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Abstract

The burgeoning field of genomics has revived interest in multiple testing procedures by rais-
ing new methodological and computational challenges. For example, microarray experiments
generate large multiplicity problems in which thousands of hypotheses are tested simultane-
ously. In their 1993 book, Westfall & Young propose resampling-based p-value adjustment
procedures which are highly relevant to microarray experiments. This article discusses dif-
ferent criteria for error control in resampling-based multiple testing, including (a) the family
wise error rate of Westfall & Young (1993) and (b) the false discovery rate developed by
Benjamini & Hochberg (1995), both from a frequentist viewpoint; and (c) the positive false
discovery rate of Storey (2002), which has a Bayesian motivation. We also introduce our
recently developed fast algorithm for implementing the minP adjustment to control family-
wise error rate. Adjusted p-values for different approaches are applied to gene expression
data from two recently published microarray studies. The properties of these procedures for
multiple testing are compared.

Keywords: multiple testing; family-wise error rate; false discovery rate; adjusted p-value;
fast algorithm; minP; microarray.
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1 Introduction

The burgeoning field of genomics has revived interest in multiple testing procedures by rais-
ing new methodological and computational challenges. For example, microarray experiments
generate large multiplicity problems in which thousands of hypotheses are tested simultane-
ously. Although the methods described in this paper are applicable in any multiple testing
situation, particular emphasis is placed on the use of adjusted p-values for the identification
of differentially expressed genes in microarray experiments.

DNA microarrays are a new and promising biotechnology which allow the monitoring of ex-
pression levels in cells for thousands of genes simultaneously. Microarrays are being applied
increasingly in biological and medical research to address a wide range of problems, such
as the classification of tumors or the study of host genomic responses to bacterial infec-
tions (Alizadeh et al. 2000, Alon et al. 1999, Boldrick et al. 2002, Golub et al. 1999, Perou
et al. 1999, Pollack et al. 1999, Ross et al. 2000). An important and common aim in mi-
croarray experiments is the identification of differentially expressed genes, i.e. of genes whose
expression levels are associated with a response or covariate of interest. The covariates could
be either polytomous (e.g. treatment/control status, cell type, drug type) or continuous
(e.g. dose of a drug, time), and the responses could be, for example, censored survival times
or other clinical outcomes. There are two issues in identifying differentially expressed genes:
(a) from the biological viewpoint, the interest is simply to decide which genes are differen-
tially expressed, while (b) from a statistical perspective, we might wish to quantify in some
probabilistic manner the evidence concerning the possible differential expression of the genes.

Issue (a) can be addressed satisfactorily by ranking the genes using a suitable univariate
test statistic or the associated p-values. Then the biologist can examine the genes in the
top positions to decide whether they really are differentially expressed, using more accurate
low-throughput experiments such as northern blots or one of the quantitative PCR-based
techniques. The number of genes that can be investigated in this follow-up phase depends
on the background and the aims of the experiment, and on the level of effort the investigator
is willing to expend. However, some biologists may want a quantitative assessment of the
likely differential expression of each gene, so that they do not have to follow-up genes with
little prospect of being truly differentially expressed. To address this need, we consider the
statistical issue (b). It can be addressed through multiple hypothesis testing, by carrying out
a simultaneous test for each gene of the null hypothesis of no association between the expres-
sion levels and the responses or covariates. Since a typical microarray experiment measures
expression levels for several thousand genes simultaneously, we are faced with an extreme
multiple testing problem. In any such testing situation, two types of errors can occur: a false
positive, or type I error, is committed when a gene is declared to be differentially expressed
when it is not, and a false negative, or type II error, is committed when the test fails to
identify a truly differentially expressed gene. Special problems arising from the multiplic-
ity aspect include defining an appropriate type I error rate, and devising powerful multiple
testing procedures which control this error rate and incorporate the joint distribution of the
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test statistics.

In their 1993 book, Westfall & Young propose resampling-based p-value adjustment pro-
cedures which are highly relevant to microarray experiments. In particular, these authors
define adjusted p-values for multiple testing procedures which control the family-wise error
rate and take into account the dependence structure between test statistics. However, due
to the very large number of hypotheses in current applications, computational issues remain
to be addressed. The present paper introduces a new algorithm for computing the Westfall
& Young (1993) step-down minP adjusted p-values. A second line of multiple testing is
developed by Benjamini & Hochberg (1995). They propose procedures to control the false
discovery rate. This was further developed by Storey (2002) with a new concept called pos-

itive false discovery rate, which has a Bayesian motivation.

Section 2 reviews the basic notions of multiple testing and discusses different criteria for
controlling type I error rates. Section 3 presents procedures based on adjusted p-values to
control family-wise error rates. Section 4 presents resampling algorithms for estimating the
adjusted p-values of Section 3 and introduces a fast algorithm for computing the Westfall
& Young (1993) step-down minP adjusted p-values. Section 5 presents procedures based on
FDR adjusted p-values and the pFDR-based q-values. The multiple testing procedures of
Sections 3, 4, 5 are applied to gene expression data from two recently published microarray
studies described in Section 6. The results from the studies are discussed in Section 7, and
finally, Section 8 summarizes our findings and outlines open questions.

2 Multiple testing and adjusted p-values

2.1 Multiple testing in microarray experiments

Suppose we have microarray experiments which produce expression data on m genes (or
variables) for n samples (corresponding to n individual microarray experiments). Let the
gene expression levels be arrayed as an m× n matrix X = (xij), with rows corresponding to
genes and columns to individual microarray experiments 1. In most cases, the additional data
for sample j consists of one or more responses or covariates yj. The gene expression levels
xij might be either absolute (e.g. Affymetrix oligonucleotide arrays (Lockhart et al. 1996))
or relative with respect to the expression levels of a suitably defined common reference
sample (e.g. two-color cDNA microarrays (DeRisi et al. 1997)). The yj could be either
polytomous or continuous. In the simplest case, the n samples would consist of n1 control
samples and n2 treatment samples, in which case yj would be treatment status (treatment
or control). In the Apo AI experiment (Callow et al. 2000), m = 6,356, n1 = n2 = 8 so that
n = n1 + n2 = 16. This dataset will be described in Section 6.1. Let Xi denote the random

1Note that this gene expression data matrix is the transpose of the standard n×m design matrix. The

m × n representation was adopted in the microarray literature for display purposes, since for very large m

and small n it is easier to display an m× n matrix than an n×m matrix.
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variable corresponding to the expression level for gene i and let Y denote the response or
covariate. If a single test is considered for each gene (variable), the null hypothesis for testing
that the gene is not differentially expressed between the treatment and the control can be
stated as:

Hi : There is no association between Xi and Y .

If each Hi is tested separately, then nothing more than univariate hypothesis testing is
needed. This kind of testing has been studied extensively in the statistical literature. In
general, the appropriate test statistic for each gene will depend on the experimental design,
the type of response or covariate and the alternative hypothesis in mind. For example, for
binary covariates one might consider t- or Mann-Whitney statistics, for polytomous covari-
ates one might use an F -statistic, and for survival data one might rely on the score statistic
for the Cox proportional hazard model. We will not discuss the choice of statistic any further
here, except to say that for each gene i the null hypothesis Hi will be tested using a statistic
Ti, and ti will denote a realization of the random variable Ti. To simplify matters, we further
assume that the null Hi is rejected for large values of |Ti|, i.e. this will be a two-sided test.
Our two examples both involve two-sample t-statistics, but the extensions to other statistics
should be clear.

When testing Hi, i = 1, . . . ,m simultaneously, we want to reject hypotheses while con-
trolling a suitably defined type I error rate (Dudoit, Yang, Callow & Speed 2002, Efron
et al. 2000, Efron et al. 2001, Golub et al. 1999, Kerr et al. 2000, Manduchi et al. 2000, Tusher
et al. 2001, Westfall et al. 2001). Multiple testing is the subject of the present paper. Al-
though this is by no means a new subject in the statistical literature, microarray experiments
are a new and challenging area of application for multiple testing procedures because of the
sheer number of comparisons involved.

Before moving on to the multiple testing problem, we summarize the results of a simple
simulation based on the microarray experiments in Callow et al. (2000). Suppose that
the elements of the array xij are independently and identically distributed N(0, 1), i =
1, . . . , 6000, j = 1, . . . , 16. Regard the first 8 columns of this array as corresponding to
treatment units and the second 8 columns as corresponding to control units, just as in
Callow et al. (2000). Table 1 lists the 10 genes with the largest two-sample t-statistics in
absolute values. This table has three rows, the first giving the gene indices, ranging from 1
to 6000, the second giving the two-sample t-statistics, while the last row has the raw (i.e.
unadjusted) p-values computed by the resampling algorithm described in Section 4. This
table suggests that we cannot use the conventional 0.05 or 0.01 thresholds for p-values to find
significantly differentially expressed genes, since by our simulation, the data have no genes
differentially expressed between the treatment and control. Indeed, if the 0.05 threshold is
used, about 6000×0.05 = 300 genes would be found differentially expressed, which would be
quite misleading. We conclude that when testing thousands of genes, the use of conventional
thresholds for p-values is inappropriate. The framework of multiple testing seeks to give
guidance concerning what might be appropriate in such situations. In the remainder of this
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section, we review the basic notions and approaches to multiple testing.

index 2271 5709 5622 4521 3156 5898 2164 5930 2427 5694

t-stat 4.93 4.82 -4.62 4.34 -4.31 -4.29 -3.98 3.91 -3.90 -3.88

p-value 0.0002 0.0003 0.0004 0.0007 0.0007 0.0007 0.0014 0.0016 0.0016 0.0017

Table 1: The simulated results for 6000 independent not differentially expressed genes.

2.2 Type I error rates

Set-up. Consider the problem of simultaneously testing m null hypotheses Hi, i = 1, . . . ,m.
Let Hi = 0 when the null hypothesis Hi is true, and Hi = 1 otherwise. In the frequentist set-
ting, the situation can be summarized by Table 2, based on Table 1 of Benjamini & Hochberg
(1995). The m specific hypotheses are assumed to be known in advance, and the sets
M0 = {i : Hi = 0} andM1 = {i : Hi = 1} of true and false null hypotheses are unknown pa-
rameters, m0 = |M0|, m1 = |M1|. Note the complete set asM = {1, 2, · · · ,m} =M0∪M1.
The number R of rejected null hypotheses and W = m−R are observable random variables,
while S, T , U , and V in the table are unobservable random variables. In the microarray
context, there is a null hypothesis Hi for each gene i and rejection of Hi corresponds to
declaring that gene i is differentially expressed, in some suitable sense. In general, we would
like to minimize the number V of false positives, or type I errors, and the number T of false

negatives, or type II errors. The standard approach is to prespecify an acceptable type I error
rate α and seek tests which minimize the type II error rate, i.e., maximize power, within the
class of tests with type I error rate α.

# not rejected # rejected

# true null hypotheses U V m0

# non-true null hypotheses T S m1

W R m

Table 2: Summary table for the multiple testing problem, based on Table 1 of Benjamini &
Hochberg (1995).

Type I error rates. When testing a single hypothesis, H, say, the probability of a type
I error, i.e., of rejecting the null hypothesis when it is true, is usually controlled at some
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designated level α. This can be achieved by choosing a critical value cα such that Pr(|T | >
cα | H = 0) ≤ α and rejecting H when |T | > cα. A variety of generalizations of type I error
rates to the multiple testing situation are possible.

• Per-comparison error rate (PCER). The PCER is defined as the expected value of
(number of type I errors/number of hypotheses), i.e.,

PCER = E(V )/m.

• Per-family error rate (PFER). Not really a rate, the PFER is defined as the expected
number of type I errors, i.e.,

PFER = E(V ).

• Family-wise error rate (FWER). The FWER is defined as the probability of at least
one type I error, i.e.,

FWER = Pr(V > 0).

• False discovery rate (FDR). The most natural way to define FDR would be E(V/R),
the expected proportion of type I errors among the rejected hypotheses. However,
different methods of handling the case R = 0 lead to different definitions. Putting
V/R = 0 when R = 0 gives the FDR definition of Benjamini & Hochberg (1995), i.e.,

FDR = E(
V

R
1{R>0}) = E(

V

R
| R > 0) Pr(R > 0).

When m = m0, it is easy to see that FDR = FWER.

• Positive false discovery rate (pFDR). If we are only interested in estimating an error
rate when positive findings have occurred, then the pFDR of Storey (2002) is appro-
priate. It is defined as the conditional expectation of the proportion of type I errors
among the rejected hypotheses, given that at least one hypothesis is rejected,

pFDR = E(
V

R
| R > 0).

Storey (2002) shows that this definition is intuitively pleasing and has a nice Bayesian
interpretation (cf. the remarks on page 10) below.

Comparison of type I error rates. Given the same multiple testing procedure, i.e. the
same rejection region in the m-dimensional space of (T1, T2, . . . , Tm), it is easy to prove that

PCER ≤ FDR ≤ FWER ≤ PFER,

FDR ≤ pFDR.

First, note that 0 ≤ V ≤ R ≤ m and that R = 0 implies V = 0, whence

V

m
≤

V

R
1{R>0} ≤ 1{V >0} ≤ V.
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Taking expectations of the above proves these assertions. It is more difficult to describe the
relations between pFDR and FWER. In most microarray applications, we expect pFDR ≤
FWER, apart from the extreme case when 1 = pFDR ≥ FDR = FWER when m0 = m.
This is unlikely to be the case with microarray experiments as it is generally expected that at
least one gene will be differentially expressed. Also Pr(R > 0)→ 1 as m→∞, in which case
pFDR is identical to FDR. Therefore we expect the following inequality to hold generally,

PCER ≤ FDR ≤ pFDR ≤ FWER ≤ PFER. (1)

Exact control, weak control and strong control. It is important to note that the expec-
tations and probabilities above are conditional on the true hypothesis HM0

=
⋂

i∈M0
{Hi =

0}. Controlling an error rate in this case will be called exact control. For the FWER, exact
control means control of Pr(V > 0 | HM0

). Since the setM0 is unknown, in general, we turn
to computing the error rate when all null hypotheses are true, i.e., under the complete null

hypothesis HM = ∩m
i=1{Hi = 0}, equivalently when m0 = m or M0 = M. Controlling an

error rate under HM is called weak control. For the FWER, weak control means control of
Pr(V > 0 | HM). Strong control means control for every possible choiceM0. For the FWER,
it means control of maxM0⊆{1,...,m} Pr(V > 0 | HM0

). In general, strong control implies exact
control and weak control, but neither of weak control and exact control implies the other.
In the microarray setting, where it is very unlikely that none of the genes is differentially
expressed, it seems that weak control without any other safeguards is unsatisfactory, and
that it is important to have exact or strong control of type I error rates. The advantage of
exact control is higher power.

2.3 Adjusted p-values and q-values

Raw p-values. Consider first the test of a single hypothesis H with nested level α rejection
regions Γα such that (a) Γα1

⊆ Γα2
for 0 ≤ α1 ≤ α2 ≤ 1, and (b) Pr(T ∈ Γα | H = 0) ≤ α,

for 0 ≤ α ≤ 1. If we are interested in using the statistic |T | to carry out a two-sided test, the
nested rejection regions Γα = [−∞,−cα] ∪ [cα,∞] are such that Pr(T ∈ Γα | H = 0) = α.
The p-value for the observed value T = t is

p-value(t) = min
{Γα: t∈Γα}

Pr(T ∈ Γα | H = 0). (2)

In words, the p-value is the minimum type I error rate over all possible rejection regions
Γα containing the observed value T = t. For a two sided test, p-value(t) = Pr(|T | ≥ |t| |
H = 0) = p, say. The smaller the p-value p, the stronger the evidence against the null
hypothesis H. Rejecting H when p ≤ α provides control of the type I error rate at level α.
The p-value can also be thought of as the level of the test at which the hypothesis H would
just be rejected. Extending this concept to the multiple testing situation leads to the very
useful definition of adjusted p-value. In what follows we will call the traditional (unadjusted)
p-value associated with a univariate test a raw p-value.
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Adjusted p-values. Let ti and pi = Pr(|Ti| ≥ |ti| | Hi = 0) denote respectively the
test statistic and p-value for hypothesis Hi (gene i), i = 1, . . . ,m. Just as in the single
hypothesis case, a multiple testing procedure may be defined in terms of critical values for
the test statistics or the p-values of individual hypotheses: e.g. reject Hi if |ti| > ci or if
pi ≤ αi, where the critical values ci or αi are chosen to control a given type I error rate
(FWER, PCER, PFER, or FDR) at a prespecified level α. Alternately, the multiple testing
procedure may be defined in terms of adjusted p-values. Given any test procedure, the
adjusted p-value corresponding to the test of a single hypothesis Hi can be defined as the
level of the entire test procedure at which Hi would just be rejected, given the values of all
test statistics involved (Shaffer 1995, Westfall & Young 1993, Yekutieli & Benjamini 1999).
If interest is in controlling the FWER, the FWER adjusted p-value for hypothesis Hi is:

p̃i = inf {α : Hi is rejected at FWER = α} .

Hypothesis Hi is then rejected, i.e., gene i is declared differentially expressed, at FWER
α if p̃i ≤ α. Note that this definition is dependent on the rejection procedure used. If
that procedure is very conservative, such as the classical Bonferroni procedure, then the
corresponding adjusted p-values will also be very conservative. For the stepwise procedures
to be discussed in Section 3 and Section 5.1, the adjusted p-value for gene i depends on
not only the magnitude of the statistic Ti, but also on the rank of gene i among all the
genes. Adjusted p-values for other type I error rates are defined similarly (Yekutieli &
Benjamini 1999), e.g.

p̃i = inf {α : Hi is rejected at FDR = α} .

As in the single hypothesis case, an advantage of reporting adjusted p-values, as opposed
to only rejection or not of the hypotheses, is that the level of the test does not need to be
determined in advance. Some multiple testing procedures are most conveniently described in
terms of their adjusted p-values, and for many these can in turn be determined easily using
resampling methods.

q-values. The positive false discovery rate pFDR cannot be strongly controlled in the
traditional sense as pFDR = E(V/R | R > 0) = 1 when m0 = m. However, an analogue of
adjusted p-value termed the q-value can be defined in this context, although we emphasize
that Storey (2001) does not view it as a form of adjusted p-value. The notion of q-value is
approached by recalling the definition of p-value in equation (2), considering the minimum
of the type I error rates for all possible rejection regions Γα containing the observed T = t.
Let pFDR(Γα) be the pFDR when each hypothesis is rejected by the same rejection region
Γα. The q-value is defined analogously, namely

q-value(t) = inf
{Γα: t∈Γα}

pFDR(Γα). (3)

Note that the above definition requires the Ti to be identically distributed across genes.
Alternatively, if observed p-values are used to reject the test, then the nested rejection
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region Γγ = [0, γ], abbreviated by γ leads to

q-value(p) = inf
{γ≥p}

pFDR(γ). (4)

Remarks.
Firstly, no procedures can give strong or weak control for pFDR, as pFDR=1 when m0 = m.
However, m0 = m is extremely unlikely with microarray data, and pFDR can be conserva-
tively estimated under the unknown true hypothesis HM0

. One such method doing so will
be given in Section 5.2. The use of q-value(p) provides a way to adjust p-values under HM0

which leads to control of pFDR.

Secondly, Storey (2001) argues that a q-value is not a “pFDR adjusted p-value”. This is
because adjusted p-values are defined in terms of a particular procedure, i.e. a sequential
p-value method, such as those to be discussed in Section 3 and Section 5.1, while pFDR
can not be controlled by such procedure. Our view is that q-value(p) gives us the minimum
pFDR that we can achieve when rejecting Hj whenever pj ≤ p, j = 1, . . . ,m. Therefore q-
values are analogous to the single step adjustments for controlling FWER to be discussed in
Section 3.1. Indeed, the notion of q-value is similar to the concept of “p-value correction” in
Yekutieli & Benjamini (1999). The only difference between q-values and single step adjusted
p-values is that q-values consider only the true but unknown HM0

(exact control), while
single step adjustments consider every possible choice of HM0

,M0 ⊆ {1, 2, . . . ,m} (strong
control). In what follows, we will use the terms q-value and adjusted p-value interchangeably
for pFDR.

The q-value definition has an appealing Bayesian interpretation. Suppose that the Ti | Hi

are independently distributed as (1 − Hi) · F0 + Hi · F1 for some null distribution F0 and
alternative distribution F1, and that the Hi are independently and identically distributed
Bernoulli(π1), where π1 = 1−π0, π0 being the a priori probability that a hypothesis is true.
Theorem 1 of Storey (2001) states that for all i

pFDR(Γα) = Pr(Hi = 0 | Ti ∈ Γα). (5)

Since the left-hand side does not depend on i, we drop it from the right hand side. Using
the definition of q-value,

q-value(t) = inf
{Γα: t∈Γα}

Pr(H = 0 | T ∈ Γα).

Comparing this formula to the one for p-value(t) given in equation (2), it can be seen that
the difference between a p-value and a q-value is that the role of H = 0 and T ∈ Γα have been
switched. The q-values are thus Bayesian version of p-values, analogous to the “Bayesian
posterior p-values” of Morton (1955). Details of a Bayesian interpretation can be found in
Storey (2001).
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3 Procedures controlling the family-wise error rate

There are three distinct classes of multiple testing procedures commonly used in the liter-
ature: single-step, step-down and step-up procedures. In single-step procedures, equivalent
multiplicity adjustments are performed for all hypotheses, regardless of the ordering of the
test statistics or raw p-values. Improvements in power, while preserving type I error rate
control, may be achieved by stepwise procedures, in which rejection of a particular hypothesis
is based not only on the total number of hypotheses, but also on the outcome of the tests of
other hypotheses. Step-down procedures order the raw p-values (or test statistics) starting
with the most significant, while step-up procedures start with the least significant.

3.1 Single-step procedures

For strong control of the FWER at level α, the Bonferroni procedure, perhaps the best
known in multiple testing, rejects any hypothesis Hi with p-value less than or equal to α/m.
The corresponding Bonferroni single-step adjusted p-values are thus given by

p̃i = min
(
mpi, 1

)
. (6)

Control of the FWER in the strong sense follows from Boole’s inequality, where the proba-
bilities in what follows are conditional on HM0

=
⋂

i∈M0
{Hi = 0}.

FWER = Pr(V > 0) ≤ Pr
(m0⋃

i=1

{P̃i ≤ α}
)
≤

m0∑

i=1

Pr
(
P̃i ≤ α

)
≤

m0∑

i=1

α/m = m0α/m ≤ α. (7)

Bonferroni-adjusted p-values are not, strictly, adjusted p-values in the sense of the defini-
tion given earlier. Rather, they are conservative lower bounds to adjusted p-values which
are difficult if not impossible to calculate without further assumptions. Closely related to
the Bonferroni procedure is the Šidák procedure which is exact for protecting the FWER
when the raw p-values are independently and uniformly distributed over [0, 1]. By a simple
computation, the Šidák single-step adjusted p-values are given by

p̃i = 1− (1− pi)
m. (8)

We sketch the easy proof that this procedure provides strong control. Note that

Pr(V = 0) = Pr(

m0⋂

i=1

{P̃i ≥ α}) =

m0∏

i=1

Pr(P̃i ≥ α) =

m0∏

i=1

Pr(Pi ≥ 1−(1−α)1/m) = {(1−α)1/m}m0.

Therefore,

FWER = Pr(V > 0) = 1− Pr(V = 0) = 1− (1− α)m0/m ≤ α. (9)

In many situations, the test statistics and hence the p-values are correlated. This is the case
in microarray experiments, where groups of genes tend to have highly correlated expression
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levels due to co-regulation. Westfall & Young (1993) propose adjusted p-values for less
conservative multiple testing procedures which take into account the dependence structure
between test statistics. Their single-step minP adjusted p-values are defined by

p̃i = Pr
(

min
1≤l≤m

Pl ≤ pi | HM

)
, (10)

where HM denotes the complete null hypothesis and Pl the random variable for the raw
p-value of the lth hypothesis. Alternately, we may consider procedures based on the single-

step maxT adjusted p-values which are defined in terms of the test statistics Ti themselves,
namely

p̃i = Pr
(

max
1≤l≤m

|Tl| ≥ |ti| | HM

)
. (11)

The following points should be noted regarding these four procedures.

1. If the raw p-values P1, . . . , Pm are independent, the minP adjusted p-values are the same
as the Šidák adjusted p-values.

2. The Šidák procedure does not guarantee control of the FWER for arbitrary distributions
of the test statistics, but it does control the FWER for test statistics that satisfy an inequal-
ity known as Šidák’s inequality: Pr(|T1| ≤ c1, . . . , |Tm| ≤ cm) ≥

∏m
i=1 Pr(|Ti| ≤ ci). This

inequality was initially derived by Dunn (1958) for (T1, . . . , Tm) having a multivariate normal
distribution with mean zero and certain types of covariance matrix. Šidák (1967) extended
the result to arbitrary covariance matrices, and Jogdeo (1977) showed that the inequality
holds for a larger class of distributions, including the multivariate t- and F -distributions.
When the Šidák inequality holds, the minP adjusted p-values are less than the Šidák ad-
justed p-values.

3. Computing the quantities in equation (10) under the assumption that Pl ∼ U [0, 1] and us-
ing the upper bound provided by Boole’s inequality yields the Bonferroni p-values. In other
words, procedures based on minP adjusted p-values are less conservative than the Bonferroni
or Šidák (under the Šidák inequality) procedures. Again, in the case of independent test
statistics, the Šidák and minP adjustments are equivalent.

4. Procedures based on the maxT and minP adjusted p-values control the FWER weakly
under all conditions. Strong control of the FWER also holds under the assumption of subset
pivotality (Westfall & Young 1993, p. 42). The distribution of raw p-values (P1, . . . , Pm) is
said to have the subset pivotality property if for all subsets K of {1, . . . ,m} the joint distribu-
tions of the sub-vector {Pi : i ∈ K} are identical under the restrictions HK = ∩i∈K{Hi = 0}
and HM = ∩m

i=1{Hi = 0}. This property is required to ensure that procedure based on
adjusted p-values computed under the complete null provide strong control of the FWER.
A practical consequence of it is that resampling for computing adjusted p-values may be
done under the complete null HM rather than the unknown partial null hypotheses HM0

.
For the problem of identifying differentially expressed considered in this article, the subset
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pivotality property is usually satisfied. Here is the proof. Let Ti be the statistic for gene i,
e.g. the two-sample t-statistic or one of the other statistics defined in Section 8. For any
subset K = {i1, i2, · · · , ik}, let its complement set be {j1, j2, · · · , jm−k}. Since Ti is com-
puted only from the data on gene i (the i-th row of the data matrix X), and not from any
data from other genes, the joint distribution of (Ti1 , Ti2 , · · · , Tik) is not going to depend on
(Hj1, Hj2 , · · · , Hjm−k

) given the same specification of (Hi1 , Hi2, · · · , Hik). This proves subset
pivotality.

5. The maxT p-values are easier to compute than the minP p-values, and are equal to the
minP p-values when the test statistics Ti are identically distributed. However, the two pro-
cedures generally produce different adjusted p-values, and considerations of balance, power,
and computational feasibility should dictate the choice between the two approaches. When
the test statistics Ti are not identically distributed (e.g. t-statistics with different degrees of
freedom), not all tests contribute equally to the maxT adjusted p-values and this can lead
to unbalanced adjustments (Beran 1988, Westfall & Young 1993, p. 50). When adjusted
p-values are estimated by permutation (Section 4) and a large number of hypotheses are
tested, procedures based on the minP p-values tend to be more sensitive to the number of
permutations and more conservative than those based on the maxT p-values. Also, the minP
p-values require more computation than the maxT p-values, because the raw p-values must
be computed before considering the distribution of their successive minima.

3.2 Step-down procedures

While single-step procedures are simple to implement, they tend to be conservative for
control of the FWER. Improvement in power, while preserving strong control of the FWER,
may be achieved by step-down procedures. Below are the step-down analogues, in terms
of their adjusted p-values, of the four procedures described in the previous section. Let
pr1
≤ pr2

≤ ... ≤ prm
denote the ordered raw p-values. For control of the FWER at level α,

the Holm (1979) procedure proceeds as follows. Starting from i = 1, then i = 2, until i = m,
let i∗ be the first integer i such that pri

> α
m−i+1

. If no such i∗ exists, reject all hypotheses;
otherwise, reject hypotheses Hri

for i = 1, . . . , i∗− 1. The Holm step-down adjusted p-values

are thus given by

p̃ri
= max

k=1,...,i

{
min

(
(m− k + 1) prk

, 1
)}

. (12)

Holm’s procedure is less conservative than the standard Bonferroni procedure, which would
multiply the p-values by m at each step. Note that taking successive maxima of the quantities
min

(
(m− k + 1) prk

, 1
)

enforces monotonicity of the adjusted p-values. That is, p̃r1
≤ p̃r2

≤
... ≤ p̃rm

, and one can only reject a particular hypothesis provided all hypotheses with smaller
raw p-values were rejected beforehand. Similarly, the Šidák step-down adjusted p-values are
defined as

p̃ri
= max

k=1,...,i

{
1− (1− prk

)(m−k+1)
}

. (13)

13



The Westfall & Young (1993) step-down minP adjusted p-values are defined by

p̃ri
= max

k=1,...,i

{
Pr

(
min

l=k,...,m
Prl
≤ prk

| HM

)}
, (14)

and the step-down maxT adjusted p-values are defined by

p̃si
= max

k=1,...,i

{
Pr

(
max

l=k,...,m
|Tsl
| ≥ |tsk

| | HM

)}
, (15)

where |ts1
| ≥ |ts2

| ≥ ... ≥ |tsm
| denote the ordered test statistics.

Note that computing the quantities in (14) under the assumption that the Pi are uniformly
distributed on the interval [0,1], and using the upper bound provided by Boole’s inequality,
we obtain Holm’s p-values. Procedures based on the step-down minP adjusted p-values are
thus less conservative than Holm’s procedure. For a proof of strong control of the FWER for
the maxT and minP procedures assuming subset pivotality we refer the reader to Westfall
& Young (1993, Section 2.8).

4 Resampling algorithms to control FWER

In many situations, the joint (and marginal) distribution of the test statistics is unknown.
Bootstrap or permutation resampling can be used to estimate raw and adjusted p-values
while avoiding parametric assumptions about the joint distribution of the test statistics. In
the microarray setting, the joint distribution under the complete null hypothesis of the test
statistics T1, . . . , Tm can be estimated by permuting the columns of the gene expression data
matrix X. Permuting entire columns of this matrix creates a situation in which the response
or covariate Y is independent of the gene expression levels, while preserving the correlation
structure and distributional characteristics of the gene expression levels. Depending on the
sample size n it may be infeasible to consider all possible permutations, in which case a ran-
dom subset of B permutations (including the observed) is considered. The manner in which
the responses/covariates are permuted depends on the experimental design. For example,
with a two-factor design, one can permute the levels of the factor of interest within the
levels of the other factor. Next, we present permutation algorithms for estimating adjusted
p-values.

4.1 Raw p-values

Box 1 describes how to compute raw p-values from permutations. Permutation adjusted
p-values for the Bonferroni, Šidák and Holm procedures can then be obtained by replacing
pi by p∗i in equations (6), (8), (12), and (13).
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Box 1. Permutation algorithm for raw p-values

For the bth permutation, b = 1, . . . , B:

1. Permute the n columns of the data matrix X.

2. Compute test statistics t1,b, . . . , tm,b for each hypothesis.

After the B permutations are done, for two-sided alternative hypotheses, the permutation
p-value for hypothesis Hi is

p∗i =
#{b : |ti,b| ≥ |ti|}

B
for i = 1, . . . ,m.

4.2 Step-down maxT adjusted p-values

For the step-down maxT adjusted p-values of Westfall & Young, the null distribution of
successive maxima maxl=i,...,m |Tsl

| of the test statistics needs to be estimated. (The single-
step case is simpler and omitted here as we only need the distribution of the maximum
maxl=1,...,m |Tsl

|.) The details of the algorithm are presented in Box 2.

4.3 The traditional double permutation algorithm for step-down
minP adjusted p-values

The single-step and step-down minP adjusted p-values of Westfall & Young are in general
harder to compute as they require the joint null distribution of P1, . . . , Pm. The traditional
double permutation algorithm for computing these p-values is described in Box 3.

When the raw p-values themselves are unknown, additional resampling at step 2 for esti-
mating these p-values can be computationally infeasible. This algorithm is called a double

permutation algorithm because of the two rounds of resampling procedures. For a typical
microarray experiment, such as the one described in Section 6.1, all possible B = 12,870
permutations are used to estimate raw and adjusted p-values for m = 6,356 genes. A double
permutation algorithm would require O(mB2 +m log m) ≈ O(1012) computations (cf. Table
3 p. 20). As the time taken for generating one set of raw p-values for all genes is about 2
minutes, our estimate of the computation time for such an algorithm is approximately 400
hours (2×12,000/60) on a Sun 200Mhz Ultrasparc workstation,

One way around the computational problem is to turn to procedures based on maxT adjusted
p-values, which may be estimated from a single permutation using the algorithm in Box 2.
However, as mentioned in Section 2.3, if the test statistics are not identically distributed
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Box 2. Permutation algorithm for step-down maxT adjusted p-values
- based on Westfall & Young (1993) Algorithm 4.1 p. 116-117
For the original data, order the observed test statistics such that |ts1

| ≥ |ts2
| ≥ ... ≥ |tsm

|.
For the bth permutation, b = 1, . . . , B:

1. Permute the n columns of the data matrix X.

2. Compute test statistics t1,b, . . . , tm,b for each hypothesis.

3. Next, compute ui,b = maxl=i,...,m |tsl,b| (see equation (15) ), the successive maxima
of test statistics by

um,b = |tsm,b|

ui,b = max
(
ui+1,b, |tsi,b|

)
for i = m− 1, . . . , 1.

The above steps are repeated B times and the adjusted p-values are estimated by

p̃∗si
=

#{b : ui,b ≥ |tsi
|}

B
for i = 1, . . . ,m

with the monotonicity constraints enforced by setting

p̃∗s1
← p̃∗s1

, p̃∗si
← max

(
p̃∗si−1

, p̃∗si

)
for i = 2, . . . ,m.

across hypotheses, the maxT adjusted p-values may be different from the minP adjusted
p-values, and may give different weights to different hypotheses. For example, if the test
statistic Ti for one particular hypothesis Hi has a heavy-tailed distribution, it will tend to
be larger than other test statistics and hence Hi will tend to have smaller adjusted p-value
than other hypotheses. In such cases it will be better to compute minP rather than maxT
adjusted p-values. We now present a new resampling algorithm for estimating minP adjusted
p-values without the double resampling step of Box 3. Note that this algorithm produces
the same p-values as the double permutation algorithm in Box 3.

4.4 A new algorithm for step-down minP adjusted p-values

This algorithm allows the minP adjusted p-values to be obtained within a single permutation
analysis. The main idea is to proceed one hypothesis (gene) at a time, instead of one
permutation at a time, and to compute the B raw p-values for each hypothesis by sorting
the B test statistics using the quick sort algorithm. To see this, first compute the permutation
raw p-values p∗i and assume without loss of generality that p∗

1 ≤ p∗2 ≤ · · · ≤ p∗m. Consider
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Box 3. The traditional double permutation algorithm for step-down minP
adjusted p-values - based on Westfall & Young (1993) Algorithm 2.8 p. 66-67.

For the original data, use the algorithm in Box 1 to compute the raw p-values p∗
1, . . . , p

∗
m

and then order the raw p-values such that p∗
r1
≤ p∗r2

≤ · · · ≤ p∗rm
.

For the bth permutation, b = 1, . . . , B:

1. Permute the n columns of the data matrix X.

2. Compute raw p-values p1,b, . . . , pm,b for each hypothesis from the permuted data.

3. Next, compute qi,b = minl=i...,m prl,b (see equation (14) ), the successive minima of
the raw p-values.

qm,b = prm,b

qi,b = min
(
qi+1,b, pri,b

)
for i = m− 1, . . . , 1.

The above steps are repeated B times and the adjusted p-values are estimated by

p̃∗ri
=

#{b : qi,b ≤ p∗ri
}

B
for i = 1, . . . ,m.

with the monotonicity constraints enforced by setting

p̃∗r1
← p̃∗r1

, p̃∗ri
← max

(
p̃∗ri−1

, p̃∗ri

)
for i = 2, . . . ,m.

the following three key m×B matrices: a matrix of test statistics

T =




t1,1 t1,2 · · · t1,b · · · t1,B
...

...
...

...
ti,1 ti,2 · · · ti,b · · · ti,B
...

...
...

...
tm,1 tm,2 · · · tm,b · · · tm,B




,

a matrix of raw p-values

P =
[

pi,b

]
,

and a matrix of minima of raw p-values

Q =
[

qi,b

]
,

where qi,b = minl=i,...,m pl,b and the bth column of these matrices corresponds to a data ma-
trix Xb, say, with permuted columns. In this matrix representation, the double permutation
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algorithm in Box 3 would compute the columns of matrices T , P , and Q one at a time. The
permutation p-values in column b of P would be obtained by considering B permutations of
the columns of Xb and computing the matrix T all over again (with different order of the
columns). Our new algorithm computes the matrix T only once and deals with the rows of
T , P , and Q sequentially, starting with the last.

Box 4. A new permutation algorithm for step-down minP adjusted p-values

0. Compute raw p-values for each hypothesis. Assume p∗
1 ≤ p∗2 ≤ · · · ≤ p∗m without

loss of generality, otherwise sort the rows of the data matrix X according to the
ordered p∗i .
Initialize qm+1,b = 1 for b = 1, . . . , B.
Initialize i = m.

1. For hypothesis Hi (row i), compute the B permutation test statistics ti,1, . . . , ti,B
and use the quick sort algorithm to get the B raw p-values pi,1, . . . , pi,B as in Section
4.4.1.

2. Update the successive minima qi,b

qi,b ← min(qi+1,b, pi,b), b = 1, . . . , B.

3. Compute the adjusted p-values for hypothesis Hi

p̃∗i =
#{b : qi,b ≤ p∗i }

B
.

4. Delete pi,1, . . . , pi,B [row i of P ].
Delete qi+1,1, . . . , qi+1,B [row i + 1 of Q].

5. Move up one row, i.e., i← i− 1.
If i = 0, go to step 6, otherwise, go to step 1.

6. Enforce monotonicity of p̃∗
i

p̃∗1 ← p̃∗1, p̃∗i ← max
(
p̃∗i−1, p̃

∗
i

)
for i = 2, . . . ,m.

4.4.1 Use of order statistics to compute the raw p-values

To avoid the double permutation for the algorithm in Box 3, one could compute each row
of T , P , and Q as follows. From the permutation distribution of Ti, ti,1, ti,2, . . . , ti,B , obtain
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the permutation distribution of Pi, pi,1, pi,2, . . . , pi,B, simultaneously from

pi,b =
#{b′ : |ti,b′ | ≥ |ti,b|}

B
. (16)

Although this method avoids the double permutation of the algorithm in Box 3, the compu-
tational complexity is the same, as the computing of each raw p-value needs B computations
from equation (16). However, the idea of computing pi,1, pi,2, . . . , pi,B simultaneously can
be refined as follows. Order the ith row of matrix T and let rb, b = 1, . . . , B, be such that
|ti,r1
| ≥ |ti,r2

| · · · ≥ |ti,rB
|. Note that the rb will in general vary from row to row, not to

be confused with our general notation for the rank indices of the raw p-values. In our new
algorithm, the computational time for estimating the pi,b for each row is reduced by using
the quick sort algorithm, which requires O(B log B) computations compared to O(B2) for a
crude bubble sorting algorithm.

No ties. If there are no ties, the B raw p-values may be obtained from

pi,ri
=

i

B
for i = 1, . . . ,m.

Ties. With small modifications, ties may be handled as follows. Let the statistics t1, t2, · · · , tm
be ordered as

|ti,r1

1
| = · · · = |t

i,r
k1

1

|

> |ti,r1

2
| = · · · = |t

i,r
k2

2

|
...

...
> |ti,r1

J
| = · · · = |t

i,r
kJ
J

|.

and
∑J

j=1 kj = B. Note that kj , J , and rk
j will in general vary from row to row. Then the B

raw p-values may be obtained from

pi,r1

j
= · · · = p

i,r
kj
j

=

∑j
l=1 kl

B
, j = 1, . . . , J.

4.4.2 Storage

Storing the entire T , P , and Q matrices requires O(Bm) memory, which in the Apo AI
experiment of Section 6.1 corresponds to O(12,780 × 6,356), that is, about 284 Megabytes
(12,780 × 6,356 × 4, as each number needs 4 bytes to store). However, for the proposed
algorithm in Box 4, only individual rows of the T , P , and Q matrices are required at any
given time. The storage requirements of the algorithm are thus O(B) for rows of T , P , and
Q and O(m) for the raw p-values p∗

1 ≤ p∗2 ≤ · · · ≤ p∗m, the data matrix X (assuming the
number of experiments, n, is small).
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4.4.3 Further remarks

1. As with the double permutation algorithm in Box 3, the algorithm in Box 4 can be used
for any type of test statistic (t-, F -statistics, etc.), and allows for different test statistics
to be used for different hypotheses. The algorithm in Box 4 can also be modified easily for
one-sided hypotheses.

2. The algorithm in Box 4 requires the same permutation order to be kept for each row.
When all possible permutations are considered, the same enumeration can be used for com-
puting each row. When a random subset of B permutations is used, the B permutations can
be stored in a number of ways, including the following two.

(a) For each row, reset the random seed at the same fixed value, and use the same function
to generate the B random permutations.

(b) For a k class problem, where k ≥ 2, recode each permutation as an integer corresponding
to the binary representation of the permutation. For example, for n1 observations from class
1, n2 observations from class 2, . . ., nk observations from class k, n = n1 +n2 + · · ·+nk, any
given permutation can be represented as an n-vector a = (a1, . . . , an), where aj = c − 1 if
sample j is assigned to class c (c is dependent on the sample j). The vector a can be mapped
to an integer by f(a) =

∑n
j=1 kj−1aj .

3. The storage space for individual rows of T , P , and Q is O(B) and the storage space for
strategy (b) in comment (2) is also O(B).

In summary, the computational complexity of the new algorithm for minP adjusted p-values
is given in Table 3.

Running time Space
Double permutation algorithm O(mB2 + m log m) O(m)

New algorithm O(mB log B + m log m) O(m + B)

Table 3: Computational complexity of double permutation algorithm and new minP algo-
rithms. The number of hypotheses (genes) is denoted by m and the number of permutations
by B.

Note that we did not consider n, the sample size (number of arrays), as it is typically very
small compared to m and B. Obviously, the maximum number of permutations B depends
on n, for example in the two-class case B = n!

n1!n2!
.
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5 Procedures to control FDR or pFDR

Recall the notation for the different type I error rates and the two definitions of false discovery
rates given in Section 2.2. The latter arise by treating V/R differently in estimating E(V/R)
when R = 0. Benjamini & Hochberg (1995) suppose that V/R = 0 when R = 0, while
Storey (2002) uses the conditional expectation of V/R given R > 0, termed the positive false
discovery rate. Earlier ideas related to FDR can be found in Seeger (1968) and Sorić (1989).

5.1 Frequentist approach

5.1.1 FDR with independent null hypotheses

Benjamini & Hochberg (1995) (BH) derived a step-up procedure for strong control of the
FDR for independent null p-values, although the independence assumption under the alter-
native hypothesis is not necessary. FDR is there defined as E(V

R
1{R>0}). Under the complete

null hypothesis, i.e. when m0 = m, FDR is equal to FWER, and so a procedure controlling
FDR also controls FWER in the weak sense. Using notation from Section 3, let the observed
raw p-values be pr1

≤ pr2
≤ · · · ≤ prm

. Starting from i = m, and then taking i = m− 1, etc.,
until i = 1 (the step-up order), define i∗ be the first integer i such that pri

≤ i
m

α. If i∗ is
not defined, then reject no hypothesis; otherwise, reject hypotheses Hri

for i = 1, . . . , i∗. As
with the definition of FWER adjusted p-values, the adjusted p-value corresponding to the
BH procedure is

p̃ri
= min

k=i,...,m
{min(

m

k
prk

, 1)}. (17)

Benjamini & Hochberg (1995) proved that under the conditions stated in the previous para-
graph,

E(
V

R
1{R>0}) ≤

m0

m
α ≤ α. (18)

When m0 = m, this procedure provides weak control of the FWER. Indeed, exactly this
weak control was shown in Seeger (1968). Simes (1986) rediscovered this approach and also
gave the proof. The proof by Benjamini & Hochberg (1995) giving strong control of FDR
greatly expanded the popularity of this procedure.

5.1.2 FDR under general dependence

Benjamini & Yekutieli (2001) (BY) proved that the procedure based on equation (17) controls
FDR under certain more general assumptions (positive regression dependency). In addition,
they proposed a simple conservative modification of the original BH procedure which controls
FDR under arbitrary dependence. For control of the FDR at level α, going from i = m,
i = m− 1, . . ., until i = 1, define i∗ the first integer i such that pri

≤ i
m

∑m
l=1

1/l
α. If no such

i∗ exists, then reject no hypothesis; otherwise, reject hypotheses Hri
for i = 1, . . . , i∗. The

adjusted p-values for the BY procedure can be defined by

p̃ri
= min

k=i,...,m
{min(

m
∑m

l=1 1/l

k
prk

, 1)}. (19)
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For a large number m of hypotheses, the penalty of the BY procedure is about log(m) in
comparison with the BH procedure of equation (17). This can be a very large price to pay
for allowing arbitrary dependence.

5.2 Bayesian motivation

5.2.1 pFDR under independence or special dependence

Storey (2002) defined the pFDR as E(V
R
| R > 0). We need to estimate the pFDR in order

to estimate the q-value, which we regard as the pFDR analogue of adjusted p-values. From
equation (5), it is easy to see that

pFDR(p) =
π0 · Pr(P ≤ p | H = 0)

Pr(P ≤ p)
=

π0p

Pr(P ≤ p)
.

Since mπ0 of the p-values are expected to be null, π0 can be estimated from the largest
p-values, say those greater than some prespecified p0. The value of p0 can be chosen as the
median of all p-values, or 1/2, or an optimized choice for p0 can be made, see Storey &
Tibshirani (2001) where the notation λ is used. Given a suitable p0, a conservative estimate
of π0 will be

π̂0 =
W (p0)

(1− p0)m
,

where W (p) = #{i : pi > p}, and Pr(P ≤ p) can be estimated by

P̂r(P ≤ p) =
R(p)

m
,

where R(p) = #{i : pi ≤ p}.

Since pFDR is conditioned on R > 0, a conservative estimate of Pr(R > 0) when the rejection
region is [0, p] and the p-values are independent is

P̂r(R > 0) = 1− (1− p)m.

It follows that an estimate of pFDR at [0, p] is

̂pFDRp0
(p) =

π̂0(p0) · p

P̂r(P ≤ p) · P̂r(R > 0)
=

W (p0) · p

(1− p0) · (R(p) ∨ 1) · (1− (1− p)m)
. (20)

Dropping the estimate of Pr(R > 0), we can estimate the FDR at [0, p] by

F̂DRp0
(p) =

W (p0) · p

(1− p0) · (R(p) ∨ 1)
. (21)

Note that these expressions are estimated under the assumptions that either the null Pi are
independently and identically distributed, or that they satisfy a special dependence condi-
tion, see Storey (2002) for full details.
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5.2.2 pFDR under more general dependence

Storey & Tibshirani (2001) (ST) extend the foregoing to apply under more general depen-
dence assumptions involving certain ergodic conditions. We just sketch the ideas of the
extension and the algorithm here, referring readers to the paper for fuller details.

First, equation (20) can also be written in terms of a general family of nested rejection
regions {Γα} as

̂pFDRΓα0

(Γα) =
π̂0(Γα0

) · α

P̂r(T ∈ Γα) · P̂r(R > 0)
=

W (Γα0
) · α

(1− α0) · (R(Γα) ∨ 1) · P̂r(R > 0)
,

where R(Γ) = #{i : Ti ∈ Γ} and W (Γ) = #{i : Ti 6∈ Γ} = m−W (Γ).

Note that the term P̂r(R > 0) is still retained. In this equation Γα is the level α rejection
region. Now consider a general rejection region Γ, for example [−∞,−c] ∪ [c,∞]) for a two-
sided alternative, and let us estimate an analogue of the preceding formula by resampling.
Take a region Γ0 which is believed to contain mostly null hypotheses. If we denote B
resamplings of null test statistics by ti,b, i = 1, . . . ,m, b = 1, . . . , B, then estimates of the
quantities α, α0 and Pr(R > 0) in the preceding formula are as follows:

α̂ =
1

Bm

B∑

b=1

Rb(Γ) =
R(Γ)

m
,

α̂0 =
1

Bm

B∑

b=1

Rb(Γ0) =
R(Γ0)

m
,

P̂r(R > 0) =
#{b : Rb(Γ) > 0}

B
= I{R(Γ)>0},

where Rb(Γ) = #{i : ti,b ∈ Γ}, R(Γ) = 1
B

∑B
b=1 Rb(Γ), and similarly for Wb(Γ) and W (Γ).

Similar quantities for the rejection region Γ0 can be defined.

Putting these all together, a conservative estimate of pFDR(Γ), making use of Γ0 is

̂pFDRΓ0
(Γ) =

W (Γ0) · R(Γ)

(m−R(Γ0)) · (R(Γ) ∨ 1) · P̂r(R > 0)
=

W (Γ0) ·R(Γ)

W (Γ0) · (R(Γ) ∨ 1) · I{R(Γ)>0}

. (22)

By dropping the estimate of Pr(R > 0), we can have a conservative estimate of FDR(Γ) as

F̂DRΓ0
(Γ) =

W (Γ0) ·R(Γ)

(m−R(Γ0)) · (R(Γ) ∨ 1)
=

W (Γ0) ·R(Γ)

W (Γ0) · (R(Γ) ∨ 1)
. (23)
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5.2.3 Estimation of pFDR q-values

Using the definition of q-values given in equations (4) and (3), the estimates of the q-value
corresponding to the ordered p-values pr1

≤ pr2
≤ · · · ≤ prm

are

q̂p0
(pri

) = min
k=i,...,m

̂pFDRp0
(prk

). (24)

If our interest is in deriving q-values corresponding to the t-statistics, let us suppose that
|ts1
| ≥ |ts2

| ≥ · · · ≥ |tsm
|. Writing Γsk

be [−∞,−|tsk
|] ∪ [|tsk

|,∞], the q-values are then

q̂Γ0
(tsi

) = min
k=i,...,m

̂pFDRΓ0
(Γsk

). (25)

Remarks.
Storey (2002) has already pointed out that the FDR estimate based on equation (21) gives
a procedure to control FDR. To see how this occurs, note that R(prk

) = k, for k = 1, . . . ,m,

and that π̂0 = W (p0)
(1−p0)m

. Substituting these into (21) and enforcing step-up monotonicity,
FDR-based adjusted p-values can be estimated by

p̃ri
= min

k=i,...,m
{min(

m

k
prk

π̂0, 1)}. (26)

We call this the Storey procedure. Equation (20) and enforced monotonicity can also be used
to compute q-values for controlling pFDR, and we call this the Storey-q procedure. Similarly,
the ST-procedure uses equation (23) and enforced monotonicity for controlling FDR under
quite general dependence satisfying ergodic conditions, while the ST-q procedure used equa-
tion (22) and monotonicity to control pFDR. Details of these procedures are given in Box 5.

Comparing equation (26) with equation (17), it is easy to see that the method proposed by
Storey (2002) has advantages over that of Benjamini & Hochberg (1995), since π̂0 is less than
or equal to 1. This should be no surprise, since equation (17) controls the FDR in the strong
sense, while equation (26) controls the FDR in the exact sense, with an estimated π0. If we
are only considering the FDR in the exact sense, then π0 can be estimated, and by noting
that m0

m
= π0 in equation (18) the two procedures are seen to be the same. Thus we come

to see that exact control might give improvements in power over strong control. Similarly,
we can replace m0 in equations (7) and (9) to get more powerful single-step Bonferroni and
Šidák adjustments. Indeed, Benjamini & Hochberg (2000) proposed a different estimator of
π̂0, but Storey (2002) proved that his method leads to conservative control of FDR.

5.3 Resampling procedures

For the BH and BY adjustments we simply use the algorithm in Box 1 and equations (17)
and (19). For the Storey and Storey-q procedures, we first use the algorithm in Box 1 to
compute the raw p-values for each gene, and then use equations (21) for Storey procedure
and (20) for Storey-q procedure, lastly enforcing step-up monotonicity for each procedure.
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A complete algorithm is outlined in Box 5 for the ST and ST-q procedures. Note that our
algorithm is slightly different from the original one, for we do not pool the t-statistics across
all genes as did Storey & Tibshirani (2001). The reason we have not pooled across genes here
is that we have not done so elsewhere in this paper. We feel that more research is needed to
provide theoretical and practical justification of the pooling strategy of Storey & Tibshirani
(2001).

[Note, Box 5 is placed approximately here]

5.4 Empirical Bayes procedures and the SAM software

Several papers (Efron et al. 2000, Efron et al. 2001, Efron & Tibshirani 2002) connect empir-
ical Bayes methods with false discovery rates. Also, the popular software SAM (Significance
Analysis of Microarrays) (Efron et al. 2000, Tusher et al. 2001) computes false discovery
rates from a frequentist viewpoint. The empirical Bayes calculations and the SAM software
provide estimates of the FDR, but it is not clear whether these procedures provide strong
control of the FDR, i.e. whether E(V/R | HM0

) ≤ α for any subset M0. More theoretical
work would seem to be needed to address these issues, see e.g. Dudoit, Shaffer & Boldrick
(2002), and for this reason we will not discuss them further.

6 Data

6.1 Apo AI experiment

The Apo AI experiment (Callow et al. 2000) was carried out as part of a study of lipid
metabolism and atherosclerosis susceptibility in mice. The apolipoprotein AI (Apo AI) is
a gene known to play a pivotal role in HDL metabolism, and mice with the Apo AI gene
knocked out have very low HDL cholesterol levels. The goal of this Apo AI experiment was
to identify genes with altered expression in the livers of these knock-out mice compared to
inbred control mice. The treatment group consisted of eight mice with the Apo AI gene
knocked out and the control group consisted of eight wild-type C57Bl/6 mice. For each
of these 16 mice, target cDNA was obtained from mRNA by reverse transcription and la-
beled using the red fluorescent dye, Cy5. The reference sample used in all hybridizations
was prepared by pooling cDNA from the eight control mice and was labeled with the green
fluorescent dye, Cy3. Target cDNA was hybridized to microarrays containing 6,356 cDNA
probes, including 200 related to lipid metabolism. Each of the 16 hybridizations produced a
pair of 16-bit images, which were processed using the software package Spot (Buckley 2000).
The resulting fluorescence intensities were normalized as described in Dudoit, Yang, Callow
& Speed (2002). For each microarray j = 1, . . . , 16, the base 2 logarithm of the Cy5/Cy3
fluorescence intensity ratio for gene i represents the expression response xij of that gene in
either a control or a treatment mouse.

Differentially expressed genes were identified using two-sample Welch t-statistics (Welch
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1938) for each gene i:

ti =
x̄2i − x̄1i√

s2

2i

n2
+

s2

1i

n1

,

where x̄1i and x̄2i denote the average expression level of gene i in the n1 = 8 control and
n2 = 8 treatment hybridizations, respectively. Here s2

1i and s2
2i denote the variances of gene

i’s expression level in the control and treatment hybridizations, respectively. Large absolute
t-statistics suggest that the corresponding genes have different expression levels in the control
and treatment groups. In order to assess the statistical significance of the results, we use the
multiple testing procedures of Sections 3 and 5, estimating raw and adjusted p-values based
on all possible

(
16
8

)
= 12,870 permutations of the treatment and control labels.

6.2 Leukemia study

Golub et al. (1999) were interested in identifying genes that are differentially expressed in
patients with two type of leukemias, acute lymphoblastic leukemia (ALL, class 1) and acute
myeloid leukemia (AML, class 2). Gene expression levels were measured using Affymetrix
high-density oligonucleotide arrays containing p = 6,817 human genes. The learning set com-
prises n = 38 samples, 27 ALL cases and 11 AML cases (data available at http://www.genome.
wi.mit.edu/MPR). Following Golub et al. (personal communication, Pablo Tamayo), three
preprocessing steps were applied to the normalized matrix of intensity values available on the
website: (i) thresholding: floor of 100 and ceiling of 16,000; (ii) filtering: exclusion of genes
with max / min ≤ 5 or (max−min) ≤ 500, where max and min refer respectively to the
maximum and minimum intensities for a particular gene across mRNA samples; (iii) base
10 logarithmic transformation. Boxplots of the expression levels for each of the 38 samples
revealed the need to standardize the expression levels within arrays before combining data
across samples. The data were then summarized by a 3,051 × 38 matrix X = (xij), where
xij denotes the expression level for gene i in mRNA sample j.

Differentially expressed genes in ALL and AML patients were identified by computing two-
sample Welch t-statistics for each gene i as in Section 6.1. In order to assess the statistical
significance of the results, we considered the multiple testing procedures of Sections 3 and
5 and estimated raw and adjusted p-values based on B = 10,000, 100,000 and 1,000,000
random permutations of the ALL/AML labels.

7 Results

The Holm, Westfall & Young step-down maxT and minP procedures described in Sections 3
and 4, the BH, BY, Storey and ST procedures to control FDR in Section 5, and the Storey-
q and ST-q procedures to control pFDR in Section 5 were applied to the two microarray
datasets of Section 6. Figure 1 gives the results for the Apo AI knock-out data described in
Section 6.1. It consists of three panels corresponding to three type I error rate controlling
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procedures. The top panel is for FWER, the middle one is for FDR and the bottom one
is for pFDR. For each panel, the x-axis is always the rank of p-values. Note, the rank of
different adjusted p-values is always the same as the rank of the raw p-values apart from the
maxT procedure. In that case, the adjusted p-values have the same ranks as the two-sample
t-statistics. Similarly, Figure 2 gives the results of applying these procedures to the Golub
leukemia dataset described in Section 6.2. Note that for both datasets, the adjusted p-values
for FWER are mostly higher than the adjusted p-values for FDR, which in turn are a little
lower than the q-values for pFDR. This was to be expected by the inequalities in equation (1).

For the FWER procedures, the greatest difference between the maxT and minP procedures
occurred for the Apo AI dataset and the leukemia dataset with the smallest number of
permutations B = 10,000. In these two cases, the procedures only rejected hypotheses at
FWER level less than 0.18 for the leukemia data and 0.53 for the Apo AI data. This was
due to the discreteness of the permuted raw p-values used to compute the Holm, and minP
adjusted p-values. For the Apo AI dataset, with sample sizes n1 = n2 = 8, the total number
of permutations is only

(
16
8

)
= 12,870, and hence the two-sided raw p-values must be at least

2/12,870. As a result, the Holm p-values can be no smaller than 6,356× 2/12,870 ≈ 1. This
highlights the greater power of the maxT p-value procedure in comparison with the Holm
and the minP procedure, when the number of permutations is small.

To investigate the robustness of the Holm, maxT, and minP adjusted p-values to vary-
ing the number of permutations, we computed them for the leukemia dataset with B =
10,000, 100,000 and 1,000,000 permutations. Figure 3 showed that indeed the minP p-values
were very sensitive to the number of permutations. After 100,000 permutations, the adjusted
p-values become stable, while similar results for the Holm p-values are not shown. On the
other hand, the maxT adjustment was much more robust, for as seen in Figure 4 the adjusted
p-values with B = 10,000, 100,000 and 1,000,000 are almost identical.

The FDR and pFDR procedures are also robust to the number of permutations, as they be-
came stable for as few as B = 1,000 permutations. This is because these procedures use only
a single round of permutations. The BH adjusted values are very similar to the Storey and
ST adjusted values, while the BY adjustments, trying to control FDR under arbitrary depen-
dence, seem too conservative. The BY procedure gives adjusted p-values higher than those
from the maxT procedure with the Apo AI dataset, and similar to them with the leukemia
dataset. It seems that the BY procedure is not very useful in this context. The Storey-q
and ST-q adjusted values are similar to each other, which could imply that the ability of ST-
q to deal with dependence is not very great, or that there is not much dependence in the data.

Apo AI experiment. In this experiment, eight spotted DNA sequences clearly stood out
from the remaining sequences and had maxT adjusted p-values less than 0.05. The ST pro-
cedures also pick the same 8, while all other procedures fail to pick them using a 0.05 cut-off.
These eight probes correspond to only four distinct genes: Apo AI (3 copies), Apo CIII (2
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Dataset Running times
Fast minP maxT

Apo AI 9:38.89 3:4.23
Leukemia B = 10,000 5:53.42 2:0.93

B = 100,000 1:03:27.17 18:46.24
B = 1,000,000 11:10:27.17 3:09:31.17

Table 4: Running times of the fast minP and maxT algorithms for the Apo AI and leukemia
datasets. Reported times are “user times” on Sun 200Mhz Ultrasparc workstations. The
time is given in hours, minutes and seconds, e.g. 11:10:26.17 means 11 hours 10 minutes and
26.17 seconds

copies), sterol C5 desaturase (2 copies), and a novel EST (1 copy). All changes were con-
firmed by real-time quantitative RT-PCR as described in Callow et al. (2000). The presence
of Apo AI among the differentially expressed genes is to be expected as this is the gene that
was knocked out in the treatment mice. The Apo CIII gene, also associated with lipoprotein
metabolism, is located very close to the Apo AI locus and Callow et al. (2000) showed that
the down-regulation of Apo CIII was actually due to genetic polymorphism rather than ab-
sence of Apo AI. The presence of Apo AI and Apo CIII among the differentially expressed
genes thus provides a check of the statistical method, even if it is not a biologically inter-
esting finding. Sterol C5 desaturase is an enzyme which catalyzes one of the terminal steps
in cholesterol synthesis and the novel EST shares sequence similarity to a family of ATPases.

For Apo AI, we also considered adjusted p-values for non-parametric rank t-statistics. In
this case, none of the procedures rejected any hypotheses at level less than 0.05. The poor
performance of the maxT procedure using ranked data is likely due to the discreteness of
the t-statistics computed from the ranks with a small sample size.

We also did a limited analysis to see how data selection affects adjusted p-values. For the
Apo AI dataset, we selected the 10% of the 6,356 genes with the largest variances across
the 16 samples, recomputed the step-down minP and maxT adjusted p-values. The adjusted
p-values for the selected genes were always smaller or equal than the those for same genes
within the complete data set (data not shown), and sometimes much smaller. This is reason-
able, as a smaller number of hypotheses leads to smaller adjustments, but it highlights the
fact that adjusted p-values will be affected by data pre-processing steps such as gene selection.

Leukemia study. Using the maxT adjustment, we found 92 (38) genes significant at the
0.05 (0.01) level, respectively. Among the 50 genes listed in Golub et al. (1999) (p.533 and
Figure 3B), we found that 9 of those were not significant at the 0.05 level, and 27 of those
were not significant at the 0.01 level. If we select 50 genes with the smallest adjusted p-
values, 22 genes of Golub et al. (1999) (p.533 and Figure 3B) are not in our top 50 gene list.
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The results of minP were similar to those of maxT. We refer the reader to Golub et al. for
a description of the genes and their involvement in ALL and AML. Note that this dataset
is expected to have many genes differentially expressed between the two groups, and in this
respect it is quite different from the Apo AI experiment, where we do not expect many genes
to be differentially expressed. Since the Storey and ST procedures use information on the
fraction of genes expected to be null, they can lead to adjusted p-values lower than the raw
p-values, see the tail parts of the middle and bottom panels in Figure 2. In practice, we need
not worry about this as only genes with small adjusted p-values (e.g. less than 0.05 or 0.10)
are interesting, even in an exploratory analysis. A strategy to prevent this from happening
would be to take the minimum of the raw p-values and the adjusted p-values. One final
comment on this analysis: the pre-processing for this dataset that was described in Section
6.2, in particular the filtering, would undoubtedly have an impact on the size of the adjusted
p-values, perhaps reducing them considerably.

8 Discussion

8.1 Use of the new algorithm with the bootstrap and with other
statistics.

In this paper, we gave a brief review of multiple testing procedures used in the analysis of
microarray experiments. In particular we introduced a new and faster algorithm for calcu-
lating the step-down minP p-value adjustments. This algorithm not only makes it possible
to analyze microarray data within the multiple testing framework, it also solves the gen-
eral multiple testing problem described on page 114 of Westfall and Young’s book as the
double permutation problem. In brief, our algorithm reduces computational time from B2

to B log B, where B is the number of permutations. The idea of the algorithm can be ex-
tended to the bootstrap situation as well. The resampling-based test statistics simply need
to be computed from samples with replacement rather than from permutations. We have
described how to calculate adjusted p-values for two sample t-statistics, but the algorithm
applies equally to other test statistics, such as the t with pooled variance, Wilcoxon, F ,
paired t, and block F -statistics.

In order to see this, let us focus on one gene only. Then we define the

(a) t-statistic with pooled variance: Let yij (i = 1, 2, j = 1, 2, . . . , ni and n1 + n2 = n) be
the observations from two treatments. Define yi. = 1

ni

∑ni

j=1 yij, i = 1, 2. The t-statistic
with pooled variance is:

t =
y2. − y1.√

1
n−2
{
∑n1

j=1(y1j − y1.)2 +
∑n2

j=1(y2j − y2.)2}( 1
n1

+ 1
n2

)
.

(b) Wilcoxon: The yij are defined as in (a). Rank all n observations, and denote the rank of
observation yij by sij, i = 1, 2, j = 1, 2, . . . , ni. The rank sum statistic is T =

∑n2

j=1 s2j.
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As we have E(T ) = n2(n+1)/2, V ar(T ) = n1n2(n+1)/12, the normalized statistic is:

W =

∑n2

j=1 s2j − n2(n + 1)/2
√

n1n2(n + 1)/12
.

(c) F -statistic: Let yij (i = 1, 2, . . . , k, j = 1, 2, . . . , ni and
∑k

i=1 ni = n) be the obser-
vations from a one-way design. For treatment i, there are independent observations
yi1, yi2, . . . , yini

. Define yi. = 1
ni

∑ni

j=1 yij and y.. = 1
n

∑k
i=1

∑ni

j=1 yij. Then the F -
statistic is

F =

∑k
i=1 ni(yi. − y..)

2/(k − 1)∑k
i=1

∑ni

j=1(yij − yi.)2/(n− k)
.

(d) Paired t-statistic: Let yij (i = 1, 2, j = 1, 2, . . . , n) be n pairs of observations. If write
xi = y2i − y1i, then the paired t-statistic is

paired t =
x̄√

1
n

∑n
i=1(xi − x̄)2/(n− 1)

.

(e) Block F -statistic: Let yij (i = 1, 2, . . . , k, j = 1, 2, . . . , n) be the observations from a
randomized block design with k treatments and n blocks. The observation on treatment
i in block j is yij. Define yi. = 1

n

∑n
j=1 yij, y.j = 1

k

∑k
i=1 yij and y.. = 1

nk

∑k
i=1

∑n
j=1 yij,

then the block F -statistic is

block F =

∑k
i=1 n(yi. − y..)

2/(k − 1)∑k
i=1

∑n
j=1(yij − yi. − y.j + y..)2/(n− 1)(k − 1)

.

Note that the t-statistic with pooled variance can be regarded as a special case of the F -
statistic. Similarly, the paired t-statistic can be regarded as a special case of the block
F -statistic. The Wilcoxon statistic is the nonparametric form of the t-statistic with pooled
variance. Similarly, we can define other nonparametric statistics corresponding to the F ,
block F and paired t-statistics by replacing the observations yij with their corresponding
ranks sij.

8.2 Which multiple testing procedure?

We have seen a bewildering variety of multiple testing procedures. How should we choose
which to use? There are no simple answers here, but each procedure can be judged according
to a number of criteria. Interpretation: does the procedure answer a question that is rele-
vant to the analysis? Type of control: weak, exact or strong? Validity: are the assumptions
under which the procedure is valid definitely or plausibly true, or is their truth unclear, or
are they most probably not true? And finally, computability: are the procedure’s calcula-
tions straightforward to perform accurately, or is there substantial numerical or simulation
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uncertainty, or discreteness?

In this paper, we have learned a little about the procedures which control different type I
error rates. From equation (1), the FWER is the most stringent, while FDR is the most
relaxed, and pFDR is roughly in between. In microarray experiments, where we consider
many thousands of hypotheses, FDR or pFDR are probably better criteria than FWER.
Most people would be more interested in knowing or controlling the proportion of genes
falsely declared differentially expressed, than controlling the probability of making one or
more such false declarations. Most would not consider it a serious problem to make a few
wrong decisions as long as the majority of the decisions are correct. The FDR and pFDR
procedures promise to respond to this need, but there remain issues of validity.

It will take a while before we accumulate enough experience to know which approach leads
to truer biological conclusions on a large scale, that is, which in truth better balances false
positives and false negatives in practice. The FWER-based maxT procedure successfully
identified the 8 differentially expressed genes in the Apo AI dataset which have been biologi-
cally verified, though the identical distribution assumption is highly doubtful, see below. For
the Golub leukemia dataset, maxT gave a smaller number of differentially expressed genes
than the FDR-based procedures, but no large scale validation has been done to determine
the truth there. It seems possible that when just a few genes are expected to be differen-
tially expressed, as with the Apo AI dataset, it might be a good idea to use FWER-based
procedures, while when many genes are expected to be differentially expressed, as with the
leukemia dataset, it might be better to use FDR or pFDR-based procedures.

Of all the procedures described in this paper, only Holm, minP and BY are essentially
assumption-free. However, Holm and BY suffer from being far too conservative. On the
other hand, minP is useful if we have enough experiments so that there are enough per-
mutations to eliminate the discreteness of the p-values. While maxT is much less sensitive
to the number of permutations, it does require the assumption of identical distributions.
The strength of maxT and minP is that they are exploiting the dependence in the test
statistics in order to improve power. By contrast, the Šidák, BH, Storey and ST procedures
are motivated by independence (and perhaps identical distribution) assumptions on the test
statistics. They try to extend results valid under independence to more general situations
by imposing special conditions: the Šidák inequality for the Šidák procedure, positive re-
gression dependency for BH, and ergodic conditions for the Storey procedure. For a start,
it is difficult to see how we can be sure that these conditions apply with microarray data.
Further, it is hard for these procedures to improve power, as they do not fully exploit the
information concerning dependence in the dataset. A potentially fruitful direction for future
research is to develop variants of the FDR procedures similar to maxT or minP, which permit
arbitrary dependence between the test statistics, and which automatically incorporate this
dependence into the procedures in order to improve power.
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Other issues are computational complexity and discreteness. We have seen that minP is the
most computationally expensive procedure, and the computational burden can be substan-
tial, even with our new algorithm. Table 4 shows the running time for minP and maxT
giving different numbers B of permutations. Figure 5 shows the curves for minP and maxT
comparing to the theoretical running time. It shows that for most practical applications,
minP is about 3 times slower than the maxT procedures. The maxT procedure has the same
complexity as computing the raw p-values. The other procedures, such as Holm, Šidák, BH,
BY, Storey, and Storey-q are all based on computing the raw p-values, they should have the
same running time as maxT. By contrast, ST and ST-q are more computationally expensive
than maxT if the same number B of permutations is used. In practice, it is not necessary to
run more than 1,000 permutations because ST and ST-q are quite robust to the number of
permutations, so the computational burden will be at the same level as maxT. In summary,
in terms of computational simplicity and speed, Holm, Šidák, BH, BY, Storey and Storey-q
are good choices, followed by maxT, ST and ST-q, with the most computationally demand-
ing being minP. We have discussed the issue of discreteness above, and noted that it can
really affect minP, indeed it can be a real restriction on the use of minP if the number of
permutations is not large enough.

8.3 The C and R code available for different tests

The algorithms for the minP and maxT adjustment are implemented in C code, and in-
corporated in the R package multtest. R (Ihaka & Gentleman 1996) is free open source
software similar to S/Splus. The C code and R package multtest may be downloaded from
the Bioconductor website http://www.bioconductor.org. Currently, the package can deal
with the t, t with pooled variance, F , paired t, Wilcoxon, and block F -statistics. It can also
deal with the nonparametric forms of those statistics. The fixed random seed resampling
method is implemented, and also the approach to store all of the permutations (see remarks
2(a) and 2(b) in Section 4.4.3) for most of these tests. The package also implements some
FDR procedures such as BH and BY.
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Box 5. A permutation algorithm for the ST-q and ST procedures
- based on Storey & Tibshirani (2001) Algorithm 1
Choose a value τ0 believed to contain most null hypotheses (for example, τ0 = 0.2). From
the original data, compute the two-sample t-statistics, let τi = |ti| and assume without
loss of generality τ1 ≥ · · · ≥ τm; otherwise sort the rows of the data matrix according to
the ordered τi.

Compute Ri = #{k : |tk| ≥ τi}, and W0 = #{k : |tk| ≤ τ0}.

For the bth permutation, b = 1, . . . , B:

1. Permute the n columns of the data matrix X.

2. Compute test statistics t1,b, . . . , tm,b for each hypothesis.

3. Compute Ri,b = #{l : |tl,b| ≥ τi} for i = 1 . . . ,m and W0,b = #{i : |ti,b| ≤ τ0}

The above steps are repeated B times, and then for i = 1, . . . ,m estimate

Ri =
1

B

B∑

b=1

Ri,b,

I i =
1

B

B∑

b=1

I(Ri,b > 0),

W 0 =
1

B

B∑

b=1

W0,b.

Then at τi the pFDR is

pFDRi =
W0 ·Ri

W 0 · (Ri ∨ 1) · I i

for i = 1, . . . ,m,

and the FDR is

FDRi =
W0 ·Ri

W 0 · (Ri ∨ 1)
for i = 1, . . . ,m.

The q-values (for the ST-q procedure) and the FDR-based adjusted p-values (ST-
procedure) can then be estimated by enforcing step-up monotonicity as follows:

qm = pFDRm, qi = min(qi+1, pFDRi), for i = m− 1, . . . , 1,

p̃m = FDRm, p̃i = min(p̃i+1, FDRi), for i = m− 1, . . . , 1.
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Figure 1: Apo AI. Plot of adjusted p-values controlling different type I error rates against the
rank of the p-values. p-values were estimated using all B =

(
16
8

)
= 12,870 permutations. The

top, middle and bottom panels are adjusted p-values controlling FWER, FDR and pFDR,
respectively.
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Figure 2: Leukemia. Plot of adjusted p-values to controlling different type I error rates
against the rank of the p-values. p-values were estimated using B = 10,000 random permu-
tations. The top, middle and bottom panels are adjusted p-values controlling FWER, FDR
and pFDR, respectively.
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Figure 3: Leukemia. Plot of minP adjusted p-values against the rank of adjusted p-values.
p-values were estimated based on B = 10,000, 100,000 and 1,000,000 random permutations.
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Figure 4: Leukemia. Plot of maxT adjusted p-values against the rank of adjusted p-values
estimated using B = 10,000, 100,000 and 1,000,000 random permutations.
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Figure 5: Leukemia. Plot of computation time against the number of permutations B. The
dashed lines are computed using the theoretical run time formulae shown in the legend. The
constants c were computed from the timings for B = 5,000 permutations for maxT and minP
separately.
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