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Abstract

We calculate the variances of two classes of estimates of differential gene expression based on
log ratios of fluorescence intensities from cDNA microarray experiments: direct estimates, using
measurements from the same slide, and indirect estimates, using measurements from different
slides. These variances are compared and numerical estimates are obtained from a small experiment
involving 4 slides. Some qualitative and quantitative conclusions are drawn which have potential
relevance to the design of cDNA microarray experiments.
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1 Introduction

Microarray experiments measuring the expression of thousands of genes generate large and complex
multivariate datasets. Much effort has been devoted to the pre-processing and higher-level analysis
of such data, but attention to statistical design is also important if we wish to improve the efficiency
and reliability of these experiments.

This paper concerns one very basic design issue: the relative precision of two classes of estimates
of differential gene expression in cDNA microarray experiments. With this technology all measure-
ments are paired comparisons, that is, measurements of relative gene expression, with microscope
slide playing the role of the block of two units. Below we give a brief explanation of the technology.
As with the mixed model for block experiments, the two measurements of a gene’s expression on
the same slide are correlated, usually quite highly so, and reliance is principally on differences (we
use a log scale), and much less on the individual measurements. However, an important difference
between block experiments and cDNA experiments is that with the latter, we can have correla-
tions between measurements on different slides. Such correlations arise when the cDNA samples in
question are what is known as technical replicates.

Suppose that we wish to compare the expression of a gene in two samples A and B of cells.
We could compare them on the same slide, i.e. in the same microarray experiment, in which
case a measure of the gene’s differential expression could be log2A/B, where log2A and log2B are
measures of the gene’s expression in samples A and B. We will refer to this as a direct estimate of
differential expression, direct because the measurements come from the same slide. Alternatively,
log2A and log2B may be estimated in two different experiments, A being measured together with
a third sample R and B together with a similar sample R′, on two different slides. The log ratio
log2A/B will in this case be replaced by the difference log2A/R − log2B/R′, and we call this an
indirect estimate of the gene’s differential expression, as it is calculated with values log2A and log2B
from different experiments. We note that samples R and R′ of the third (reference) cDNA will, in
general be technical replicates. Similarly, if the direct comparison of A with B is replicated, then
the replicate samples A′ and B′ are likely to be technical replicates.

Our aim in this paper is to compare the precision of direct and indirect estimates of differential
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gene expression, both in theory, and on the basis of some experimental data. We begin in Section
2 with a brief introduction to the biology and technology of cDNA microarrays. After outlining
recent research applying optimal design principles to microarray experiments, we present the main
result of this paper, which compares the variances of direct and indirect estimates of differential
expression based on the same number of slides. The novelty of our calculation shown in Section 3
lies in the more realistic covariance matrix we use, incorporating covariances between measurements
on the same slide, between measurements on technical replicates across different slides, and between
measurements on unrelated samples on different slides. In Section 4 we use a data set comparing two
samples to estimate average values of the variances and covariances in our calculation, and hence
to illustrate our results. Finally, Section 5 summarizes our findings and discussed the implications
for designing more complex cDNA microarray experiments.

2 Background on DNA microarrays

DNA microarrays are part of a new class of biotechnologies which allow the monitoring of expression
levels for thousands of genes simultaneously. In addition to the enormous scientific potential of
microarrays to help in understanding gene regulation and gene interactions, microarrays are being
used increasingly in pharmaceutical and clinical research. Our focus here is on complementary DNA
(cDNA) microarrays, where thousands of distinct DNA sequences representing different genes are
printed in a high-density array on a glass microscope slide using a robotic arrayer. The relative
abundance of each of these genes in two RNA samples may be estimated by fluorescently labeling the
two samples, mixing them in equal amounts, and hybridizing the mixture to the sequences on the
glass slide. More fully, the two samples of messenger RNA from cells (known as target) are reverse-
transcribed into cDNA, and labeled using differently fluorescing dyes (usually the red fluorescent
dye cyanine 5 and the green fluorescent dye cyanine 3 ). The mixture then reacts with the arrayed
cDNA sequences (known as probes following the definitions adopted in NGS (1999)). This chemical
reaction, known as competitive hybridization, results in complementary DNA sequences from the
targets and the probes base-pairing with one another. The slides are scanned at wavelengths
appropriate for the two dyes, giving fluorescence measurements for each dye for each spot on the
array. The two absolute fluorescence intensities for any spot should be proportional to the amount
of mRNA from the corresponding gene in the respective samples, and the fact that these can be
obtained simultaneously for 10-40 thousand genes gives this assay its great power. In practice the
absolute intensities are usually noticeably less reproducible across slides than their ratios, and for
the most part, the assay read out is the set of (log) ratios. We refer the reader to NGS (1999) for
a more detailed introduction to the biology and technology of cDNA microarrays.

3 Experimental design: direct vs indirect comparisons

Proper statistical design is desirable to get the most out of microarray experiments and to ensure
that the effects of interest to biologists are accurately and precisely measured. Careful attention to
experimental design will ensure that the best use is made of available resources, obvious biases will
be avoided, and that the primary questions of interest to the experimenter will be answerable. To
date the main work on design with microarray experiments is due to Kerr and Churchill (2001) and
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Glonek and Solomon (2002), who have applied ideas from optimal experimental designs to suggest
efficient designs for some of the common cDNA microarray experiments. In these papers, and in
other similar calculations in the literature, log ratios from different experiments are regarded as
statistically independent.

Most biologists conducting simple gene expression comparisons such as between treated and
control cells, will carry out replicate experiments on different slides. These will usually involve
what are known as technical replicates, where we use this term to describe the case where the
target mRNA in each hybridization is from the same RNA extraction, but is labeled independently
for each hybridization. A more extreme form of technical replication would be when samples from
the same extraction and labeling are split, but we do not know of many labs now doing this,
though some did initially. We and others have noticed that estimates of differential gene expression
based on technical replicates tend to be correlated, whereas the same estimates based on replicates
involving different RNA extractions and labellings tend to be uncorrelated. When the more extreme
form of technical replication is used, the correlation can be very strong. These observations have
led us to re-examine the correlation structure underlying experimental design calculations. When
variances are calculated for linear combinations log ratios across replicate slides, it seems desirable
to use the most realistic covariance model for the measurements, and this is what we now try to
do.

3.1 A simple calculation

Let us consider comparisons between two target samples A and B. For gene i on a typical slide, we
denote the intensity value for the two target samples by Ai and Bi. The log base 2 transformation
of these values will be written ai = log2 Ai and bi = log2 Bi, respectively, and when reference
samples R and R′ are used, we will write ri = log2Ri and r′i = log2R

′
i. In addition, we denote

the means of the log-signals across slides for gene i by αi = E(ai) and βi = E(bi), respectively.
The variances and covariances of the log signals for gene i across slides will be assumed to be the
same for all samples, that is, we suppose that differential gene expression is exhibited only through
mean expression levels, and we always view this on the log scale. Our dispersion parameters
are a common variance σ2

i , a covariance c1i between measurements on samples from the same
hybridization, a covariance c2i between measurements on technical replicate samples from different
hybridizations, and a covariance c3i between measurements on samples which are neither technical
replicates nor in the same hybridization.

** Place Figure 1 approximately here **

Figure 1 illustrates two different designs for microarray experiments whose purpose is to identify
genes differentially expressed between the two target samples A and B. Design I involves two direct
comparisons, where the samples A and B are hybridized together on the same slides. Design II
illustrates an indirect comparison, where A and B are each hybridized with a common reference
sample R. We denote technical replicates of A, B and R by A′, B′ and R′ respectively. Note that
both designs involve two hybridizations, and we emphasize that in both cases, our aim is to estimate
the expression difference αi − βi on the log scale. We now calculate the variances of the obvious
estimates of this quantity from each experiment. For Design I this is one half of yi = ai−bi+a′i−b′i.
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We have
v1i = var(yi/2) = σ2

i − c1i + c2i − c3i ,

while for Design II we have

v2i = var(ai − ri − bi + r′i) = 4(σ2
i − c1i)− 2(c2i − c3i).

We next show that v1i is never greater than v2i. To see this, consider the covariance matrix for the
four log intensities from Design I:

Cov




ai

bi

a′i
b′i


 =




σ2
i c1i c2i c3i

c1i σ2
i c3i c2i

c2i c3i σ2
i c1i

c3i c2i c1i σ2
i


 .

It is easy to check that the eigenvalues of this matrix are λ1i = σ2
i + c1i + c2i + c3i, λ2i = σ2

i + c1i−
c2i − c3i, λ3i = σ2

i − c1i + c2i − c3i, and λ4i = σ2
i − c1i − c2i + c3i. In terms of these eigenvalues, we

see that v1i = λ3i and that v2i = λ3i + 3λ4i. Thus the relative efficiency of the indirect versus the
direct design for estimating αi − βi is

v2i

v1i
= 1 +

3λ4i

λ3i
. (1)

The direct design is evidently never less precise than the indirect one, and the extent of its
advantage depends on the values of σ2

i , c1i, c2i and c3i. Notice that when λ4 = 0 (σ2
i +c3i = c1i+c2i),

we see that v1i = v2i. This shows that under our more general model, the reference design can
be as efficient as the direct design. At the other extreme, when c2i = c3i, that is when the
covariance between measurements on technical replicates coincides with that between any two
unrelated samples, we have v2i = 4v1i. This is the conclusion which is obtained when log ratios
from different experiments are supposed independent, and while this is roughly the case in general,
we will see that the story is somewhat more complicated. Note that there is no reason in principle
why we can’t have c2i < c3i, equivalently, λ3i < λ4i, in which case v2i > 4v1i.

The generic calculation we have just presented is gene-specific. However, it is quite difficult
to obtain data permitting estimates these parameters for all 20,000 genes, and so we now turn to
finding typical values for them.

3.2 Estimation of v1 and v2

In the preceding calculation, our analysis focused on a single gene. In practice we would not design
to achieve highest efficiency for a single gene, indeed we would not usually have data of the requisite
kind to enable us to estimate the variance and covariances at the single gene level. What we do
have in abundance are data which embody the variability and covariability underlying these gene
specific variances and covariances en masse. It seems reasonable to hope that we can use these
data to give us typical or average values of λ3i and λ4i across a gene set. These values could then
be used as general guides in a design context.

How can we calculate average values λ̄3 and λ̄4? We show how this can be done with data from
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experiments carried out according to Design I, subject to an assumption which, while plausible,
is uncheckable at this point. Continuing the notation introduced the previous section, we write
xi = ai + bi − a′i − b′i, yi = ai − bi + a′i − b′i, and zi = ai − bi − a′i + b′i.

The following identity shows us how we can connect the averages of gene-specific eigenvalues to
quantities we are able to estimate. Note that E(xi) = E(yi) = E(zi) = 0, while var(xi), var(yi)
and var(zi) are 4λ2i, 4λ3i, and 4λ41, respectively. If we suppose that their covariances across i and
j are, on average negligible in relation to their average variance, then we get what we want. More
fully, if cov(xi, xj) = γij , then

E{ 1
n− 1

n∑

i=1

(xi − x̄)2} =
4
n

n∑

i=1

λ2i − 1
n(n− 1)

∑

i6=j

γij ≈ 4λ̄2. (2)

This formula, and its analogue involving the yi and zi, will be the basis of our estimates of λ̄2, λ̄3

and λ̄4. We are unable to present any justification for ignoring the average covariance terms, apart
from the fact that the numerical results given below make sense.

4 Illustration

We will illustrate our method to find an approximate for values v1 and v2 from the swirl experiment
provided by Katrin Wuennenberg-Stapleton from the Ngai Lab at UC Berkeley. (The swirl embryos
for this experiment were provided by David Kimelman and David Raible at the University of
Washington.) This experiment was carried out using zebrafish as a model organism to study
early development in vertebrates. Swirl is a point mutant in the BMP2 gene that affects the
dorsal/ventral body axis. Ventral fates such as blood are reduced, whereas dorsal structures such
as somites and notochord are expanded. A goal of this swirl experiment was to identify genes with
altered expression in the swirl mutant compared to wild-type (wt) zebrafish. The datasets consists
of 4 replicate slides (2 sets of dye-swap experiments). For each of these slides, target cDNA from
the swirl mutant is labeled using one of the cyanine 3 or cyanine 5 dyes and the target cDNA
wild-type mutant is labeled using the other dye. The two sets of dye-swaps were performed on
two different days. Within each set, the same swirl target samples on the two different slides are
technical replicate of each other, and similarly for the wild-type (wt) samples. Figure 2 shows a
graphical representation of this swirl experiment.

** Place Figure 2 approximately here **

As described in section 2, the raw data from a cDNA microarray experiments consist of pairs of
image files, one for each of the dyes. Careful analysis is required to extract reliable measures of the
fluorescence intensities from each image. In addition, a preprocessing step known as normalization
is required to allowed comparison across spots between slides. For a typical slide let us denote gene
i’s log intensity values for the two target samples by ri = log2 Ri and gi = log2 Gi. Our method of
normalization adjust the ri and gi intensity to r∗i = ri − 1

2ki and g∗i = gi + 1
2ki respectively, where

ki is the normalization adjustment estimated from “print-tip loess” normalization within each
slides (Yang et al. (2002)). We are currently developing more sophisticated multiple experiment
normalization procedures, but the details of this work are beyond the scope of this paper.
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As shown above, we are able to provide noisy estimates of eigenvalues of the covariance matrix
for every gene i. While the quantities xi, yi and zi should have mean zero, outliers are a concern.
Thus we took the union of the 1,000 most extreme genes from each sample across the four different
experiments and removed them from the data before doing our estimation. The removal of 2, 817
spots from the samples of 8, 448 spots provides us with a conservative dataset where spots are
reasonably constantly expressed across all experiments. Table 1 presents the estimates of λ̄2, λ̄3

and λ̄4. Using them we can estimate the relative efficiency v2/v1 of the indirect and direct designs
for estimating log2(swirl) − log2(wt). We find that it is 4 for the experiments of set 1 and 2.5 for
set 2.

Table 1: Estimates of λ̄2, λ̄3, λ̄4 and relative efficiency v2/v1 for the swirl experiment.

Set 1 Set 2
Parameters Median Mean Median Mean

λ̄2 0.06 0.42 0.09 0.33
λ̄3 0.01 0.02 0.02 0.04
λ̄4 0.01 0.02 0.01 0.02

1 + 3λ̄4/λ̄3 4 4 2.5 2.5

5 Discussion

When we average log ratios, as we do in Design I, we want the terms to be as independent as
possible. When we take differences, as we do in Design II, we want the technical replicate terms
to be as dependent as possible. This can be achieved by using the same extraction and the same
labeling (extreme technical replication). The above results give us an indication of the extent to
which this is possible, and would seem to have some implications for experimental design with
cDNA microarrays. We turn now to some special issues.

Log-intensity correlations

Our analysis and results throw some light on the correlations we see in the scatter plots of
log intensity values within and between slides. Three types of plot are possible, see Figure 3:
the familiar one a versus b of log intensities within a slide, and two less commonly presented ones:
between log intensities from technical replicates across slides, a versus a′, and between log intensities
from unrelated samples across slides from the same print batch, a versus b′. The correlation in the
first of these is very high indeed, while that in the other two is lower, but still high, and not visibly
different across the pair.

Of course the strength of the correlation in these plots is largely driven by the generally similar
pairs αi and βi of mean log intensities. In order to make this more precise, and to see the role of
our covariances c1i, c2i and c3i we use different versions of our earlier identity. The first is

E{ 1
n− 1

n∑

i=1

(ai − ā)(bi − b̄)} ≈ 1
n− 1

n∑

i=1

(αi − ᾱ)(β − β̄) + c̄1 ,
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where c̄1 is the average of the c1i, and again we have ignored certain average covariance terms.
Similarly, if we replace bi in the above by a′i, we get

E{ 1
n− 1

n∑

i=1

(ai − ā)(a′i − ā′)} ≈ 1
n− 1

n∑

i=1

(αi − ᾱ)2 + c̄2,

while replacing a′i by b′i gives

E{ 1
n− 1

n∑

i=1

(ai − ā)(b′i − b̄′)} ≈ 1
n− 1

n∑

i=1

(αi − ᾱ)(βi − β̄) + c̄3.

The first term in all three of these should be approximately the same, and if this is the case, we
can conclude that c̄1 is noticeably larger than c̄2 and c̄3, while the latter are approximately equal.

*** Place Figure 3 approximately here. ***

Log-ratio correlations

We turn now to the issue which prompted this analysis: the extent to which log ratios, that is,
measures of differential gene expression, are correlated across experiments. It is easy to check that
the covariance between estimates of differential expression ai − bi and a′i − b′i, based on technical
replicates is 2(c2i − c3i). Similarly, the covariance between ai − a′i and bi − b′i is 2(c1i − c3i). The
scatter plots of these quantities are shown as panels (b) and (c) of Figure 4. Panel (a) of this figure
is the scatter plot of the pairs ai − b′i versus a′i − bi, which individually should have covariance
2(c2i − c1i). Once more making use of identities similar to the three just above, we conclude that
c̄1 is noticeably larger than c̄2, which in turn is slightly larger than c̄3. This is all consistent with
the conclusions of the previous subsection. Note that we are unable to estimate c̄2, c̄2 and c̄3

individually, just certain differences: c̄1 − c̄3 ≈ 0.19 and c̄2 − c̄3 ≈ 0.04.

*** Place Figure 4 approximately here. ***

Next we consider the covariance structure of log ratios, which all have variance σ2
wi = var(ai −

bi) = 2(σ2
i − c1i). Formulae for their covariances depend on whether they have 0, 1 or 2 technical

replicates in common. Denoting these three covariances by d0i, d1i and d2i, we have the following:
d0i = 0, d1i = c2i− c3i and d2i = 2(c2i− c3i). The preceding analysis, coupled with an examination
of Figures 3 and 4, should make it quite clear why we use log ratios of intensities and not the log
intensities on their own, in the analysis of cDNA experiments.

Implications for design

We close with a few remarks on the implications of the foregoing for the design of more complex
cDNA microarray experiments such as factorials, Glonek and Solomon (2002). A more complete
analysis would include the covariances just discussed. Let us extend the design depicted in Figure
1(a) to include samples A∗ and B∗ which are treated forms of samples A and B, e.g. with some
drug. Our interest might then lie in genes whose differential expression between A and B is different
from that between A∗ and B∗, that is, in genes whose expression exhibits a sample by treatment
interaction.
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** Place Figure 5 approximately here **

Figure 5 is a representation of this 2× 2 factorial experiment, the number next to the arrows in
the diagram being the slide number. The covariance matrix of the parameter estimates can then be
calculated using the formula (X ′Σ−1X)−1. In this example, the design matrix and the gene-specific
covariance matrix for log ratios are as follows:

X =




1 0 0
0 1 0
0 1 1
1 0 1
0 1 0
0 1 1




and Σi = Cov




y1i

y2i

y3i

y4i

y5i

y6i




=




σ2
wi d1i d1i 0 d1i d1i

d1i σ2
wi 0 d1i d2i d1i

d1i 0 σ2
wi d2i d1i d2i

0 d1i d1i σ2
wi d1i d2i

d1i d1i d1i d1i σ2
wi d2i

d1i d1i d2i d2i 0 σ2
wi




.

The relative efficiencies of different designs for estimating an interaction parameter can now be
calculated, but we leave the details for another time.
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A B

(a) Design I: Direct

A B

R

(b) Design II: Indirect

Figure 1: Two possible designs comparing the gene expression in two samples A and B of cells.
In this representation, vertices correspond to target mRNA samples and edges to hybridizations
between two samples. By convention, we place the green-labeled sample at the tail and the red-
labeled sample at the head of the arrow. (a) Direct comparison: this design measures the gene’s
differential expression in samples A and B directly on the same slide (experiment). (b) Indirect
comparison: this design measures the expression levels of samples A and B separately on two
different slides and estimates the log ratio log2 A/B by the difference log2 A/R− log2 B/R′, where
the samples R and R′ are technical replicate reference samples
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wt swirl

2

2

Figure 2: The swirl experiments provided by Katrin Wuennenberg-Stapleton from the Ngai Lab at
UC Berkeley. This experiment consists of two sets of dye swap experiments comparing gene expres-
sion between the mutant swirl and wildtype (wt) zebrafish. The number on the arrow represents
the number of replicated experiments.
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Figure 3: Pairwise scatter plots for set 2 of the swirl experiment. This is a set of dye-swap
experiment where samples swirl and wt are compared on the same microarray experiment (i.e. same
slide) and another set of samples swirl’ and wt’ are compared on another microarray experiment.
The samples swirl and swirl’ are technical replicates, where the both samples mRNA is from the
same RNA extraction, but is labeled independently for each hybridization.
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(c)

Figure 4: Three types of scatter plots. (a) Scatter plots of log2(swirl/wt ′) versus log2(swirl′/wt),
where individual spot should have covariance of 2(c2i−c1i). Similarly, (b) shows the scatter plots of
log2(swirl/wt) versus log2(swirl′/wt ′), with covariance of 2(c2i− c3i) for each individual spot, and
(c) scatter plots of log2(swirl/swirl′) versus log2(wt/wt ′), where in theory, each spot has covariance
of 2(c1i − c3i). Making use of identities described in Section 5, we conclude that c̄1 is noticeably
larger than c̄2, which in turn is slightly larger than c̄3.
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A B

A* B*

(1)

(2) (3) (6)(5)

(4)

Figure 5: A hypothetical 2 by 2 factorial microarray experiment. The vertices A and B represent
two samples A and B of cells, while A∗ and B∗ represent treated forms of samples A and B,
e.g. with some drug. The number next to the arrows in the diagram denotes the slide number
corresponding to the experiment.
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