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Abstract
Let Tt,n be a continuous-time critical branching process conditioned
to have population n at time t. Consider Tt,n as a random rooted
tree with edge-lengths. We define the genealogy G(Tt,n) of the
population at time t to be the smallest subtree of Tt,n contain-
ing all the edges at a distance t from the root. We also consider
a Bernoulli(p) sampling process on the leaves of Tt,n, and define
the p-sampled history Hp(Tt,n) to be the smallest subtree of Tt,n

containing all the sampled leaves at a distance less than t from the
root. We first give a representation of G(Tt,n) and Hp(Tt,n) in terms
of point-processes, and then provide their asymptotic behavior as
n → ∞, t

n → t0, and np → p0. The resulting asymptotic processes
are related to a Brownian excursion conditioned to have local time
at t0 equal to 1, sampled at times of a Poisson(p0

2 ) process.

Keywords Galton-Watson process, random tree, point process, Brownian ex-
cursion, genealogy

AMS subject classification xxx

1 Introduction

In this paper we study the genealogical structure of a continuous-time crit-
ical branching process conditioned on its population size at a given time t. By
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genealogical structure we mean a particular subtree of the family tree of the
branching process up to time t. Within the family tree we consider all the
extant individuals at time t, and a subset of the extinct individuals indepen-
dently sampled with a given chance p. The subtree we consider is the smallest
one containing all the common ancestors of the extant individuals and all the
sampled extinct individuals. We introduce a point-process representation of
this genealogical subtree and derive its law. Our main result is the asymptotic
behavior of such point-processes, and their close relationship to a conditioned
Brownian excursion.

The relationship between random trees and Brownian excursions has been much
explored in the literature. We here note only a small selection that is most
relevant to the work in this paper. The appearance of continuous-time critical
branching processes embedded in the structure of a Brownian excursion was
noted by Neveu-Pitman and Le Gall ([Ne-Pi,89b],[Ne-Pi,89a], and [LG,89]). The
construction of an infinite tree within a Brownian excursion, which is in some
sense a limit of the trees from the work of Neveu-Pitman, has been considered
by Abraham ([Ab,92],[Ab-Ma,92]) and Le Gall ([LG,91]). The convergence of
critical branching processes conditioned on total population size to a canonical
tree within a Brownian excursion (the Continuum Random Tree) was introduced
by Aldous ([Al,93]). We present a connection of the asymptotic results in this
paper with the above mentioned results.

Some aspects of the genealogy of critical Galton-Watson trees conditioned on
non-extinction have been studied in ([Du,78]), without the use of family trees.
It has also been studied within the context of super-processes (e.g. [LG,91]).

The paper is structured in two parts. In Section 2 we give a precise definition of
the genealogical point-process representing the common ancestry of the extant
individuals, and provide its exact law and asymptotic behavior (Theorem 5).
Then in Section 3 we give the definition of the corresponding genealogical point-
process that includes the sampled extinct individuals as well, provide its exact
law and asymptotic behavior (Theorem 9). Section ?? describes the connections
of our asymptotic results, with random forests embedded in Brownian motion.

2 Genealogy of extant individuals

Consider a continuous-time critical branching process T , with initial pop-
ulation size 1. In such a process each individual has an Exponential(rate 1)
lifetime, in the course of which it gives birth to new individuals according to a
Poisson(rate 1) process, with all the individuals living and reproducing indepen-
dently of each other. Let Tt,n be the process T conditioned to have population
size n at time t. We use the same notation (T and Tt,n) for the random trees
with edge-lengths that are family trees of these processes. We picture these
family trees as rooted planar trees with the following conventions: each individ-
ual is represented with edges whose length is equal to the individuals lifetime,
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each new individual is attached on the right of the edge of its parent at the
point corresponding to its time of birth, with the parent continuing on the left.
Such trees are identified by their shape and by the collection of individuals birth
times and lifetimes. We shall label the vertices in the tree in a depth-first search
manner. An example of a realization of Tt,n is shown in Figure 1

Remark . We point out that T is closely related to the continuous-time critical
binary-branching Galton-Watson process. The difference between the two is
in the identities of individuals. If at each branching event with two offspring
we imposed the identification of one of the offspring with its parent we would
obtain the same random tree as the family tree of T .
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Figure 1: (a) A realization of the tree Tt,n whose population at time t is N(t) =
5. The leaves are labeled in depth-first search manner; (b) The contour CTt,n

process of the tree Tt,n. Each local maximum of CTt,n
corresponds to the height

of a leaf of Tt,n.

Consider also the contour process CT induced by the random tree T . The con-
tour process of a rooted planar tree is a continuous function giving the distance
from the root of a unit-speed depth-first search of the tree. Such a process starts
at the root of the tree, traverses each edge of the tree once upwards and once
downwards following the depth-first search order of the vertices, and ends back
at the root of the tree. The contour process consists of line segments of slope
+1 (the rises), and line segments of slope −1 (the falls). The unit speed of the
traversal insures that the height levels in the process are equivalent to distances
from the root in the tree, i.e. times in the branching process. A contour process
CTt,n

induced by a realization of Tt,n is shown in Figure 1 (b). For a formal
definition of planar trees with edge lengths, contour processes and their many
useful properties see [Pi,02] §6.1 .

Let the genealogy of extant individuals at time t be defined as the smallest
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subtree of the family tree containing all the edges representing these individuals.
The genealogy G(Tt,n) at t is thus an n-leaf tree. We introduce a point-process
representation of this genealogical tree. The point of doing so is that we get an
object that is much simpler to analyze and gives much clearer asymptotic results,
than we could have made in the original space of trees with edge-lengths. Infor-
mally, think of forming this point-process by taking the height of the branching
points of the genealogical tree G(Tt,n) in the order they have as vertices in the
tree. For convenience reasons (which will be clear in the asymptotic consider-
ation) we keep track of the heights of the branching points as distances from
level t, and for graphical convenience we offset the index of the points by a 1

2 .
The genealogical subtree of the tree from Figure 1, and its point-process repre-
sentation are shown in Figure 2. Formally let Ai, 1 ≤ i ≤ n − 1 be the times
of branch points in the tree G(Tt,n), in the order induced from the depth-first
search ordering of the vertices in the tree, and τi = t − Ai. Set li = i + 1

2 , then

Definition. Let the Genealogical point-process Πt,n be the random finite set

Πt,n = {(li, τi) : 1 ≤ i ≤ n − 1, 0 < τi < t} (1)

We can equally obtain Ai, 1 ≤ i ≤ n − 1 from the contour process CTt,n
. The

ith individual extant at t corresponds to an up-crossing Ui and the subsequent
down-crossing Di of level t. The branch-points Ai, 1 ≤ i ≤ n − 1 of G(Tt,n)
correspond to the levels of lowest local minima of the part excursions of CTt,n

below level t, i.e. Ai = inf{CTt,n
(u) : Di < u < Ui+1}. The usefulness of this

observation is to allow us to use some nice properties of the law of CTt,n
to derive

the law of Πt,n.

0 1 2 3 4 5=n

.

.

. .

(a) (b)

t

Figure 2: (a) The genealogical tree G(Tt,n) of the extant individuals at time
t; (b) The point-process Πt,n representation of G(Tt,n). The dotted lines show
reconstruction of G(Tt,n) from its point-process.

We now recall the result of Neveu-Pitman-Le Gall, regarding the law of the
contour process CT , referring the reader to either [LG,89], or to [Ne-Pi,89a] for
its proof.
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Lemma 1. In the contour process CT of a critical branching process T the
sequence of rises and falls (up to the last fall) has the same distribution as a
sequence of independent Exponential(rate 1) variables stopped one step before
the sum of successive rises and falls becomes negative (the last fall is then set
to equal this sum).

From the memoryless property of the exponential distribution we immediately
get the following corollary.

Corollary 2. For the contour process CT the process XT = (CT , slope[CT ]) is
a time-homogeneous strong Markov process on R

+ × {+1,−1} stopped when it
first reaches (0,−1).

The law of the Genealogical point-process Πt,n can now easily be given with
some excursion theory for Markov processes.

Lemma 3. For any t > 0, the random set Πt,n is a simple point-process on
{ 3

2 , . . . , n − 1
2} × (0, t) with intensity measure

νt,n

(
{1
2

+ i} × dτ
)

=
dτ

(1 + τ )2
1 + t

t
(2)

Proof. Consider the Markov process XT = (CT , slope[CT ]) until the first hitting
time U(0,−1) = inf{u ≥ 0 : XT (u) = (0,−1)}, and consider its excursions
from the point (t, +1) using the distribution of CT given by Lemma 1. Clearly
P(t,+1)

[
inf{u > 0 : XT (u) = (t, +1)} > 0

]
= 1, and the visits to (t, +1) at times

U1 = inf{u ≥ 0 : XT (u) = (t, +1)}, Ui = inf{u > Ui−1 : XT (u) = (t, +1)}, i > 1
is discrete. The excursions of XT for i ≥ 1 are

εi(u) = XT (Ui + u), for u ∈ [0, Ui+1 − Ui), and εi(u) = (0, +1) else

the number of visits in an interval (0, u] is

l(0) = 0, l(u) = sup{i > 0 : u > Ui}, u > 0

the total number prior to U(0,−1) is L = sup{i ≥ 0 : U(0,−1) > Ui} = l(U(0,−1)).
If n is the P(t,+1)-law of εi, and E<t is the set of excursions from (t, +1) that
return to (t, +1) without reaching (0,−1), and E>t the set of all others, then
(see e.g.[Ro-Wi,87] Vol.2 §VI.50.)

• P(0,+1)

[
L ≥ i

]
=

[
n(E<t)

]i−1
, i ≥ 1, and ε1, ε2, . . . are independent

• given that L ≥ i: the law of ε1, ε2, .., εi−1 is n(· ∩ E<t)/n(E<t)

• given that L = i: the law of εi is n(· ∩ E>t)/n(E>t)

This makes {(l(Ui), εi), 1 ≤ i ≤ L− 1} a simple point-process, with the number
of points having a Geometric(n(E>t)) law, and with each εi having the law
n(· ∩ E<t)/n(E<t). This makes it particularly convenient for analyzing CTt,n

,
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which is CT conditioned on L = n, so then the n − 1 excursions of CTt,n
have

the law n(· ∩ E<t)/n(E<t)

We have the up-crossing times Ui, 1 ≤ i ≤ n, then the down-crossing times are
Di = inf{u > Ui : XT (u) = (t,−1)}. We are interested in the part of the
excursions from (t, +1) below level t

ε<t

i = εi(Di + u), u ∈ [0, Ui+1 − Di), and ε<t

i (u) = (0, +1) else

We note that the shift and reflection invariance of the transition function of CT ,
as well as its strong Markov property, applied to the law n for ε<t

i imply that
the law of ε+

i = t − ε<t

i is the same as the law of XT . Consequently the law of
t − inf(ε<t

i ) = sup(ε+
i ) is the same law as that of sup(CT ).

We now recall classical results on the branching process T ([Fe,68] §XVII.10.11.)
which say that for the law of the population size N(t) of T at time t we have

P
[
N(t) = 0

]
=

t

1 + t
; P

[
N(t) = k

]
=

tk−1

(1 + t)k+1
, for k ≥ 1 (3)

hence
P

[
sup(CT ) > t

]
= P

[
N(t) > 0

]
=

1
1 + t

, for t ≥ 0 (4)

Now for CTt,n
and for each 1 ≤ i ≤ n − 1 we have that Ai = inf(ε<t

i ), and the
ε<t

i are independent with ε<t

i ∼n(· ∩ E<t)/n(E<t), hence then each τi = t − Ai

has the law
P(τi ∈ dt) =

1
(1 + τ )2

1 + t

t
, for 0 ≤ τ ≤ t (5)

It would be easy to establish asymptotics for Πt,n with a routine calculation,
but first we want to give the context in which we see the asymptotic process. We
establish a connection with a conditioned Brownian excursion that enables one
to derive many more results about the genealogical structure of Tt,n then just
G(Tt,n). Asymptotic results for critical Galton-Watson processes conditioned
on a ”very large” total population size have been established using different
techniques. We recall here the result of Aldous ([Al,93] Thm23) which says
that its contour process appropriately rescaled converges (as the total popula-
tion size increases) to a Brownian excursion (doubled in height) conditioned to
have length 1. Now note that, if Ntot is the total population size of a critical
Galton-Watson process, and N(t) its population size at some given time t, then
the events Ntot = n and N(t) = n are both events of ”very small” probability.
The first has asymptotic chance cn− 3

2 as n → ∞, and for t
n → t0 as n → ∞ the

second has asymptotic chance c(t0) n−1 (xxx-[Kai,76]). Whereas total popula-
tion size corresponds to the total length of the contour process, the population
size at a particular time t corresponds to the occupation time of the contour
process at level t. Hence it is natural to conjecture here that the contour process
of a critical Galton-Watson process conditioned on a ”very large” population at
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time t converges to a Brownian excursion conditioned to have local time 1 at
level t0. The asymptotic results we establish in this paper provide some support
for its validity.

Let us introduce for the state-space for the asymptotic process the notion of
a nice point-process. A nice point-process on [0, 1]× (0,∞) (see [Al,93])§2.8.) is
a countably infinite set of points such that

• for any δ > 0: [0, 1] × [δ,∞) contains only finitely many points

• for any 0 ≤ x < y ≤ 1, δ > 0: [x, y] × (0, δ) contains at least one point.

We construct a point-process from a Brownian excursion conditioned to have lo-
cal time 1 at level t0, in the same manner in which Πt,n was constructed from the
contour process CTt,n

. Consider a Brownian excursion B(u), u ≥ 0. For a fixed
t0 > 0, let `t0(u), u ≥ 0 be its local time at level t0 up to time u, with standard
normalization of local time as occupation density relative to Lebesgue measure.
Let it0(`), ` ≥ 0 be the inverse process of `t0 , it0(`) = inf{u > 0 : `t0(u) > `}.
Let Bt0,1(u), u ≥ 0 then be the excursion B conditioned to have total local time
`t0 equal to 1 (by which we mean the total local time `t0(∞)). Consider ex-
cursions ε` of Bt0,1 below level t0 indexed by the amount of local time ` at t0
at the time it0(`

−) of their beginning. For each such excursion let a` be its
infimum, and t` = t − a`. Ito’s excursion theory insures then that the process
{(`, t`) : it0(`

−) 6= it0(`)} is well defined, then

Definition. Let the Continuum Genealogical point-process πt0,1 be the random
countably infinite set

πt0,1 = {(`, t`) : it0(`
−) 6= it0(`)} (6)

The name of the process will be obvious from the theorem on asymptotic be-
havior of Genealogical point-processes (see Theorem 5). We show that the
state-space for πt0,1 is the set of nice point-processes, and establish the law of
this process using standard results of excursion theory of Levy-Ito-Williams.

Lemma 4. The random set πt0,1 is a Poisson point-process on [0, 1] × (0, t0)
with intensity measure

ν(` × τ ) = d`
dτ

τ2
(7)

The random set πt0,1 is a.s. a nice point-processes.

Proof. Consider the path of an (unconditioned) Brownian excursion B after the
first hitting time of t0, Ut0 = inf{u ≥ 0 : B(u) = t0}, shifted and reflected about
the u-axis

β(u) = t0 − B(Ut0 + u), for u ≥ 0 (8)

Let `β
0 (u), u ≥ 0 be the local time of β at level 0 up to time u, and let iβ0 (`), ` ≥ 0

be the inverse process of `β
0 , iβ0 (`) = inf{u > 0 : `β

0 (u) > `}. Then the process

7



β(u), u ≥ 0 is a standard Brownian motion stopped at the first hitting time
of t0, Uβ

t0 = inf{u ≥ 0 : β(u) = t0}. The excursions of β from 0 (with a
change of sign) are the excursions of B from t0, and its local time process `β

0

is equivalent to the local time process `t0 of B. We are only interested in the
excursions of B below t0, which are the positive excursions of β defined for
iβ0 (`−) 6= iβ0 (`) and β(iβ0 (`)+) > 0 as

ε+` = β(iβ0 (`−) + u), u ∈ [0, iβ0 (`) − iβ0 (`−)), and ε+` (u) = 0 else

Note that the infimum of an excursion of B below t0 is equivalent to t0−sup(ε+` ).
Standard results of Ito’s excursion theory ([Ro-Wi,87] Vol.2 §VI.47.) imply that
for a standard Brownian motion β the random set {(`, sup(ε+` )) : iβ0 (`−) 6= iβ0 (`)}
is a Poisson point-process on R

+ × R
+ with intensity measure d` dτ

τ2 .
Now let L = inf{` ≥ 0 : sup(ε+` ) ≥ t0)}. Then stopping `β

0 at the hitting time
L is equivalent to stopping β at its hitting time Uβ

t0 . Define a random set πt0

from the unconditioned Brownian excursion B in the same manner in which
we defined πt0,1 from a conditioned Brownian excursion Bt0,1. Recalling the
relationship (8) of B and β, we obtain that πt0 is equivalent to a restriction
of {(`, sup(ε+` )) : iβ0 (`−) 6= iβ0 (`)} on the random set [0, L] × (0, t0). In other
words πt0 is a Poisson point-process on R

+ × R
+ with intensity measure d` dτ

τ2

restricted to the random set [0, L] × (0, t0).
Next note that the condition {`t0 = 1} for B is equivalent to the condition
{`β

0 (Uβ
t0) = 1} for β, which is further equivalent to the condition {L = 1} for πt0 .

This then establishes that πt0,1
d= πt0 |{L = 1}. Further, the condition {L = 1}

on πt0 is equivalent to the condition that πt0 has no points in [0, 1)× [t,∞) and
has a point in {1} × [t,∞). But since πt0 is Poisson, independence of Poisson
random measures on disjoint sets implies that conditioning πt0 on {L = 1} will
not alter its law on the set [0, 1] × (0, t). However, since πt0,1 is supported
precisely on [0, 1] × (0, t), the above results together establish that πt0,1 is a
Poisson point-process on [0, 1] × (0, t) with intensity measure d` dτ

dτ2 .
It is now easy to see from the intensity measure of πt0,1 that its realizations are
a.s. nice point-processes, namely

• for any δ > 0: d`
(
[0, 1]

)
× dτ

dτ2

(
[δ,∞)

)
= 1

δ < ∞

• fro any 0 ≤ x < y ≤ 1,δ > 0: d`
(
[x, y]

)
× dτ

dτ2

(
(0, δ)

)
= (y − x) · ∞.

And since πt0,1 is Poisson, finiteness of its intensity measure on [0, 1] × [δ,∞)
implies that it has a.s. only finitely many points in the set [0, 1]× [δ,∞), while
infiniteness of its intensity measure on [x, y] × (0, δ) implies that it has a.s. at
least one point on the set [x, y] × (0, δ).

The right rescaling for Tt,n is to speed up time by n and to assign mass n−1

to each extant individual, which implies rescaling each coordinate of Πt,n by
n−1. The asymptotic behavior of the rescaled Genealogical point-process

n−1Πt,n = {(n−1li, n
−1τi) : (li, τi) ∈ Πt,n} (9)
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is now easily established.

Theorem 5. For any {tn > 0}n≥1 such that tn

n →
n→∞

t0 we have

n−1Πn,tn

d=⇒
n→∞

πt0,1

Remark . We use the notation d=⇒ for weak convergence of processes.

Proof. Using Lemma 3 and the rescaling (9) we have that n−1Πn,tn
is a simple

point-process on { 3
2n , . . . , 1 − 1

2n} × (0, tn

n ) with intensity measure

1
n

n−1∑

i=1

δ{ 1
2n + i

n}(l)
ndτ

(1 + nτ )2
1 + tn

tn
(10)

If {tn}n≥1 is such that tn

n →
n→∞

t0 then clearly the support set of the pro-

cess n−1Πn,tn
converges to [0, 1] × (0, t0) and its intensity measure converges

to d` dτ
τ2 . For simple point-processes this is sufficient to insure weak conver-

gence of the process (see e.g.[Bi,99] §12.3.) to a Poisson point-process on
[0, 1] × (0, t0) with intensity measure d` dτ

dτ2 . Using Lemma 4, we then estab-

lished that n−1Πn,tn

d=⇒
n→∞

πt0,1.

3 Genealogy of sampled extinct individuals

We now want to extend this genealogical structure to include a propor-
tion of extinct individuals as well. Suppose that each individuals independently
has some given chance p of appearing in the genealogical history of the extant
individuals. We indicate this by putting a star mark on the leaf of Tt,n corre-
sponding to that individual. An example of a realization of such p-sampling is
shown in Figure 3.

Then let the p-sampled history of the extant individuals as time t be defined
as the smallest subtree of the family tree containing all the edges of the extant
individuals and all the leaves of the p-sampled extinct individuals. The p-
sampled history Hp(Tt,n) contains the genealogy G(Tt,n). In fact we think of
G(Tt,n) as the ”main genealogical tree” with the rest of Hp(Tt,n) as the ”p-
sampled subtrees” attached to this main tree. Also, we construct a point-process
representation of Hp(Tt,n) so that it contains Πt,n as the “main points” of the
process. Informally, think of forming the rest of this point-process by taking
the height of the branching points in Hp(Tt,n) at which the p-sampled subtrees
get attached to the edges of the main tree G(Tt,n) (again we keep track of these
heights as distances from level t, and in the order in between the points Πt,n

that they have as vertices in a depth-search first ordered tree). The p-sampled
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Figure 3: (a) The tree Tt,n with p-sampling on its individuals. The sampled in-
dividuals are represented by ∗ marks; (b) Its contour process with the sampling
on the corresponding local maxima.

history of the tree from Figure 3, and its point-process representation are shown
in Figure 4.

Formally, we define the point-process of Hp(Tt,n) from the contour process
CTt,n

. The p-sampling can be equally defined as sampling of the local max-
ima of CTt,n

. The heights of the branch-points of G(Tt,n) as defined earlier
are Ai = inf{CTt,n

(u) : Di < u < Ui+1}, occurring in the contour process
CTt,n

at times UAi
= {u ∈ (Di, Ui+1) : CTt,n

(u) = Ai}. The p-subtree that
attaches to G(Tt,n) on the left (right) of the branch-point Ai is defined from
the part of the excursion of CTt,n

below t before (respectively after) time UAi
.

In addition, the p-subtrees on the left of the first branching point are de-
fined by the part of CTt,n

prior to the first up-crossing time U1, and analo-
gously, the p-subtrees on the right of the last branching point are defined by
the part of CTt,n

after the last down-crossing time Dn (see Figure 3). The
part of an excursion of XTt,n

= (CTt,n
, slope[CTt,n

]) below t as defined earlier is
ε<t

i = XTt,n
(Di + u), u ∈ [0, Ui+1 − Di). Let

ε<t

i,L
(u) = XTt,n

(Di + u), ς
i,L

(u) = inf
0≤v≤u

ε<t

i,L
(v), u ∈ [0, UAi

− Di)

Figure 5 shows ε<t
i,L

with its infimum process ς<t
i,L

(all the following definitions
for the right part ε<t

i,R of ε<t

i are identical up to symmetry about the vertical
axis through Ai).

Let ai,L(j), j ≥ 0 be successive levels of constancy of ς
i,L

, ti,L(j) = t − ai,L(j).
For each level of constancy, let ε<t

i,L
(j) be the excursion of ε<t

i,L
− ς

i,L
that lies

above the level ai,L(j), of ςi,L (see Figure 5). Let hi,L(j) be the height of this
excursion, hi,L(j) = sup(ε<t

i,L
(j)). Also let Υi,L(j) be the tree whose contour

process is the excursion ε<t
i,L

(j). At this point note that all the star marks due
to p-sampling are contained in the excursions ε<t

i,L
(j), hence are contained in the
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Figure 4: (a) The p-sampled tree Hp(Tt,n), and (b) its point-process representa-
tion Pp(Ξt,n) Each point of Πt,n has a left set and a right set of points attached
to it, representing the p-sampled subtrees attaching to the left and right of that
branch-point.

subtrees Υi,L(j). We attach to each point (li, ti) of Πt,n one ”left” set and one
(analogously defined) ”right” set

Li = {(ti,L(j), hi,L(j), Υi,L(j))}j≥0, Ri = {(ti,R(j), hi,R(j), Υi,R(j))}j≥0 (11)

In addition, we define one set R0 = {(t0,R(j), h0,R(j), Υ0,R(j))}j≥0, from the
first part of CTt,n

: ε<t
0,R

(u) = XT (u), u ∈ [0, U1); and also from the last part
of CTt,n

: ε<t
n,L

(u) = XT (Dn + u), u ∈ [0, U(0,−1) − Dn) we likewise define a set
Ln = {(tn,L(j), hn,L(j), Υn,L(j))}j≥0. To make notation easier we set L0 = ∅,
Rn = ∅, (l0, t0) = (1, t), (ln, tn) = (n, t), then

Definition. Let the Historical point-process with parameter p be the random
set

Pp(Ξt,n) = {(li, ti,Li,Ri) : (li, ti) ∈ Πt,n, 0 ≤ i ≤ n} (12)

Remark . We have in fact implicitly defined a point-process representation Ξt,n

of an unsampled (i.e.p = 1) Historical point-process, the only difference between
Ξt,n and Pp(Ξt,n) is in the star marks on the leaves in the latter. It will however
be clear that for nice asymptotic behavior we need to consider Pp(Ξt,n) with
p < 1 (i.e. we can only keep track of a proportion of the extinct individuals).

Let T denote the space of rooted planar trees with edge-lengths with finitely
many leaves, and Λp the law on T induced by the p-sampled trees T . For any
h > 0, let Λp

h be the law induced by restricting Λp to the trees T of height h.
The following Lemma describes the law of Pp(Ξt,n).

Lemma 6. For any p ∈ (0, 1), the random set Pp(Ξt,n) is such that:
• {(li, ti) : 1 ≤ i ≤ n − 1} is the simple point-process Πt,n of Lemma 3,

11
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Figure 5: The left half of an excursion of CTt,n
below t, ε<t

i,L
, with its supremum

process ςi,L whose levels of constancy are {ti,L(j)}j , above which lie p-marked
subtrees {Υi,L(j)}j of heights {hi,L(j)}j .

• given {(li, ti), 1 ≤ i ≤ n−1} the random sets {Li}i and {Ri}i are independent
over the index i, for each 0 ≤ i ≤ n Li and Ri are independent Poisson point-
processes on (0, t) × (0, t) × T with the same intensity measure

dt1{0<t<ti}
dh

(1 + h)2
1 + t

t
1{0<h<t} Λp

h (13)

Proof. The independence of the sets Li over the index i follows from the inde-
pendence of the excursions ε<t

i of XTt,n
below level t (same for the sets Ri).

The strong Markov property of XT extends this claim to the independence
of R0 and Ln from these sets as well. The conditional independence and the
equality in law of Li and Ri given ti, follows from the time reversibility and
the strong Markov property of XT . Consider the left half ε<t

i,L of an excur-
sion below level t. By Lemma 2, the conditional law of t − ε<t

i given (li, ti)
is that of XT |{sup(CT ) = ti}, hence t − ε<t

i,L has the law of XT |{τti
< τ0}

where τti
, τ0 are the first hitting times of (ti, +1), (0,−1) respectively by XT .

We then consider the levels {ti,L(j)}j of constancy of t − ςi,L = sup(t − ε<t).
The fact that CT is an alternating sum of exponential variables implies that
{ti,L(j)}j form a Poisson process of rate 1 on the set (0, ti). It also implies
that the excursions {ε<t

i,L(j)}j of ε<t

i,L − ςi,L above these levels have the laws of
XT |{sup(XT ) < ti,L(j)}. Hence given ti,L(j) the law of hi,L(j) = sup(ε<t

i,L(j))

by (4) has the density dh
(1+h)2

1+ti,L(j)
ti,L(j) on the set (0, ti,L(j)). Then given hi,L(j)

ε<t

i,L(j) has the law of XT |{sup(XT ) = hi,L(j)}, and the tree whose contour
process is ε<t

i,L(j) has the law of of T∆=hi,L(j). Now, the strong Markov property
implies that the p-sampling on the local maxima of CTt,n

is for each ε<t

i,L(j) again
a Bernoulli p-sampling on its local maxima. Thus the law of the p-sampled tree
Υi,L(j) is Λp

hi,L(j). Putting all the above results together we have that the set
{(ti,L(j), hi,L(j), Υi,L(j))}j is a Poisson point-process with intensity measure

12



dt1{0<t<ti}
dh

(1+h)2 1{0<h<t} Λp
h.

In the context of the contour process the p-sampled individuals form a ran-
dom set of marks along its time coordinate. The fact that CT is an alternating
sum of independent Exponential(rate 1) random variables implies that the local
maxima of CT form a Poisson process of rate 1

2 along its time axis, and in fact
the same is true for the local maxima of each part of an excursion of CTt,n

below
t. The p-sampled local maxima thus form a Poisson process of rate p

2 along
the time axis. The appropriate rescaling (as considered in the asymptotics of
Section 2) speeds up the time axis of CTt,n

by n. Hence for npn → p0 as n → ∞
the pn-sampling converges along the time axis to a Poisson process of rate p0

2 .
With this in mind we turn to a conditioned Brownian excursion Bt0,1 with a
Poisson(rate p0

2 ) process of marks along its time axis.

Let us introduce a process derived from a conditioned Brownian excursion
Bt0,1 in the same manner that Pp(Ξt,n) was derived from the contour process
of the conditioned branching process CTt,n

. Define p0-sampling on Bt0,1 to be
a Poisson(rate p0

2 ) process along the time axis of Bt0,1. We indicate this by
putting a star mark on the graph of Bt0,1 corresponding to the times of this
process. Let ε<t0 be the excursions of Bt0,1 below level t0

ε<t0
`,L

(u) = Bt0,1(it0(`
−) + u), u ∈ [0, it0(`) − it0(`

−))

The points of their infima as defined earlier are a` = t0 − t`, occurring at times
Ua`

= {u ∈ (it0(`
−), it0(`)) : Bt0,1(u) = a`}. For each ε<t0

` we define its left part
(left relative to the point of its infimum) to be

ε<t0
`,L

(u) = Bt0,1(it0(`
−) + u), ς

`,L
(u) = inf

0≤v≤u
ε<t0

`,L
(v), u ∈ [0, Ua`

− it0(`
−))

Figure 6 shows ε<t0
`,L with its infimum process ς`,L (all the following definitions

that we make for ε<t0
`,L apply equivalently to the part ε<t0

i,R of ε<t0 on the right of
its infimum up to symmetry about the vertical axis through a`).

Let a`,L(j), j ≥ 0 be the successive levels of constancy of ς`,L, and let t`,L(j) =
t0−a`,L(j). For each level a`,L(j) let ε<t0

`,L (j) be the excursion of ε<t0
`,L − ς`,L that

lies above this level, and h`,L(j) = sup(ε<t0
`,L (j)) be its height (see Figure 6).

Note that a.s. all the p0-sampled points on Bt0,1 lie on these excursions ε<t0
`,L (j).

We define a tree induced by a p0-sampled excursion ε<t0
`,L (j) as the tree whose

contour process is the linear interpolation of the sequence of the values of ε<t0
`,L (j)

at the p0-sampling times, alternating with the sequence of the minima of ε<t0
`,L (j)

between the p0-sampling times. Denote this tree by γ`,L(j).

Remark . This definition of a tree from an excursion path sampled at given
times has been explored for different sampling distributions in the literature
(see [Pi,02] §6. for examples). Since for each ε<t0

` there are a.s. only finitely

13
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Figure 6: A half of an excursion of Bt0,1 below t0, ε<t0
`,L , with its infimum process

ς
`,L

whose levels of constancy are {t`,L(j)}j , above which lie p-marked subtrees
{Υ`,L(j)}j of heights {h`,L(j)}j . The corresponding process ε<t0

`,L −ς`,L is shown
bellow it.

many p0-sampled points the trees {γ`,L(j)}j , {γ`,R(j)}j are a.s. in the space T
of rooted planar trees with edge-lengths and finitely many leaves.

Now to each point (`, t`) of πt0,1 we attach a “left” set and an (analogously
defined) “right” set

L` = {(t`,L(j), h`,L(j), γ`,L(j))}j≥0, R` = {(t`,R(j), h`,R(j), γ`,R(j))}j≥0 (14)

We also define the first “right” set R0 and the last “left” set L1 from paths ε<t0
0,R

of Bt0,1 before the first hitting time of t0, and ε<t0
1,L of Bt0,1 after the last hitting

time of t0 (let L0 = R1 = ∅, t0 = t1 = t0). Then

Definition. Let the Continuum Historical point-process with parameter p0 be
the random set

Pp0(ξt0,1) = {(`, t`,L`,R`) : (`, t`) ∈ πt0,1, it0(`
−) 6= it0(`)} (15)

For p0 ∈ (0, 1) let λp0 denote the law on T induced by the p0-sampled uncon-
ditioned Brownian excursion B (the definition is the same as for γ`,L(j) from
the p0-sampled ε<t0

`,L (j)). Then for any h > 0, let λp0
h be the law induced by

restricting λp0 to the set of Brownian excursions B of height h. The law of
Pp0(ξt0,1) is now described by the following Lemma.

Lemma 7. The random set Pp0(ξt0,1) is such that:
• {(`, t`) : it0(`

−) 6= it0(`)} is the Poisson point-process πt0,1 of Lemma 4,

14



• given {(`, t`) : it0(`
−) 6= it0(`)} the random sets {L`}` and {R`}` are indepen-

dent over the index `, for each ` : it0(`
−) 6= it0(`) L` and R` are independent

Poisson point-processes on (0, t0)× (0, t0)×T with the same intensity measure

dt1{0<t<t`}
dh

h2
1{0<h<t} λp0

h (16)

Proof. The independence of the sets L` over the index ` (and the same for the
sets R`) follows from the independence of the excursions of Bt0,1 below level
t0. This extends (using the strong Markov property of B) to the sets R0 and
L∞ defined from the parts of the path of Bt0,1 of its ascent to level t0 and
its descent from it. For each ε<t0

` as earlier defined we let ε+` = t0 − ε<t0
` .

By Lemma 4, the conditional law of ε+` given (`, t`) is that of a Brownian
excursion B conditioned on the value of its supremum B|{sup(B) = t`}. Let
τt`

= inf{u > 0 : ε+` (u) = t`}, then by Williams’ decomposition of a Brownian
excursion B ([Ro-Wi,87] Vol.1 §III.49.), the law of ε+`,L = t0 − ε<t0

`,L is that
of a 3-dimensional Bessel (Bess(3)) process ρ stopped at its first hitting time
τρ
t`

= inf{u > 0 : ρ(u) = t`} of t`. By time reversibility of B the process

r`,L(u) = t` − ε+`,L(τt`
− u), 0 ∈ (0, τt`

)

also has the law of the stopped Bess(3) process ρ(u), u ∈ (0, τρ
t`

). Let

j`,L(u) = inf
u≤v≤τt`

r`,L, u ∈ (0, τt`
)

Then {t` − t`,L(j)}j are (in reversed index order) the successive levels of con-
stancy of the process j`,L(u), u ∈ (0, τt`

), {h`,L(j)}j (in reversed index order)
are the heights of the successive excursions from 0 of the process r`,L(u) −
j`,L(u), u ∈ (0, τt`

), and {γ`,L(j)}j (in reversed index order) are the trees in-
duced by the p0-sampled points on these excursions. To obtain the law of j`,L

and r`,L − j`,L consider the Bess(3) process ρ(u), u ≥ 0 and its future infimum
process (u) = inf

v≥u
ρ(v), u ≥ 0. We note that the law of j`,L(u), u ∈ (0, τt`

) is

equivalent to that of  (u), u ∈ (0, τρ
t`

) if  (τρ
t`

) = t`, in other words, if ρ(u), u ≥ 0
after it first reaches t` never returns to that height again. So,

(j`,L, r`,L − j`,L) d= ( , ρ −  )|{ (τρ
t`

) = t`} for u ∈ (0, τt`
)

By Pitman’s theorem, then by Levy’s theorem ([Re-Yo,91] VI.§3.)

( , ρ −  ) d= (ζ, ζ − β) d= (
∼
`,

∼
|β|)

where β is a standard Brownian motion, ζ its supremum process;
∼
|β| is a reflected

Brownian motion,
∼
` its local time at 0 (with the occupation time normalization).

Thus, for
∼
τ t`

:= inf{u ≥ 0 :
∼
|β|u +

∼
`u= t`},

(j`,L, r`,L − j`,L) d= (
∼
`,

∼
|β|) |{

∼
`∼

τ t`

= t`} for u ∈ (0, τt`
)
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The condition {
∼
`∼

τ t`

= t`} is equivalent to the condition {
∼
`∼

τ t`

= t`,
∼
|β|∼

τ t`

= 0}

and {
∼
`u< t`,

∼
|β|u< t`−

∼
`u, for u ∈ (0,

∼
τ t`

)}. Hence,

(j`,L, r`,L − j`,L) d=

(
∼
` ,

∼
|β|) |{

∼
`u< t`,

∼
|β|u< t`−

∼
`u: u ∈ (0,

∼
τ t`

);
∼
`∼

τ t`

= t`,
∼
|β|∼

τ t`

= 0} (17)

Since
( ∼

` , sup(
∼
|β|)

)
is a Poisson point-process with intensity measure

∼
d` ×

∼
dh
∼

dh2
,

then using the independence property of a Poisson random measure on disjoint
sets in (17), we obtain for t = t`−

∼
` that

(
t`−j`,L, sup(r`,L−j`,L)

)
is a Poisson

point-process with intensity measure

dt1(0<t<t`)
dh

h2
1(0<h<t)

Recall the relationship of the values {t`,L(j), h`,L(j), γ`,L(j)}j of L` with the
processes j`,L and r`,L− j`,L. The above result thus implies that L` is a Poisson
point-process with intensity measure

dt1(0<t<t`)
dh

h2
1(0<h<t) λp0

h

where the last factor comes from the fact that γ`,L(j) is just the tree induced

by the p0-sampled excursion of
∼
|β| of height h`,L(j).

We now consider more closely the trees Υi,L(j) and γ`,L(j) induced by the
sampled excursions appearing in the historical point-processes above. In both
cases we have an excursion type function CT and B of some given height with
marks on it produced by a sampling process. The laws of trees induced by
sampled excursions of unrestricted height are known in the literature (see [Ho,00]
for the Brownian excursion case). For the trees from excursions of a given height
that we need to consider here, we use a recursive description for both CT and B
(see [Ab-Ma,92] for a similar recursive description of an infinite tree induced by
an unsampled Brownian excursion). Consider a “spine” of the tree extending
from the root of the tree to the point of maximal height in the excursion. An
equivalent representation of the tree is one in which subtrees of the trees on the
left and on the right of the axis through the spine are attached to this spine (see
Figure 7). We obtain the levels at which these subtrees are attached as well as
the description of the subtrees as follows.

Let us denote the excursion function defining this tree, either CT or B, by
ε(u), u ≥ 0. Let h = sup(ε) be its given height, and Uh = {u ≥ 0 : ε(u) = h}
the time at which it is achieved. Then let εL(u), u ∈ [0, Uh] be the left part
of the excursion, and let ςL(u) = inf

0≤v≤u
ε(v), u ∈ [0, Uh] be its past infimum

process (note that all the following definitions are to be equivalently made for
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Figure 7: A recursive derivation of the tree induced by an excursion ε of height
h. The “first” set of the tree description is shown: branch levels {tL(j)}j at
which subtrees induced by sampled excursions {εL(j)}j of εL − ςL of heights
{hL(j)}j

εR up to symmetry about the vertical axis through h). Then the subtrees
attaching on the left of the spine are defined by those excursions εL(j) of the
process εL − ςL that contain at least one sampled mark in it. They are the trees
induced by the sampled excursions εL(j) of heights hL(j). The levels at which
they are attached to the spine are the levels of constancy tL(j) of ςL at which the
excursions of εL − ςL occur. Then the set {(tL(j), hL(j))}j is the “first” set of
points defining our tress. The “second” set is derived with the same procedure
from the sampled excursions {εL(j)}j , and so on recursively.

Remark . This recursive procedure is very similar to our definition of the left
and right sets, Li,Ri for t − ε<t and L`,R` for t0 − ε<t0 , as defined earlier.
The difference lies in the fact that the subtrees here are defined from excursions
above the levels of constancy of the infimum process for ε, whereas earlier they
were defined from excursions below the levels of constancy of the supremum
process for t − ε<t and t0 − ε<t0 . However, the time inversion and reflection
invariance of the transition function of ε will allow us to easily derive the laws
of the “first” set of points here from the results of Lemma 6 and Lemma 7.

Lemma 8. The law Λpn

h of a tree induced by a pn-sampled contour process
CT of a given height h is such that the first sets of points {tL(j), hL(j)}j and
{tR(j), hR(j)}j are independent Poisson point-processes with intensity measure

1
√

pn
dτ1(0<τ<h)

d~

(1 + ~)2
1 + τ

τ
1(0<~<h−τ) (18)

The law λp0
h of tree induced by a p0-sampled Brownian excursion B of a given

height h is such that the first sets of points {tL(j), hL(j)}j and {tR(j), hR(j)}j
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are independent Poisson point-processes with intensity measure

1
√

p0
dτ1(0<τ<h)

d~

~2
1(0<~<h−τ) (19)

Let n−1Λpn

h be the law of the tree induced by a rescaled pn-sampled contour
process CT by n−1 in the vertical coordinate .Then for any {pn ∈ (0, 1)}n≥1

such that npn →
n→∞

p we have n−1Λpn

h =⇒
n→∞

λp0
h .

Proof. The key for this proof is to observe the following. If ε(u), u ≥ 0 is the
pn-sampled process XT |{sup(CT ) = h} then εL(u) = ε(u), u ∈ [0, Uh] has the
law of a pn-sampled XT |{τh < τ0} where τh, τ0 are the first hitting times of
(h, +1), (0,−1) respectively by XT . Then time reversibility and the reflection
invariance of the transition function of XT imply that h−εL(Uh−u), u ∈ [0, Uh]
has the same law as εL(u), u ∈ [0, Uh]. Now the levels of constancy of ςL, and
the corresponding excursions εL − ςL above them, are equivalent to the levels
of constancy and excursions of a set Li considered in Lemma 6, thus giving a
Poisson process of intensity measure as in (13). The factor 1√

p in the intensity
measure (18) comes from the fact that here we only consider the excursions
of εL − ςL that have at least one sampled mark in them. Namely, for the
branching process T , if Ntot denote the total population size of T , then the
generating function of Ntot is E(xNtot) = 1−

√
1 − x ([Fe,68] xxx-a br.pr. book).

Hence, the chance of at least one mark in the pn-sampled point-process of T is
1 − E((1 − pn)Ntot) =

√
pn.

A similar argument applies when ε(u), u ≥ 0 is the process B|{sup(B) = h}
sampled at Poisson(rate p0

2 ) times. Time reversibility and reflection invariance
of the transition function of B allow us to identify that the law of the levels of
constancy of of ςL, and the corresponding excursions εL − ςL above them are
the same as those for a set L` considered in Lemma 7, which we know form
a Poisson process with intensity measure as in (16). The factor 1√

p0
in the

intensity measure of (19) then comes from the rate of excursions with at least
one sampled mark. Namely, a Poisson(rate p0

2 ) process of marks on B along its
time coordinate is in its local time coordinate a Poisson(rate

√
p0) process of

marks ([Ro-Wi,87] Vol.2§VI.50.).

Now the law of the first set of the rescaled process with under n−1Λpn

h converges
to the law of the first set of the process with the law λp0

h . This follows from
the fact that the former is a sequence of Poisson point-processes whose support
set and intensity measure converge to those of the latter Poisson point-process.
Since for Poisson random measures the convergence of finite dimensional sets is
sufficient to insure weak convergence of the whole process our claim follows for
the first sets, and by recursion for the whole process.

We apply the same rescaling as earlier for Πt,n now on Pp(Ξt,n). Namely
we rescale both coordinates for Πt,n ⊂ Pp(Ξt,n) by n−1, so that the vertical
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coordinate of the sets Li,Ri is also rescaled by n−1, and the sampling rate is
rescaled by n. Denote this by

n−1Pp(Ξt,n) = {(n−1li, n
−1τi, n

−1Li, n
−1Ri) : (li, τi,Li,Ri) ∈ Pp(Ξt,n)} (20)

The asymptotic properties of the rescaled p-sampled historical process are now
easily established from our earlier results.

Theorem 9. For any {tn > 0}n≥1, and {pn ∈ (0, 1)}n≥1 such that tn

n →
n→∞

t0,

and npn →
n→∞

p we have n−1Ppn
(Ξtn,n) =⇒

n→∞
Pp0(ξt0,1).

Proof. By Theorem 5 we already have that n−1Πn,tn
=⇒

n→∞
πt0,1. Applying the

rescaling to the results of Lemma 6 together with the result of Lemma 8 now
implies that the support set and intensity measure of the Poisson point-process
of each Li after rescaling converges to those of the Poisson point-process L` as
given by Lemma 7. Then the convergence of the support set and intensity mea-
sure for the Poisson random measure Ppn

(Ξtn,n) to those of Pp0(ξt0,1) implies
the weak convergence of these processes.
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