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Abstract

Wolfe (1982) and Sato (1991) gave two di�erent representations of
a random variable X1 with a self-decomposable distribution in terms of
processes with independent increments. This paper shows how either
of these representations follows easily from the other, and makes these
representations more explicit when X1 is either a �rst or last passage
time for a Bessel process.

Keywords self-decomposable distribution, self-similar additive process, in-
dependent increments, generalized Ornstein-Uhlenbeck-process, �rst and last
passage times, Bessel process, background driving L�evy process.

1 Introduction

The probability distribution of a random variable X1 is said to be self-
decomposable, or of class L, if for each u with 0 < u < 1 there is the equality
in distribution

X1
d
= uX1 + X̂u (1)

for some random variable X̂u independent of X1. See Sato [27],[28, Ch.
3], for background and references to the work of L�evy and others on self-
decomposable distributions. Here we are primarily interested in real valued
random variables, but this de�nition, and the following general discussion
and Theorem 1, are also valid for random variables with values in Rd or a
real separable Banach space. In this paper we discuss the relation between
two di�erent representations of self-decomposable distributions in terms of
processes with independent increments. Following [28], we call a process
X = (Xt)t�0 an additive process if X is stochastically continuous with c�adl�ag
paths, with independent increments and X0 = 0. An additive process X such

that Xt+h �Xt
d
= Xh for every t; h � 0 is a L�evy process.

Wolfe [31] and Jurek-Vervaat [17] showed that the distribution of a ran-
dom variable X1 is self-decomposable if and only if

X1
d
=

Z 1

0

e�sdYs ; (2)

for some L�evy process Y = (Ys; s � 0) with E[log(1 _ jYsj)] < 1 for all s.
The process Y is called the background driving L�evy process (BDLP) of X1.
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Here the stochastic integral is understood as a suitable limit as t ! 1 of
an integral

R t

0 de�ned by integration by parts, as in [17]. Recall that a L�evy
process is a semi-martingale, which allows the integral in (2) to be de�ned
as a stochastic integral. Later, Sato [27, 28] showed that a distribution is
self-decomposable if and only if for any �xed H > 0 it is the distribution of
X1 for some additive process (Xr)r�0 which is H-self-similar, meaning that
for each c > 0

(Xcr)r�0
d
= (cHXr)r�0 (3)

where
d
= denotes equality in distribution of processes. In Sato's book [28,

Sections 16 and 17] these two representations of a self-decomposable distri-
bution are derived by separate analytic arguments. The following result,
proved in Section 2 of this paper, allows either representation to be derived
immediately from the other:

Theorem 1 If (Xr)r�0 is an H-self-similar additive process then the formu-
las

Y
(�)
t :=

Z 1

e�t

dXr

rH
and Y

(+)
t :=

Z et

1

dXr

rH
(4)

de�ne two independent and identically distributed L�evy processes (Y (�)
t )t�0

and (Y
(+)
t )t�0 from which (Xr)r�0 can be recovered by

Xr =

( R1
log(1=r) e

�tHdY
(�)
t if 0 � r � 1

X1 +
R log r
0

etHdY
(+)
t if r � 1:

(5)

In particular, the BDLP of X1 is
�
Y

(�)
s=H

�
s�0

. Conversely, given a BDLP

(Ys; s � 0) associated with a self-decomposable distribution of X1 via (2), a
corresponding H-self-similar additive process can be constructed by (5) from

two independent copies (Y
(�)
t )t�0 and (Y

(+)
t )t�0 of (YtH ; t � 0).

We note that while a priori the integrals in (4) should be understood as
integrals over [e�t; 1] and [1; et] de�ned by integration by parts, formula (5)
implies that for every a > 0 the process (Xau; u � 1) is a semimartingale
relative to its own �ltration. So the integrals in (4) can also be understood
in the usual sense of stochastic integration with respect to a semimartingale.

As observed by Lamperti [20], the formulae

Xr = rHZlog r; Zu = e�uHXeu (6)
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set up a one-to-one correspondence between H-self-similar processes (Xr)r>0
and stationary processes (Zu)u2R. Call (Zu)u2R the stationary Lamperti
transform of (Xr)r>0. On the other hand, given a L�evy process (Yt)t�0, a
number of authors [1, 2, 3, 12, 15, 28] have studied the associated Ornstein-
Uhlenbeck process driven by (Yt)t�0, with initial state U0 and parameter c 2 R,
that is the solution of

Ut = U0 + Yt � c

Z t

0

Usds (7)

which is

Ut = e�ct
�
U0 +

Z t

0

ecsdYs

�
: (8)

If we compare the representation (5) of an H-self-similar additive process in

terms of the L�evy process (Y
(+)
t )t�0, we see that for r � 1

rHZlog r = Z0 +

Z log r

0

etHdY
(+)
t (9)

so that, with r = eu for u � 0

Zu = e�uH
�
Z0 +

Z u

0

etHdY
(+)
t

�
: (10)

Together with similar considerations for (Z�u)u�0, we deduce the following:

Corollary 2 The stationary Lamperti transform (Zu)u2Rof an H-self-similar
additive process (Xr)r>0 is such that for the two independent L�evy processes

(Y
(+)
t )t�0 and (Y

(�)
t )t�0 introduced in Theorem 1:

(i) (Zu)u�0 is the Ornstein-Uhlenbeck process driven by (Y (+)
t )t�0 with initial

state X1 and parameter c = H;
(ii) (Z�u)u�0 is the Ornstein-Uhlenbeck process driven by (�Y (�)

t )t�0 with
initial state X1 and parameter c = �H;

Provided the integrals involved are well de�ned, Theorem 1 and Corol-
lary 2 could even be generalized to an H-self-similar process (Xr) without
the assumption of independent increments, to construct Ornstein-Uhlenbeck
processes (Zu) and (Z�u) associated with two processes with stationary in-

crements (Y (+)
t ) and (Y (�)

t ) derived from (Xr) via (4).
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It is well known that if (Xr)r>0 is an H-self-similar L�evy process, then
necessarily H � 1=2. The process (Xr)r�0, with X0 := 0, is then commonly
known as a strictly �-stable L�evy process for � = 1=H 2 (0; 2]. The processes

(Y (+)
t )t�0 and (Y (�)

t )t�0 introduced in Theorem 1 are then just two indepen-
dent copies of (Xr)r�0. Corollary 2 then reduces to Breiman's [8] well known
construction via (6) of an Ornstein-Uhlenbeck process driven by a copy of
(Xr)r�0, as indicated by Sato [28, E 18.17] and Bertoin [4, VIII.5 Exercise
4]. For some applications to the windings of a stable L�evy process in two
dimensions, see Bertoin-Werner [5].

Our formulation of Theorem 1 was suggested by consideration of the self-
similar additive processs derived from the �rst and last passage times of a
Bessel process (Rt; t � 0) with positive real dimension � = 2(1 + �) > 0,
started at R0 = 0. See [7, 11, 14, 18, 25] for background. It is well known
[21] that a Bessel process is 1

2
-self-similar and hence that the �rst and last

passage times

Tr = infft : Rt = rg; and �r = supft : Rt = rg (11)

de�ne processes (Tr)r�0 and (�r)r�0 which are 2-self-similar. Sato [28, Ex-
ample 16.4] discusses the last passage process (�r) as an example of a 2-self-
similar additive process, for integer dimensions � with � � 3. If �1 < � � 0,
that is 0 < � � 2, the Bessel process is recurrent, which implies �r = 1
a.s.. So we consider the last passage process only in the transient case � > 0;
then 0 < �r < 1 a.s. because Rt ! 1 a.s. as t ! 1. Due to the strong
Markov property of (Rt) at time Tr, and the last exit decomposition of (Rt)
at time �r, each of the processes (Tr) and (�r) has independent increments.
In Section 3.2 we recall some known descriptions of the laws of Tr and �r,
and deduce corresponding descriptions of their BDLP's from (2).

In Section 3.1 we derive an alternative representation of the BDLP's as-
sociated with the distributions of T1 and �1. This involves the increasing
process (Lt; t � 0) of local time of the Bessel process R at level 1, that is

Lt := lim
�#0

1

2�

Z t

0

1(jRs � 1j � �)ds (12)

where the limit exists and de�nes a continuous increasing process almost
surely [25, VI]. Let (�`; ` � 0) denote the inverse local time process

�` := infft : Lt > `g:
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It is known [23, (9.s1)] that

P (�` <1) =

�
1 if � 1 < � � 0 (i.e. 0 < � � 2)
e��` if � > 0 (i.e. � > 2)

(13)

Theorem 3 Let T1;�1 and �` be de�ned as above in terms of the Bessel
process (Rt)t�0 of index � > �1. Let (Y T

s )s�0 denote the BDLP of T1, and for
� > 0 let (Y �

s )s�0 denote the BDLP of �1, each of which can be constructed
as in Theorem 1 from the path of (Tr; 0 � r � 1) or of (�r; 0 � r � 1), as
the case may be. Then for each ` > 0 and � > �1 there is the equality in
distribution of L�evy processes

(Y T
s )0�s�`

d
=

 �Z �s

T1

1(Rt � 1)dt

�
0�s�`

����� �` <1
!

(14)

while for each ` > 0 and � > 0

(Y �
s )0�s�`

d
=

 �Z �s

0

1(Rt > 1)dt

�
0�s�`

����� �` <1
!
: (15)

According to an instance of Williams' time reversal theorem [30, 29, 23],
for � > 0 the process (R�1�t; 0 � t � �1) is a Bessel process of index ��
started at 1 and stopped when it �rst hits 0. This allows Theorems 1 and 3
to be combined as follows:

Corollary 4 For a recurrent Bessel process R of index � 2 (�1; 0) there are
the following two equalities in distribution of L�evy processes:�Z �`

T1

1(Rt � 1)dt; ` � 0

�
d
=

�Z 1

e�`

dTu
u2

; ` � 0

�
(16)

�Z �`

0

1(Rt > 1)dt; ` � 0

�
d
=

 Z 1

e�`

d�̂u

u2
; ` � 0

!
(17)

where �̂u is the last passage time at u for the transient Bessel process R̂
of index �� 2 (0; 1). Consequently, there is the identity in distribution of
additive processes�Z �`

T1

e�Lsds; ` � 0

�
d
=
�
T1 � Te�`=2 + �̂1 � �̂e�`=2; ` � 0

�
(18)

where on the right side it is assumed that the processes (Tr) and (�̂r) are
independent.
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2 Proof of Theorem 1

It is obvious that the processes (Y (�)
t )t�0 and (Y (+)

t )t�0 are independent, and
that each of these processes has independent increments. So to show that

(Y
(�)
t )t�0 is a L�evy process, it just remains to check that Y

(�)
t+h �Y

(�)
t

d
= Y

(�)
h

for t; h � 0. But

Y
(�)
t+h � Y

(�)
t =

Z e�t

e�(t+h)

dXu

uH
=

Z 1

e�h

dv(Xe�tv)

(e�tv)H
d
=

Z 1

e�h

dXv

vH
= Y

(�)
h

where the equality in distribution appeals to the self-similarity (3) of X.

The corresponding result for (Y (+)
t ) can be obtained by repetition of the

same calculation, or by writing

Y
(+)
t =

Z 1

e�t

d(�X1=v)

v�H

and appealing to the previous case with Xv replaced by �X1=v. Since both

(Y
(+)
t ) and (Y

(�)
t ) have independent increments, to show they are identi-

cally distributed it su�ces to show that they have the same one-dimensional
distributions. But for each �xed tZ 1

e�t

dXu

uH
=

Z et

1

dvXe�tv

(e�tv)H
d
=

Z et

1

dXv

vH

by another application of the self-similarity of X. To obtain (5), write e.g.

Y
(�)
t = �

Z t

0

dvXe�v

e�vH

so that Z 1

0

e�vHdY (�)
v = �

Z 1

0

dvXe�v = X1:

This is (5) for r = 1 and the general case of (5) is obtained by a similar
calculation. Finally, the converse assertion is easily checked.

3 Application to Bessel Processes

It is known [16, Proposition 3] and easily veri�ed that if (Ys; s � 0) is an
increasing L�evy process (subordinator) with E[log(1_ Ys)] <1 for all s and
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and

X1
d
=

Z 1

0

e�sdYs

then the distribution of X1 determines that of Ys for each s > 0 by the
formula

E[exp(��Ys)] = exp

�
s�

d

d�
lnE[exp(��X1)]

�
: (19)

3.1 Proof of Theorem 3

By the general theory of one-dimensional di�usions [14, 4.6], [7, II.10] [26,
V.50], for r > 0 the distribution of the �rst passage time Tr of the Bessel
process (Rt)t�0 started at R0 = 0 is determined by the Laplace transform

E(e��Tr) =
1

��"(r)
(20)

where ��" is the unique increasing solution � of the di�erential equation
G� = ��, with G the in�nitesimal generator of the Bessel di�usion, and �
subject to appropriate boundary conditions. Ciesielski-Taylor [9] and Kent
[18] found the expression of ��" in terms of Bessel functions which can be
read from (20) and the table in the next section. But this formula is not
needed for the present argument. All that is required here is the immediate
consequence of the 2-self-similarity of (Tr)r�0 and (20) that

��"(r) = �(
p
2�r) (21)

for some di�erentiable function �. For (Y T
s )s�0 the BDLP of T1, we obtain

from (19) the formula

E
�
exp(��Y T

s )
�
= exp

�
�s� d

d�
log �(

p
2�)

�
: (22)

On the other hand, we also know from the theory of one-dimensional di�u-
sions [14, 6.2],[23, (9.8)], [24], that the process on the right side of (14) is a
L�evy process with, for 0 � s � `,

E

�
exp

�
��
Z �s

T1

1(Rt � 1)dt

����� �` <1
�
= exp

�
�s

2

d

dr

����
r=1

�(
p
2�r)

�(
p
2�)

!
:

(23)
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But since

�
d

d�
log �(

p
2�r) =

1

2

p
2�r

�0(
p
2�r)

�(
p
2�r)

=
r

2�(
p
2�r)

d

dr
�(
p
2�r)

the right hand sides of (22) and (23) are identical, and the conclusion (14)
follows. The proof of (15) for � > 0 is quite similar. The Laplace transform
of �r was found by Getoor [11], as indicated in the table of the next section,
while that of

R �s
0
1(Rt � 1)dt given �` < 1 for 0 � s � ` can be read from

[23, (9.s7)] or [7, 6.4.4.1]. See [24] for further discussion.

3.2 Explicit formulae

Recall that the L�evy measure �X of an in�nitely divisible non-negative ran-
dom variable X associated with a subordinator with no drift component is
determined by the formula

E[exp(��X)] = exp

�
�
Z 1

0

(1 � e��x)�X(dx)

�
;

for all � > 0, or again by

� d

d�
logE[exp(��X)] =

Z 1

0

xe��x�X(dx):

Hence from (19), if X1
d
=
R1
0

e�sdYs for (Ys; s � 0) a subordinator without
drift, the L�evy measures of X1 and Y1 are related by

x�X1(dx) = �Y1 [x;1) dx : (24)

For a detailed case study, see Knight [19, p. 593]. In particular, for the
random variables X1 = T1 and X1 = �1 de�ned by the �rst and last passage
times of a Bessel process, we �nd from the sources cited in the previous proof
that the distributions and L�evy measures of X1 and the associated BDLP's
are as presented in the following table. Here we employ the usual Bessel
functions I�, K� , J� and Y� , as in [13, 18, 23], and the auxiliary functions

k��1(x) :=
1

�2

Z 1

0

dt

t
e�tx(J2

� + Y 2
� )

�1(
p
2t)

��(x) := �1n=1 exp(�j2�;nx)
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where (j�;n; n = 1; 2; � � �) is the increasing sequence of the positive zeros of
the Bessel function of the �rst kind J�. The formulae involving k��1 and ��

can be read from Ismail [13]. See also [10, p. 1055].

X1 E
h
exp

�
��2

2
X1

�i
E
h
exp

�
��2

2
Y1

�i
x�X1(dx)=dx �Y1(dy)=dy

T1
(� > �1)

��

2��(� + 1)I�(�)
exp

�
��I�+1(�)

2I�(�)

�
��(x=2) �1

2
�0�(y=2)

�1

(� > 0)

2

�(�)

��
2

��
K�(�) exp

�
��K��1(�)

2K�(�)

�
k��1(x) �k0��1(y)

In the particular case � = 1=2 (that is for a 3-dimensional Bessel process),
the results simplify as indicated in the next table. In this case the process
(�r; r � 0) has stationary increments, and is a stable subordinator of index
1=2, due to the close connection between the 3-dimensional Bessel process and
one-dimensional Brownian motion [22]. See also [6] for further developments
related to the distribution of Tr in this case.
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X1 E
h
exp

�
��2

2
X1

�i
E
h
exp

�
��2

2
Y1

�i
x�X1(dx)=dx �Y1(dy)=dy

T1
(� = 1=2)

�

sinh�
exp

�
�1

2
(� coth�� 1)

� 1X
n=1

e�n
2�2x=2

X
n

n2�2

2
e�n

2�2y=2

�1

(� = 1=2)
e�� e��=2

1p
2�x

1

2y
p
2�y

References

[1] R. J. Adler, S. Cambanis, and G. Samorodnitsky. On stable Markov
processes. Stochastic Processes and their Applications, 34:1 { 17, 1990.

[2] O. E. Barndor�-Nielsen and N. Shephard. Modelling by L�evy processes
for �nancial econometrics. In O. E. Barndorrf-Nielsen, T. Mikosch, and
S. I. Resnick, editors, L�evy processes, pages 283{318. Birkh�auser Boston,
Boston, MA, 2001.

[3] O. E. Barndor�-Nielsen and N. Shephard. Non-Gaussian Ornstein-
Uhlenbeck-based models and some of their uses in �nancial economics.
J. R. Stat. Soc. Ser. B Stat. Methodol., 63(2):167{241, 2001.

[4] J. Bertoin. L�evy Processes. Cambridge University Press, 1996. Cam-
bridge Tracts in Math. 126.

[5] J. Bertoin and W. Werner. Stable windings. Ann. Probab., 24(3):1269{
1279, 1996.

[6] P. Biane, J. Pitman, and M. Yor. Probability laws related to the Ja-
cobi theta and Riemann zeta functions, and Brownian excursions. Bull.
Amer. Math. Soc., 38:435{465, 2001.

[7] A. N. Borodin and P. Salminen. Handbook of Brownian motion { facts
and formulae. Birkh�auser, 1996.

11



[8] L. Breiman. A delicate law of the iterated logarithm for non-decreasing
stable processes. Ann. Math. Stat., 39:1818{1824, 1968.

[9] Z. Ciesielski and S. J. Taylor. First passage times and sojourn density
for Brownian motion in space and the exact Hausdor� measure of the
sample path. Trans. Amer. Math. Soc., 103:434{450, 1962.

[10] C. Donati-Martin and M. Yor. Some Brownian functionals and their
laws. Ann. Probab., 25(3):1011{1058, 1997.

[11] R.K. Getoor. The Brownian escape process. Ann. Probab., 7:864{867,
1979.

[12] D. I. Hadjiev. The �rst passage problem for generalized Ornstein-
Uhlenbeck processes with nonpositive jumps. In S�eminaire de proba-
bilit�es, XIX, 1983/84, pages 80{90. Springer, Berlin, 1985.

[13] M. E. H. Ismail. Integral representations and complete monotonicity of
various quotients of Bessel functions. Canad. J. Math., 29(6):1198{1207,
1977.
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