other hand, it follows from the de�nition of  y;� as Laplace exponents
that Py[��y

`
] = exp(�k`) where

k := k(y; �; �; 
) :=  y;+(�+ �) +  y;�(� + 
)

is the denominator on the right hand side of (68) with � = 0. Hence

(e`k��
y

`
)`�0 is an (F�y

`
)`�0-martingale. (72)

which is equivalent by integration by parts to�
��y

`
+ k

Z `

0

��ys ds

�
`�0

is an (F�y
`
)`�0-martingale. (73)

But the decomposition S�y
`
=
P

0<s�`(S�ys � S�ys�) and the compensation
formula of excursion theory [26, (9.7)] show that�

S�y
`
�K

Z `

0

��
y
s
ds

�
`�0

is an (F�y
`
)`�0-martingale, (74)

where K := K(y; �; �; 
) is the numerator on the right side of (68). When
we compare (71), (72) and (74) we see that necessarily F (y) = K=k as in
(68).

4 Martingale expression of the key formula

We begin by recalling the Meyer-Tanaka de�nition of local times of a con-
tinuous semi-martingale Z, following [37, IV.43],[36, VI]. Let (Lzt (Z); t � 0)
denote the continuous increasing Meyer-Tanaka local time process of Z at
level z, characterized by the property that for all t � 0

(Zt � z)+ = (Z0 � z)+ +

Z t

0

1(Zs > z)dZs +
1

2
Lzt (Z): (75)
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Then for each t � 0 there is the Itô-Tanaka formula [36, VI (1.5)]

g(Zt) = g(Z0) +

Z t

0

g0�(Zs)dZs +
1

2

Z
R

Lzt (Z)g
00(dz) (76)

for every convex function g, and the occupation times formula [36, VI (1.5)]Z t

0

h(Zu)d <Z;Z>u=

Z
Lzt (Z)h(z)dz (77)

for every non-negative Borel function h.

Lemma 9 Let (Zt)t�0 be a continuous semimartingale with respect to some
�ltration (Ft), and let (At) be an (Ft)-adapted continuous process with bounded
variation, such that

Mt := Zt exp(�At) is an (Ft) local martingale (78)

or equivalently

Zt := Nt +

Z t

0

ZsdAs for some (Ft) local martingale (Nt): (79)

Then
dMt = exp(�At)dNt (80)

and for each z 6= 0, then each of the following two processes (M z;�
t ) and

(M z;+
t ) is a continuous local martingale:

M z;�
t := (Zt ^ z) exp

�
1

2z
Lzt (Z)�

Z t

0

1(Zs � z)dAs

�
(81)

M z;+
t := (Zt _ z) exp

�
� 1

2z
Lzt (Z)�

Z t

0

1(Zs > z)dAs

�
: (82)

Proof. Itô's formula implies the equivalence of (78) and (79), and the
consequence (80) of this relation. Fix z 6= 0 and set Z 0t := Zt ^ z.

In view of the equivalence of (78) and (79), to check that (M z;�
t ) is a local

martingale it su�ces to show that

Z 0t = N 0
t +

Z t

0

Z 0sdA
0
s
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for an (Ft) local martingale (N 0
t) and

dA0s = 1(Zs � z)dAs � 1

2z
dLzs(Z):

That is to say, the process

(Zt ^ z)�
Z t

0

(Zs ^ z)
�
1(Zs � z)dAs � 1

2z
dLzs(Z)

�

is an (Ft) local martingale. But this is readily obtained from the Itô-Tanaka
formula (76) applied with g(y) = y ^ z. The proof for (M z;+

t ) is similar. 2

Remarks.

a) If the indicator 1(Zs � z) in (81) is replaced by 1(Zs < z), then, Lzt (Z)
should be replaced by Lz�t (Z) for Lzt (Z) chosen to be c�adl�ag in z, as in [36,
VI (1.7)], with

Lzt (Z)� Lz�t (Z) = 2z

Z t

0

1(Zs = z)dAs:

It follows that each of the processes (M z;�
t ) and (M z;+

t ) admits a version
which is jointly continuous in (t; z).
b) If (Zt; t � 0) is a positive supermartingale, then so is (Zt ^ z; t � 0).
Formula (81) then makes explicit the multiplicative representation of (Zt^z)
as the product of a local martingale and a decreasing process, due to Itô-
Watanabe [18, (2.6)]. Whereas if (Zt; t � 0) is a positive submartingale,
then so is (Zt _ z; t � 0), and (82) gives the Itô-Watanabe representation of
(Zt _ z) as the product of a local martingale and an increasing process.

Theorem 10 Let (Zt)t�0 be a non-negative continuous semimartingale with
respect to some �ltration (Ft), and let (At) be an (Ft)-adapted continuous in-
creasing process, such that Zt exp(�At) is an (Ft) local martingale. Suppose
further that Z0 = z0 for some �xed z0 > 0, and that P (Lz1(Z) =1) = 1 for
some z > 0. Let � z` (Z) := infft > 0 : Lzt (Z) > `g: Then

E

"
exp

 
�
Z �z

`
(Z)

0

1(Zs � z)dAs

!#
=
��z0

z

�
^ 1
�
exp

�
� `

2z

�
: (83)

Proof. This follows from Lemma 9 by optional sampling. 2
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Corollary 11 Let (Xt)t�0 be a continuous semimartingale with respect to
some �ltration (Ft), and let � be a strictly increasing non-negative func-
tion with continuous derivative �0, and (At) be an (Ft)-adapted continuous
increasing process, such that �(Xt) exp(�At) is an (Ft) local martingale.
Suppose further that X0 = x0 for some �xed x0 with �(x0) > 0, and that
P (Lx1(X) = 1) = 1 for some x. Let �x` (X) := infft > 0 : Lxt (X) > `g:
Then

E

"
exp

 
�
Z �x

`
(X)

0

1(Xs � x)dAs

!#
=

��
�(x0)

�(x)

�
^ 1

�
exp

�
� `
2

�0(x)

�(x)

�
:

(84)

Proof. Let Zt := �(Xt). The occupation times formula (77) yields the
formula [32, (A.8)], [36, VI (1.23)]

L
�(x)
t (Z) = �0(x)Lxt (X) (85)

and hence
� z` (X) = �x`�0(x)(Z) (86)

so (84) can be read from (83). 2

4.1 Application to di�usions

Suppose �rst that X is recurrent, and that neither of the boundary points of I
can be reached by X in �nite time. Then the functions ��;� are completely
speci�ed up to constant factors as the increasing and decreasing solutions
of the di�erential equation G� = �� on int(I), and we deduce from Itô's
formula, as in [37, V.50], that for each x 2 int(I)

(��;�(Xt) exp(��t); t � 0) is a Px local martingale: (87)

The �rst equality in (17) for � = + is now seen to be the particular case
of (84), with y = x = x0, At = �t, and � = ��;�. The case � = � follows
similarly.

The proof of (17) for a recurrent X which can reach the boundary in
�nite time is complicated by the fact that (87) is no longer true in this case.
Rather exp(��t) must be replaced by exp(�A�;�(t)) where

A�;�(t) = �t+ c�;�L
@(�)
t
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where @(+) = inf(I), @(�) = sup(I), the coe�cient c�;� does not depend on

t, and L@(�)t is the local time of the semi-martingale s(X) at s(@(�)) up to
time t. See for instance [27]. The argument can now be completed as before,
using the fact that for instance

dtA�;�(t)1(Xt � y) = � dt 1(Xt � y)

because the upper boundary correction term contributes nothing when X is
below y.

The same argument can be adapted to the transient case, when limt!1Xt

must exist and be an endpoint of I almost surely, by appealing to some basic
facts of excursion theory. To illustrate, we show how to handle the case when
limt!1Xt = sup I almost surely, that is when  y(0) =  y;+(0) > 0 for all
y 2 I. In the setting of Theorem 10, with z0 = z, if we relax the assumption
that P (Lz1(Z) =1) = 1, and suppose instead that Zt � z for all su�ciently
large t a.s., then by �rst applying the optional sampling theorem at � z` ^ t,
then letting t!1, we obtain by dominated convergence that

1 = exp(�`)E

�
exp

�
�
Z �z

`

0

1(Zs � z)dAs

�
1(� z` <1)

�

+E

�
exp

�
�Lz1 �

Z 1

0

1(Zs � z)dAs

�
1(� z` =1)

�
where � z` := � z` (Z) and � := 1=(2z). Applied to the di�usion X, with
z = ��;�(y), Zt = ��;�(Xt), At = �t, and using the fact that Ly1(X) has
exponential distribution with rate � := �y;+(1) 2 (0;1), and the notation
� := �0�;�(y)=(2��;�(y))�  y;�(�), the previous identity implies

1 = e�me��m +
�

� � �

�
1 � e�(���)m

�
for all m > 0, hence � = 0 as required. The case when limt!1Xt might be
either end of the range can be handled similarly, but details are left to the
reader.
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