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Abstract

In this paper we propose a Fisher Efficient estimator in the model of independent com-
ponent analysis (ICA). First, we provide a

√
n-consistent estimator using the empirical

characteristic function, and then, show that by directly estimating the efficient influence
function, we can construct a one-step maximum likelihood estimate (MLE) which reaches
asymptotic Fisher efficiency (EFFICA). We compare a variant of EFFICA to standard and
state-of-the-art algorithms such as the Kernel ICA method (Bach & Jordan 2002), using
benchmark simulations to exhibit its excellent performance.
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1. Introduction

Independent component analysis (ICA) has been a powerful tool for engineers to recover
blind sources since the 1980s (Hyvarinen, Karhunen & Oja 2001). Bach & Jordan (2002)
described it as follows:

Independent component analysis (ICA) is the problem of recovering a latent ran-
dom vector S = (S1, · · · , Sm)T from observations of m unknown linear functions
of that vector. The components of S are assumed to be mutually independent.
Thus, an observation X = (X1, · · · ,Xm)T is modeled as:

X = AS, (1)

where S is a latent random vector with independent components, and where A
is an unknown m×m matrix, called the mixing matrix.

It is well-known that A is identifiable up to scaling and permutation of columns when S has
at most one Gaussian component and A is nonsingular (Kagan, Linnik & Rao 1973, Comon
1994). In general, one does not know the probability density (or mass) function of S. Thus
this can be viewed as a semiparametric model (Bickel, Klaassen, Ritov & Wellner 1993)
with parameter (A, r =

∏m
k=1 rk) where rk is the unknown distribution of Sk. The essential

idea is to estimate the mixing matrix A, or equivalently, W = A−1, which is usually called
the demixing matrix.
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In the past decade, there have been many methods used to estimate A. Most of them
can be organized in two groups. The first group of methods directly approximates the
distributions of hidden sources within a specified class of distributions and minimize con-
trast functions such as mutual information, likelihood function or equivalents, e.g., Pham
& Garrat (1997), Bell & Sejnowski (1995), Amari, Cichocki & Yang (1996), Amari & Car-
doso (1997), Cardoso (1999), Comon (1994), Hyvarinen & Oja (1997). The second group
of methods optimizes other contrast functions such as nongaussianity (using negentropy or
kurtosis), nonlinear correlation among recovered sources without approximating distribu-
tions explicitly, e.g., Jutten & Herault (1991), Hyvarinen (1999). The asymptotic properties
of the first group of methods are connected with a folk theorem which states that estimation
results are robust to the details of distributions, in other words, it will be sufficient for the
specified distributions to capture certain properties of true distributions, such as super- or
sub-gaussianity. Local consistency of these methods has been shown under such as stability
conditions (Amari & Cardoso 1997), where local consistency means that the true value of
W is a local optimum of the contrast function if the sample size is large enough. And global
consistency in the case of two sources is shown under heavy-tail conditions (MacKay 1996),
where global consistency means that the true value of W is the unique global optimum
of the contrast function if the sample size is large enough. However, local consistency is
often unsatisfactory as it is weaker than consistency (see Definition 1); Further, even local
consistency may not hold when we incorrectly specify the properties such as gaussianity.
The second group of methods also has difficulties in reaching consistency, for example, the
fast ICA method using kurtosis may fail when there are more than one component having
zero kurtosis.

Recently, some new methods appear in the ICA literature. For example, Bach & Jor-
dan (2002) minimize a kernel canonical correlation (KCCA) or kernel generalized variance
(KGV) among recovered sources. Hastie & Tibshirani (2002) propose a maximum likeli-
hood estimate (MLE) by using spline-based density approximations. These methods are
shown to have good performances in simulations. We believe that KGV has nice statistical
properties under appropriate conditions, but in depth analysis is not available.

Here, we propose a new estimator and show that it is consistent (see Definition 1) under
general conditions; we further show that it is

√
n-consistent (see Definition 2) if hidden

sources have finite variances; and then we construct a one-step MLE estimator and show it
is Fisher efficient under regularity conditions which will be given in the theorems. Also, we
provide applicable algorithms to implement these methods. (In a private communication, we
notice that Samarov & Tsybakov (2002) recently have obtained an interesting but different
estimator of W by directly approximating the partial derivatives of obvervable X’s density
function and proved it is

√
n-consistent under stronger conditions.)

The remainder of the paper is organized as follows. In Section 2, we provide an es-
timator of the demixing matrix W based on empirical characteristic function (CHFICA)
and demonstrate its consistency under identifiability conditions and

√
n-consistency if fur-

ther hidden sources have finite variances. In Section 3, we carry out the so-called one-step
MLE estimator (Bickel et al. 1993) by directly estimating the efficient influence function
and show that it can reach asymptotic efficiency (EFFICA) under regularity conditions
(defined in Theorem 5), that is,

√
n times the estimation error is asymptotically normal

and the asymptotic covariance matrix reaches the lower bound – inverse Fisher information
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matrix. In Section 4, we provide applicable implementation of EFFICA, where we compare
a variant of EFFICA (we still call it EFFICA) to popular ICA algorithms such as FastICA
(Hyvarinen 1999), JADE (Cardoso 1999), KGV (Bach & Jordan 2002) with benchmark sim-
ulations. Appendices A, B& C consist of the complete proofs of the theorems and technical
lemmas used in the theorems.

In this paper, |t| denotes its absolute value if t is real and denotes its module if t is
complex, ||x|| denotes its l2 norm if x is a vector of real numbers, and |W | =

√
tr(W TW )

for a square matrix W . In particular, for a square matrix W , we use Wk to denote its kth
row, Wij to denote its (i, j) element, and an upper case T to denote the transposation of a
vector or a matrix.

2.
√

n-consistent estimator by empirical characteristic function

As we mentioned above, A (thus W ) is not unique without further conditions. To deal with
its lack of identifiability, we put some constraint on the demixing matrix and define its value
space Ω by

Ω = {W : m×m real matrix , ||Wk|| = 1,Wkk ≥ |Wik|, for 1 ≤ k ≤ i ≤ m}. (2)

However, the parameter is still not uniquely identified on the boundary of Ω. For
simplicity, we assume that the true parameter W0 is nondegenerate and is in the interior
of Ω (denoted by Ωo, i.e., the equalities in Wkk ≥ |Wik| do not hold for any k 6= i). (Note:
this condition is not necessary; the essential idea is to define an order of the rows). In this
paper, we say the ICA model as above satisfies the identifiability conditions if (i) at most
one of S’s components is Gaussian and none of them has mass 1 on a single point; and (ii)
the true demixing matrix W0 ∈ Ωo is of full rank.

Let U = (U1, · · · , Um)T be am-dim random vector. Define ψ(t;U) = E[eitT U ], ψ(tk;Uk) =
E[eitkUk ], k ∈ {1, · · · ,m}, where t = (t1, · · · , tm)T ∈ Rm and i =

√
−1. Then U ’s compo-

nents are mutually independent if and only if

ψ(t;U) −
m∏

k=1

ψ(tk;Uk) ≡ 0, for any t ∈ Rm.

Thus, the difference between U ’s joint characteristic function and the product of its marginal
characteristic functions can be considered as a measurement of mutual independence of
its components. In practice, we cannot calculate their characteristic functions with finite
samples U (1), · · · , U (n). The natural way will be to use empirical characteristic functions
(ECF), i.e. for k = 1, · · · ,m

ψn(t;U) =
1

n

n∑

j=1

eitT U(j)
and ψn(tk;Uk) =

1

n

n∑

j=1

eitkU
(j)
k .

The difference is measured by the L2(µ) distance, where µ will be chosen later. We assume
that (X(1), · · · ,X(n)) are n i.i.d. copies of X and denote the population and empirical
distribution of X by P and Pn separately.
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Define

ρ(W,Pn) =

∫

Rm

|ψn(t;WX) −
m∏

i=1

ψn(ti;WiX)|2dG(t),

ρ(W,P0) =

∫

Rm

|ψ(t;WX) −
m∏

i=1

ψ(ti;WiX)|2dG(t),

where G(t) =
∏m

i=1Gi(ti) and each Gi is the standard normal distribution function; by

definition, ψn(t;WX) = 1
n

∑n
k=1 e

itT WXk , ψn(ti;WiX) = 1
n

∑n
k=1 e

itiWiXk for i = 1, · · · ,m.
Thus an estimator of the demixing matrix through empirical characteristic functions is given
by

Ŵ = argminΩρ(W,Pn). (3)

It is well-known that the one-dimensional empirical characteristic function is bounded
and converges uniformly to its population in any compact interval as sample size goes to
infinity (Feuerverger & Mureika 1977); this property is also true in multivariate cases. But
in our case, we study the asymptotic properties of Ŵ defined in (3) by empirical process
theories since ρ(W,Pn) is a functional of empirical distributions indexed by a compact set
Ω. We notice that ECF has been used in the ICA literature, for example, Murata (2001)
applies it in testing the independence of recovered sources.

In the remaining of this section, we demonstrate that Ŵ defined in (3) is consistent
and

√
n-consistent to W0, where consistency and

√
n-consistency are defined formally in

the following.

Definition 1 Given random samples {X i : i = 1, · · · , n}, a sequence of estimators δn(X1, · · · ,Xn)
is said to be (weakly) consistent to a parameter θ if ||δn − θ|| → 0 in probability, i.e. for
any ε > 0, Pr(||δn − θ|| > ε) → 0 as n→ ∞.

Definition 2 In the above definition, δn is
√
n-consistent to θ if

√
n||δn− θ|| = Op(1), i.e.,

limsupnPr(
√
n||δn − θ|| > M) → 0 as M → ∞.

Theorem 3 (Consistency) Suppose that the ICA model is identifiably parametrized and
W0 ∈ Ωo. Then Ŵ defined by (3) is a consistent estimate of W0.

Proof Let Ŵ be one solution of argminΩρ(W,Pn). Then

ρ(Ŵ , P0) =
∫
|ψ(t; ŴX) − ∏m

i=1 ψ(ti; ŴiX)||2dG(t)

≤
∫

[|ψ(t; ŴX)−ψn(t; ŴX)|+|
m∏

i=1

ψ(ti, ŴiX)−
m∏

i=1

ψn(ti; ŴiX)|+|ψn(t; ŴX)−
m∏

i=1

ψn(ti; ŴiX)|]2dG(t)

≤ 3{supΩ

∫
|ψ(t;WX)−ψn(t;WX)|2dG(t)+supΩ

∫
|

m∏

i=1

ψ(ti;WiX)−
m∏

i=1

ψn(ti;WiX)|2dG(t)+ρ(Ŵ , Pn)},

(By definition of Ŵ )

≤ 3{supΩ

∫
|ψ(t;WX)−ψn(t,WX)|2dG(t)+supΩ

∫
|

m∏

i=1

ψ(ti;WiX)−
m∏

i=1

ψn(ti;WiX)|2dG(t)+ρ(W0, Pn)}
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=op(1), (by Lemma 7(2,4,6) in Appendix A).

Then the consistency follows from Lemma 1 using Wald’s argument given the compactness
of Ω (Wald 1949).

Theorem 4 (
√
n-Consistency) Suppose that the ICA model (1) is identifiably parametrized,

W0 ∈ Ωo, and E||S||2 <∞, then Ŵ defined by (3) is a
√
n-consistent estimate of W0.

Proof The complete proof is given in appendix B.

Remark 1: (i) It is not surprising that under the conditions of Theorem 4 asymptotical
normality holds for the free parameters in W ∈ Ω. (ii) The choice of measurement G for
the integral in ρ(W,Pn) is not necessary to be Gaussian; It can be shown similarly that
Theorem 3 and 4 still hold when G is some other distribution function, which has support
Rm and decays smoothly and moderately fast, for example, the logistic distribution. (iii)
But the choice of G does affect the constant term of the asymptotic mean square error
(i.e. E|Ŵ −W |2). Professor Bin Yu suggested the problem how to choose an optimal G
which might lead to efficiency. The authors found in simulations that choosing a uniform
distribution rather than a Gaussian for G gives almost perfect results if the hidden sources
are really uniform, but it is hard to find a generally applicable rule.

3. Construction of efficient estimates

In Section 2, we have proposed an estimate and proved its consistency only requiring the
identifiability conditions while

√
n-consistency further requiring finite variance of hidden

sources. It is well-known that under regularity conditions, based on a
√
n-consistent ini-

tial estimate, a one-step MLE is asymptotically Fisher efficient when the corresponding
efficient influence function can be estimated

√
n-unbiasedly (Bickel et al. 1993). However,

to calculate the efficient influence function of W in the ICA model, it is more convenient
to work on free parameters, i.e., we do not want the normalization constraint in (2). Al-
ternatively, we can re-scale the hidden sources instead of W itself, i.e., for a fixed scaling
function K, we may assume that E[K(Sk)] = 0, k = 1, · · · ,m, for example, K(t) = t2 − 1
corresponds to assuming second moment to be 1 (Amari & Cardoso 1997). Here instead
we use K(t) = 2I(|t| ≤ 1) − 1, which assumes each source to have absolute median 1.
That is, suppose that W ∈ Ωo and S with mutually independent components are such that
S = WX, then we can define (W,S) by

Sk = Sk/med(|Sk|) and W k = Wk ∗med(|Sk|).

Obviously, S = WX has mutually independent components, and med(|Sk|) = 1. Again, for
the sake of identifiability, we define

Ω = {Wm×m : ||Wk|| > 0,
Wkk

||Wk||
≥ |Wik|

||Wi||
, 1 ≤ k ≤ i ≤ m}. (4)

Then W ∈ Ω. This W will be of interest in the following construction of efficient estimates.
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In the empirical world, we only have an estimate of W (denoted by Wn) and an estimate
of S, then the above transformation can be carried out by using empirical medians. It is
important to know whether the estimate of W by this empirical transformation on Wn has
the same asymptotic properties (i.e., consistency and

√
n-consistency) as the estimate Wn

of W . This is answered by Lemma 5.

Lemma 5 (Reparametrization) Let W ∈ Ω with rank(W ) = m and Xn = {X(1), · · · ,X(n)}
be n iid copies of X, and S = WX has mutually independent components. Suppose that Wn

is an estimate of W . Denote Γ = diag(med(|S|)) (i.e., a diagonal matrix with diagonals
med((|S|)), Γn = diag(med(|WnXn|)) and W = ΓW , Wn = ΓnWn, i.e. Γ are Γn are both
diagonal matrix with diagonals medians of |S| and sample medians of absolute values of
WnXn separately. Then the following results hold:

(i). If Wn −W = op(1), then Wn −W = op(1);
(ii). If

√
n(Wn−W ) = Op(1) and E|Sk| <∞, k = 1, · · · ,m, then

√
n(Wn−W ) = Op(1).

Proof This follows directly from Lemma 8 in Appendix C.

To construct an efficient estimate, we will always assume that the hidden sources have
finite variance. Then by Theorem 4 and Lemma 5, we can obtain a

√
n-consistent estimate

of the demixing matrix W ∈ Ω. In the following, we will still use W to denote W , the
parameter of interest, but now W ∈ Ω, for simplicity of notation.

The density function of X in model (1) with respect to (W, r) is

pX(x;W, r) = |det(W )|r(WX),

where W is the demixing matrix and r =
∏m

k=1 rk is the joint density function of S =
(S1, · · · , Sm) with marginal densities (r1, · · · , rm). Let φk = −r′k/rk, k ∈ {1, · · · ,m}, and
define φ by φ(s) = (φ1(s1), · · · , φm(sm))T , s ∈ Rm. Then the score function of W (i.e partial
derivative of log(density) w.r.t W ) is equal to

SW =
∂log(pX(x;W, r))

∂W
= W−T + φ(Wx)xT = (I + φ(s)sT )W−T ,

where s = Wx and W−T denotes [W−1]T .
By definition, the nuisance score function of r along the path rt =

∏m
k=1 rk(1 + thk) is

Sr =
∂log(pX(x;W, r(t)))

∂t
|t=0 =

m∑

k=1

∂log(rk(Wkx)(1 + thk(Wkx)))

∂t
|t=0 =

m∑

k=1

hk(sk)

where the variational direction is (h1, · · · , hm) ∈ L2(P )m (Bickel et al. 1993). Let’s denote
by TS, the closed linear span of the set of nuisance scores in all directions. For simplicity,
we assume E[Sk] = 0, k ∈ {1, · · · ,m}. Then the efficient score function of W , defined by
the projection of its score function onto the orthocomplimentary space of tangent space of
nuisance parameter r, i.e., TS⊥, is given by

Se(x;W, r) = Proj(SW |TS⊥) = [M ]W−T , (5)
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where by making use of orthogonality the matrix M ’s elements can be expressed as

Mkk = αks̃k + βkK(sk), for k = 1, · · · ,m,
Mij = φi(si)sj, for 1 ≤ i 6= j ≤ m,

(6)

with s = Wx, s̃k = sk

E[S2
k
]
, αk = E[(S̃k−λkK(Sk))φk(Sk)Sk]

1−E2(S̃kK(Sk))
, βk = E[(K(Sk)−λkS̃k)φk(Sk)Sk]

1−E2(S̃kK(Sk)
, and

λk = E[S̃kK(Sk)] (Amari & Cardoso 1997).

Later in this paper, we consider Se as a m2-dim column vector function (reshape the
matrix row by row into a vector). As a consequence, its efficient influence function is given
by

IF = I−1
e Se, where Ie = E[SeS

T
e ].

Now we still need to estimate (φk, αk, βk, λk) for k = 1, · · · ,m consistently. Notice that
(αk, βk, λk) are functionals only of (W,φk) and can be estimated ad hoc by arithmetic
combinations of moments if we have estimates of (W,φk). Given an estimate Ŵ of W ,
we can recover hidden sources using ŴX. The difficulty is in estimating φk by using

the recovered sources. There are two estimation methods. Since φk = − r′
k

rk
, we can use

the kernel method to estimate r′k and rk separately, and then take the combination. The
second method is to use the Cox’s method by B-spline approximations (Cox 1985, Jin 1992).
Both methods can provide consistent estimates under weak conditions. the Cox’s method
requires stronger conditions but is easier to implement, which will be defined in (8) and be
used for our simulation purpose. For simplicity of proof, we make use of the logistic kernel
to estimate the derivative of logarithmic density function. That is, given recovered data of

the kth source, say Ŝk = (Ŝ
(1)
k , · · · , Ŝ(n)

k ), the estimate of φk at t ∈ R is defined by

φ̂k(t) = { −ĝ′(t)/ĝ(t) if |t| ≤ dn, |ĝ′(t)| ≤ cnĝ(t),
0 otherwise

where

ĝ(t) =
1

nbn

n∑

i=1

w(
t− Ŝk

(i)

bn
), w(t) = e−t/(1 + e−t)2 and ĝ′(t) =

∂

∂t
ĝ(t)

and bn = n−1/5, cn = n1/15, dn = n1/5.

This estimator has been well studied in Bickel et al. (1993) and shown to give consis-
tent estimation measured by its integrated square estimation error. Then (αk, βk, λk) are
estimated by arithmetic combinations of moments with plugged-in estimates of (W,φk).
Thus, we have obtained estimators of (α, β, λ, φ, Se, Ie). Denote them by (α̂, β̂, λ̂, Ŝe, Îe)
separately. Finally, we estimate the efficient influence function using

ÎF = Î−1
e Ŝe. (7)

Notice that Îe is a m2 ×m2 matrix and Ŝe is a function vector of dimension m2. We use
a data-splitting scheme (Klaassen 1987) to construct the one-step MLE of the demixing
matrix.
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Let n1 = 1
3n, n2 = 2

3n. Given i.i.d. random samples {X(i), i = 1, · · · , n}, we divide
them into three parts and get three estimates of W and IF using the three parts separately.
That is, Ŵ1, an estimate of W , is defined by (3) using the first part (X (1), · · · ,X(n1)) but
is rescaled using recovered absolute medians, Ŵ2, Ŵ3 are defined similarly by using the
second part (X(n1+1), · · · ,X(n2)) and the third part (X(n2+1), · · · ,X(n)) separately; And

ÎF 3(.; Ŵ2) is defined by (7) using the estimated demixing matrix Ŵ2 and the third part

of data, ÎF 1(.; Ŵ3) using Ŵ3 and the first part of data, and ÎF 2(.; Ŵ1) using Ŵ1 and the
second part of data. Then the one-step MLE is defined by

Ŵ ∗ = 1
3{Ŵ2 + 3

n

∑n1
i=1 ÎF 3(X

(i); Ŵ2)}

+1
3{Ŵ3 + 3

n

∑n2
i=n1+1 ÎF 1(X

(i); Ŵ3)}

+1
3{Ŵ1 + 3

n

∑n
i=n2+1 ÎF 2(X

(i); Ŵ1)}.

Theorem 6 (Efficiency) If the ICA model X = AS satisfies the following conditions (let
W = A−1 ):

(i) W is in the interior of Ω;

(ii) S has at most one Gaussian component and has no degenerate component;

(iii) Sk has unknown absolute continous density function rk with ES2
k <∞ and

∫
R

r′2
k

(t)

rk(t) dt <
∞ for k = 1, · · · ,m;

(iv) ESk = 0, med(|Sk|) = 1 for k = 1, · · · ,m;

Then the estimate Ŵ ∗ above is asymptotically efficient.

Proof Under the given conditioins, the ICA model is a regular semiparametric model.
From Theorem 7.8.1 of Bickel, et al (1993), it is sufficient to show that for all sequence
{Wn} with

√
n|Wn −W | = O(1), the following three claims are true:

(a)
√
n

∫
Ŝe(x;Wn;X)dP(Wn,r)(x) = oP(Wn,r)

(1);

(b) Îe(Wn;X) − Ie(Wn; r) = oP(Wn,r)
(1);

(c) Ie(W ; r) is positive definite and each entry is finite.

First, condition (iv) implies
√
n

∫
Ŝe(x;Wn;X)dP(Wn,r)(x) = 0, that is (a). Second, (b) can

be easily verified by using the mutual independence between components of WnX under the
law P(Wn,r) and the facts that kernel estimators and moment estimators are all consistent
under our conditions. Third, each entry of Ie(W, r) is finite from condition (iii); suppose
that Ie(W, r) is not positive definite, then for some set of real numbers (not all zeros)
{cij : i, j = 1, · · · ,m}, var(

∑m
i=1 ciiMii +

∑
i6=j cijMij) = 0, where Mij ’s are defined in (6).

By taking expansions,
∑m

i=1 c
2
iiE[M2

ii]+
∑

i<j E[(cijMij +cjiMji)
2] = 0, and thus there must

8



Efficient Independent Component Analysis (I)

be cij = 0 for i, j = 1, · · · ,m since none of Si’s has a degenerate distribution, contradiction!
So (c) must hold.

Remark 2: (i) In condition (iv), mean zero is not necessary since the mean can be
estimated by its sample mean and be removed adaptively. (ii) To control the scaling, we
use the absolute median 1 instead of unit variance because the efficient score function in
using unit variances will require stronger conditions – finite fourth moments. (iii) Iterating
the one-step MLE more than once still provides efficient estimates.

In application, to estimate the derivative of a logarithmic density function, the kernel
method has large computational complexity, so we use the Cox’s method. That is, given
samples (t1, · · · , tn) from some distribution with density f , h = −f ′/f can be approximated
by

ĥ = (A−1
n Dn)TBn, (8)

where Bn is the B-spline basis (a column vector of B-splines) with knots chosen in the
range of (t1, · · · , tn), An = 1

n

∑n
i=1 Bn(ti)B

T
n (ti) and Dn = 1

n

∑n
i=1 B′

n(ti) (note: B′
n is

the pointwise derivatives of Bn). We may use empirical quantiles or equal distances to
choose the knots. The number of knots is a usual smooth parameter and can be decided
by cross-validation. Jin (1992) has studied this problem thoroughly and shows that under
weak conditions the optimal choice of the number of knots by smoothing cross-validation is
of order nδ with 0 < δ < 1

6 both theoretically and with a variety of simulations.

As a variant of the estimator defined in Theorem 6, we do not use the data splitting
scheme. Instead we use the whole data (X (1), · · · ,X(n)) to estimate the efficient influence

function IF (say ÎF ) with an initial estimate W (0) of W , then one-step MLE becomes

W (1) = W (0) +
1

n

n∑

i=1

ÎF (X(i);W (0)). (9)

We further update the above estimation several times and denote the final estimate in the
left hand by Ŵ , in abusing the name we call this estimator as EFFICA. The further study
of this variant estimator is beyond the scope of this paper.

4. Realization of CHFICA and EFFICA in simulations

To carry out CHFICA defined in (3), we can simply choose G to be multivariate Gaussian
distribution with mean zeros and covariancem × m identity matrix. By expanding the
contrast function ρ(W,Pn), we have

ρ(W,Pn) = 1
n2

∑n
i,j=1 exp{−∑m

k=1
|Wk(Xi−Xj)|

2

2 } + 1
n2m

∏m
k=1(

∑n
i,j=1 exp{− |Wk(Xik

−Xjk
)|2

2 })
− 2

nm+1

∑n
i=1

∏m
k=1(

∑n
j=1 exp{− |Wk(Xi−Xjk

)|2

2 })

Thus the computational complexity of directly minimizing ρ(W,Pn) is O(n2m2), which
is slower than some well known ICA algorithms. We propose a Montel Carlo (MC) version

9



Chen & Bickel

of CHFICA which approximates the Gaussian integration in the contrast function ρ(W,Pn)
of CHFICA by MC method (MCCHFICA). It is not surprising that a larger Monte-Carlo
sample size will provide a better performance. In general, O(log(N)) will be enough for MC
sample size to give a good initial estimate. To approximate φk with efficient computation, we
use the Cox’s method with the B-spline approximation defined in (7), where the number of
knots are chosen by smoothing cross-validation (Jin 1992). Furthermore, instead of one-step
MLE, we update the one-step MLE iteration defined in (8) till convergence or a fixed number
of steps (EFFICA). The computational complexity for MCCHFICA is O(m2Nlog(N)) and
for EFFICA is O(m2N1+δ), where 0 < δ < 1

6 depends on distributions of hidden sources
(Jin 1992). We notice that essentially, EFFICA is equivalent to solving the efficient score
equations in sieves using Newton-Rapson method (Murphy & van der Vaart 2000). The
algorithms for MCCHFICA and EFFICA are given in figure 1 & 2 separately. As usual,
restarting initials are needed to reach global optimum for MCCHFICA.

———————————————————————————————————

Algorithm MCCHFICA

Input: m-dim Data vectors x1, x2, · · · , xn (data matrix X)

1. Generate random vector t1, · · · , tK from MN(0, Im)
2. Minimize (w.r.t W ) the contrast function f(W ) defined as:

f(W ) = EK [|En(exp(itTWX)) − ∏m
i=1En(exp(itiWiX))|2],

where K = max(50, 10 log(nm)), En calculates the empirical mean over X for each fixed
t and EK calculates the empirical mean over (t1, · · · , tK).

Output: W .

———————————————————————————————————

Figure 1: A high-level description of MCCHFICA algorithm for estimating W

Note: In practice, prewhitening data X can make the optimization much easier since we
can concentrate W on the Stief manifold of orthogonal matrix. Efficient algorithms of
optimization on Stief manifold have been well studied in Edelman, Arias & Smith (1999),
which have also been successfully implemented in Bach & Jordan (2002). Further, the
estimation accuracy depends on the choice of K, the larger the better. But the choice of K
eventually does not hurt the consistency as long as it goes up to infinity with the sample
size n. For computational purposes, we find that the choice in the algorithm usually give
satisfactory estimates as initials for EFFICA when the number of source is not too large.

———————————————————————————————————

Algorithm EFFICA

Input: m-dim Data vectors x1, x2, · · · , xn (data matrix X) and initialW , set K = 5×m

10
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0. Calculate x = 1
n

∑n
i=1 x

i, set xi = xi − x
1. S = WX, rescale W and S with absolute medians of S’s rows
2. For k = 1, · · · ,m, estimate φk = r′k/rk using B-splines approximation as in Jin (1992)
3. Calculate Plug-in estimates of α, β, λ in (6);
4. Calculate Plug-in estimates of Se in (5) and Ie = 1

n

∑n
i=1 Se(Xi)S

T
e (Xi)

5. Update Ŵ = W + 1
n

∑n
i=1 I

−1
e Se(Xi), k=k+1

6. if ||Ŵ −W || < ε or k = K, stop; otherwise, W = Ŵ , repeat 2-6

Output: W
——————————————————————————————————–

Figure 2: A high-level description of EFFICA algorithm for estimating W

We have done an extensive set of simulation experiments using data obtained from a
variety of source distributions which are very common in statistics. Comparisons were
made with three existing ICA algorithms: the FastICA algorithm (Hyvarinen & Oja 1997),
the JADE algorithm (Cardoso 1999) and KernelICA-KGV (Bach & Jordan 2002). These
three algorithms were used with their default settings, and EFFICA used the estimates by
MCCHFICA as initialization for case m = 2 (results show in Table 1 and figure 3) and used
estimates by KernelICA-KGV as initialization in other simulations (results show in Table
2). The performance of each algorithm in the simulations is defined by the estimation error
d(Ŵ ,W0) measured by the so-called Amari error :

d(V,W ) =
1

2m

m∑

i=1

(

∑n
j=1 |aij |

maxj |aij |
− 1) +

1

2m

m∑

j=1

(

∑n
i=1 |aij|

maxi|aij |
− 1)

where aij = (VW−1)ij , which is invariant to permutation and scaling of the columns of
V and W , is always between 0 and (m − 1), and is equal to zero if and ony if V and W
represent the same components (Bach & Jordan 2002, Amari et al. 1996) .

The following source distributions were used for a bunch of simulations given in Table
1, Table 2 and figure 3:

Table 0: Distribution used in first group of simulations (output: Table 1)

[0]. N(0,1) [8]. IID exp.(1)+ U(0,1)

[1]. IID exp.(1) [9]. IID mixture exp.

[2]. IID t(3) [10]. IID mixture of exp. and normal

[3]. IID lognormal(1,1) [11]. IID mixture Gaussians: multimodal

[4]. IID t(5) [12]. IID mixture Gaussians: unimodal

[5]. IID logistic(0,1) [13]. exp. vs normal

[6]. IID Weibull(3,1) [14]. lognormal vs normal

[7]. IID exp.(10)+normal(0,1) [15]. Weibull(3,1) vs exp(1)

In the first group of simulations, we do experiments with two independent sources listed
in Table 0 from [1] to [15] with sample size 1000 and 2000 separately with true de-mixing
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pdfs Fast Jade Kgv MCCHF EFF Fast Jade Kgv MCCHF EFF

1 57 44 16 20 11 48 29 14 16 8
2 53 44 36 45 32 23 23 28 41 21
3 38 34 16 18 8 34 23 13 14 6
4 80 63 68 75 48 54 44 39 39 30
5 117 86 109 121 85 54 44 69 73 42
6 44 35 15 19 10 35 25 11 14 6
7 59 48 17 20 13 37 33 13 15 9
8 65 50 17 20 14 45 36 13 16 11
9 53 38 15 18 7 30 25 10 13 5
10 85 68 33 55 49 60 52 22 35 34
11 48 36 28 35 44 34 26 16 22 30
12 85 58 49 61 71 48 36 31 32 33
13 61 60 17 24 17 41 41 11 18 10
14 62 62 17 26 17 43 43 12 19 8
15 49 38 17 20 9 36 26 11 14 6

Table 1: Report of the medians of the Amari errors (multiplied by 1000) for two components
ICA with 1000 samples(left) and 2000 samples(right) in 400 replications.

m N #repl Fast Jade Kgv EFF

4 1000 100 146 135 62 58
4000 100 85 77 31 27

8 2000 50 455 430 205 162
4000 50 322 305 138 114

12 4000 25 515 492 385 250

Table 2: Reporting the median of the Amari errors (multiplied by 1000) for m components
with N samples:m components are first m pdfs in the source list

matrix W = [2, 1; 2, 3] and the output of estimator errors of different estimators is given
in Table 1 (EFFICA uses MCCHFICA estimates as initial values). As we can see that
EFFICA has small amari errors in most cases except in cases that the sources are mixture
Gaussians which decay rapidly in the tails. This can be explained by two facts: First,
KGV itself is very accurate, especially when hidden sources have rapid decaying densities;
Second, the efficiency of EFFICA is in the sense of large sample size. In the second group
of simulations, we use m × m identity matrix as the mixing matrix and increase sources
numberm to 4, 8 and 12 with different sample sizes: form = 4, we use 4 source distributions
from [0]-[3] separately given in Table 0; for m = 8, we use [0]-[7]; and for m = 12, we use
[0]-[11]. The output is given in Table 2 (to speed up the computation, we have used JADE
as initial estimates of KGV and used KGV as initial estimates of EFFICA), where EFFICA

12
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has uniformly smaller Amari errors. This phenomena can be explained by the asymptotic
properties of EFFICA since we have used relatively large sample sizes.

5. Conclusion

In this paper, we have provided a
√
n-consistent estimate (CHFICA) of the ICA model

and showed that the classical one-step MLE estimate reaches Fisher efficiency. For prac-
tical uses, we have proposed an initial estimate using Montel-Carlo version of CHFICA,
which is consistent and costs less computation, and then, proposed iterating one-step MLE
several times by directly estimating efficient score function using B-spline approximations
(EFFICA). Benchmark simulations have exhibited the excellent performance of EFFICA
in comparison with standard and state-of-the-art ICA algorithms such as the Kernel ICA
method.

Techniques of using characteristic function have been widely used in deconvolution prob-
lems (Fan 1989). It is not hard to extend CHFICA to noisy ICA models when the covariance
of sensor noises are known or can be estimated in other ways, and again the rate of conver-
gence can reach n−

1
2 . We conjecture that deriving efficient estimators through likelihood

for ICA models requires more or less constraints on moments as its score function shows.
Deeper analysis of efficient estimators that requires less conditions, by using other methods
such as kernel methods or characteristic function, is still needed in this literature.
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Appendix A

This appendix provides Lemma 7 used in the previous theorems.

Lemma 7 The following results hold:

1. argminΩρ(W,P0) has unique solution W0 if W0 ∈ Ωo;

2. ρ(W0, Pn) = Op(
1
n);

3. The distance ρ satisfies Lipschitz condition, i.e if W0 is in the interior of Ω, then
there exists c(W0) <∞ and ε(W0) > 0, such that (B(W0; ε(W0)) is a ball in Rm2

with
center W0 and radius ε(W0) )

||W −W0||2 ≤ c(W0)ρ(W,P0), for any W ∈ B(W0; ε(W0)) ∩ Ω;

4. supΩ

∫
|ψn(t;WX) − ψ(t;WX)|2dG(t) = op(1);

5. supΩ

∫
|ψn(ti;WiX) − ψ(ti;WiX)|2dGi(ti) = op(1) for i = 1, · · · ,m ;

13
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6. supΩ

∫
|∏m

1=1 ψn(ti;WiX) − ∏m
i=1 ψ(ti;WiX)|2dG(t) = op(1).

Proof Claim 1 is obvious by identifiability condition. Claim 4 is implied by |ψn(t;WX)−
ψ(t;WX)| ≤ 2 and supΩ|ψn(t;WX)− ψ(t;WX)| = op(1) which is assured by boundedness
of envelope, compactness of Ω and continuity of ψ w.r.t W by Lemma 3.10 of Van der Geer
(2000). Similarly, Claim 5 holds. And hence Claim 6 follows from

supΩ

∫
|∏m

1=1 ψn(ti;WiX) − ∏m
i=1 ψ(ti;WiX)|2dG(t)

≤ supΩ

∫
(
∑m

i=1 |ψn(ti;WiX) − ψ(ti;WiX)|)2dG(t)

≤ m
∑m

i=1 supΩ

∫
|ψn(ti;WiX) − ψ(ti;WiX)|2dGi(ti)

= op(1).

Claim 2 and 3 are proved in the following.

Claim 2: ρ(W0, Pn) = Op(
1
n).

Proof It is enough to show that for any W ∈ Ω,

∫
|ψn(t;WX) − ψ(t;WX)|2dG(t) = Op(

1

n
) (10)

and ∫
|

m∏

i=1

ψn(ti,WiX) −
m∏

0=1

ψ(ti,WiX)|2dG(t) = Op(
1

n
). (11)

Notice that

E[
∫
|ψn(t;WX) − ψ(t;WX)|2dG(t)] =

∫
E[|ψn(t;WX) − ψ(t;WX)|2]dG(t)

= 1
n

∫
E[|eitT WX − E(eitT WX)|2]dG(t)

≤ 4
n

which proves (11) by using Chebyshev inequality.

Using the fact |ψn| ≤ 1, |ψ| ≤ 1,

|∏m
i=1 ψn(ti,WiX) − ∏m

0=1 ψ(ti,WiX)|

= |(ψ1
n − ψ1)

∏m
i=2 ψ

i
n + (ψ2

n − ψ2)ψ1
∏m

i=3 ψ
i
n + · · · + (ψm

n − ψm)
∏m−1

i=1 ψi|

(here ψi
n = ψn(ti,WiX) and ψi = ψ(ti,WiX) for i = 1, · · · ,m)

≤ |ψ1
n − ψ1| + |ψ2

n − ψ2| + · · · + |ψm
n − ψm|,

thus
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E[
∫
|
∏m

i=1 ψn(ti,WiX) −
∏m

i=1 ψ(ti,WiX)|2dG(t)] ≤ m
∫ ∑m

1 E|ψn(ti,WiX) − ψ(ti,WiX)|2dG(t)

≤ 4m2

n

which implies (12) by using Chebyshev inequality.

Claim 3: The distance ρ satisfies a Lipschitz condition, i.e if W0 is in the interior of Ω,
then there exists c(W0) <∞ and ε(W0) > 0, such that (B(W0; ε(W0))) is a ball in Rm2

with
center W0 and radius ε(W0) )

||W − W0 ||2 ≤ c(W0 )ρ(W ,P0 ), for any W ∈ B(W0 ; ε(W0 )) ∩ Ω .

Proof For each W ∈ Ω such that ||W − W0|| ≤ 1, notice that for each k, Wk is on a
m-dimensional unit ball, let ∆k be the unit tangent vector at W0k in the space spanned by
Wk and W0k, then let γo

k(t) = cos(t)W0k + sin(t)∆k (choosing the sign of ∆k such that the
angle between ∆k and Wk is acute), it is easy to check that γk(0) = W0k and γo

k(θk) = Wk

where θk is the angle between W0k and Wk. It is obvious that γo
k defines the ”shortest”

path on the unit ball from W0k and Wk.

Let ηw =
√∑m

k=1 θ
2
k, define γk(t) = γo

k( θk

ηw
t) and γ(t) = (γ1(t), · · · , γm(t))′, then γ(0) =

W0, γ(ηw) = W , |W −W0| =
√∑m

k=1(sin
2(θk) + (1 − cos(θk))2) =

√∑m
k=1 4sin2( θk

2 ) =√
(
∑m

k=1 θ
2
k)(1 + o(1)) = ηw(1 + o(1)), thus 1

2ηw ≤ |W −W0| ≤ ηw if |W −W0| ≤ 0.05.

Furthermore |γ′(t)| =
√∑m

k=1(
θk

ηw
)2 = 1 and |γ′′(t)| =

√∑m
k=1(

θk

ηw
)4 is in [ 1

m , 1].

We will use the following fact (Page 98, Murray & Rice): given the variation γ defined
as above on the manifold Ω∗ = {W : m × m matrix, each row has norm 1} which passes
through W0, then the Taylor expression of ρ(γ(t), P0) about t = 0 is given by

ρ(W0, P0) + tρ′(γ(0), P0) +
t2

2
(ρ′′(γ(0), P0) + o(1))

as t converges to 0 , where ∆ is the tangent vector determined by W .

By taking t = ηw in the above expansion and noticing that γ(0) only depending on the
unit tangent vector ∆, it will be enough to show the following two facts:

(a) ρ′(γ(0), P0) = 0 on the tangent space of W0;

(b) ρ′′(γ(0), P0) ≥ ε(W0) uniformly on the tangent space of W0 and ε(W0) > 0 only
depends on W0. Notice that Ω ⊂ Ω∗, the result will follow by using Taylor expansion.

For simplicity, we first show the result holds when W0 is the identity matrix I. In
this case, the tangent space at W0 on the manifold Ω∗ is given by TS(I) = {∆ : m ×
mmatrixwithtotalnorm1,∆kk = 0, k = 1, · · · ,m}. In the following, we let D(t, η,∆) ≡
E[eitT (I+η∆)S] −

∏m
k=1E[eitkSk+itkη∆kS ], then D(0,∆) ≡ 0. Condition (a) is verified by the

following calculation (Let ∆k,∆
k be the kth row and kth column of ∆ separately):
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ρ′(γ(0), P0) = d
dηρ(I + η∆, P0)|η=0

= d
dη

∫
|E[eitT (I+η∆)S] − ∏m

k=1E[eitkSk+itkη∆kS ]|2dG(t)|η=0

= 2
∫

Re( d
dηD(t, η,∆) ×D(t, η,∆))|η=0dG(t)

= 0.
Furthermore,

ρ′′(γ(0), P0) = d2

dη2ρ(I + η∆, P0)|η=0

= d2

d2η

∫
|E[eitT (I+η∆)S] − ∏m

k=1E[eitkSk+itkη∆kS ]|2dG(t)|η=0

= 2
∫
|E[eitT S]|2|

∑m
k=1

E[
∑

i6=k(ti∆ikSk−tk∆kiSi)e
itkSk ]

E[eitkSk ]
|2dG(t);

So, ρ′′(γ(0), P0) ≥ 0, and equality holds if and only if

m∑

k=1

E[
∑

i6=k(ti∆ikSk − tk∆kiSi)e
itkSk ]

E[eitkSk ]
≡ 0, for any t ∈ Rm,

or (Let Ek(tk) ≡ E[SkeitkSk ]

E[eitkSk ]
)

m∑

k=1

∑

i6=k

ti∆ik(Ek(tk) − E[Sk]) ≡ 0.

By taking second-order partial derivative w.r.t ti, tk

∆ik
dEk(tk)

dtk
+ ∆ki

dEi(ti)

dti
≡ 0, for any i 6= k

which implies that ∆ik
dEk(tk)

dtk
is constant for any i 6= k; since there exists ∆ik nonzero

(W.O.L.G, say ∆21 6= 0), then dE1(t1)
dt1

≡ c0 for some constant c0, i.e

d

dt1
(
E[S1e

it1S1 ]

E[eit1S1 ]
) ≡ c0 or

E[S1e
it1S1 ]

E[eit1S1 ]
≡ c0t1 + d0,

which implies that logE[eit1S1 ] is a polynomial of degree at most 2, thus by Lemma 1.2.1 in
Kagan et al. (1973), S1 is normal (or degenerate with mass 1 at its mean). Now if ∆12 6= 0,
then similarly we get that S2 must also be normal; otherwise, c0 must be 0 which implies
that S1 is degenerate with mass 1 at its mean. However, neither of these is possible by our
previous assumptions.

Hence, ρ′′(γ(0), P0) > 0. Notice that TS(I) is compact, thus ρ′′(γ(0), P0) ≥ ε0 for some
ε0 > 0, i.e., condition (b) holds.

When W0 is not the identity matrix, we can base our analysis on the parameter space
of V = WW−1

0 . It can be similarly shown that the results hold.
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Appendix B

Proof of theorem 4.

Proof First consider a m-dim unit ball with its center O, on which P and Q are close to each
other, let θ be the acute angle between OP and OQ, i.e cos(θ) =< OP,OQ > the Euclidean
inner product. If we parameterize the path from OP to OQ by γ(t) = cos(t)OP+sin(t)OR,
where OR is the unit tangent vector at P such that OP,OQ and OR are on the same
hyperplane (OR is not unique when θ = 0), then γ(0) = P , γ(θ) = Q and |γ ′(t)| = 1 for
0 ≤ t ≤ θ, i.e γ is the arc from P to Q.

For Ŵ , let the angles between kth row of W0 and Ŵ be θk, k = 1, · · · ,m. Consider
the path γ from W0 to Ŵ whose component corresponding to the kth row of W0 is an arc
centering at origin on m-dim unit ball starting from W0 and ending at Ŵ . Parameterize kth

component of γ like above but rescale it by θk

η̂ where η̂ =
√∑m

k=1 θ
2
k such that γk(0) = W0k

and γk(η̂) = Ŵk and γk(.) has derivative of norm θk

η̂ . Then it is easy to see that |γ ′(t)| =√∑m
k=1(

θk

η̂k
)2 = 1, and |γ(t2) − γ(t1)| ≤ |t2 − t1| for |t2 − t1| small enough by the Mean

Value Theorem. It is obvious that γ(t) ∈ Ω for any t ∈ R.

For fixed {xi : i = 1, · · · , n}, (in the latter of this paper, we use ρ′(γ(η), .) to denote
∂
∂tρ(γ(t), .)|t=η and ρ′′(γ(η), .) to denote ∂2

∂t2
ρ(γ(t), .)|t=η,) expansion of ρ′(γ(η̂), Pn) about 0

gives:

ρ′(γ(η̂), Pn) = ρ′(γ(0), Pn) + η̂ρ′′(γ(η∗), Pn)

where η∗ lies between 0 and η̂. By assumption, the left side is zero, so that

√
nη̂ = −

√
nρ′(γ(0), Pn)

ρ′′(γ(η∗), Pn)
.

It will be sufficient to show that

√
nρ′(γ(0), Pn) = Op(1) (12)

and that

ρ′′(γ(η∗), Pn) is bounded away from 0 in probability. (13)

In the following, for any functin f we use En(f(S)) as empirical mean of f(S), S = W0X.
Let ∆ denote γ′(η̂). Also we denote ςn(t, S) = ψn(−t, S)−∏m

k=1 ψn(−tk, Sk) in the following
proofs.

Of the above statements, (10) follows from the fact that by taking expansions

17



Chen & Bickel

ρ′(γ(0), Pn)

= 2
∫

Re{(En[itT ∆SeitT S] − ∑m
k=1En[itk∆kSe

itkSk ]
∏

j 6=k ψn(tjSj))ςn(t, S)}dG(t)

= 1
n2m

∑n
i1,···,i2m=1{(Si1 − Si2)T ∆(Si1 − Si2)e−

||Si1−Si2 ||2

2

−2(Sim+1 − [Si1
1 ; · · · ;Sim

m ])T (∆Sim+1 − diagcol(∆[Si1 , · · · , Sim ]))e−
||S

im+1−(S
i1
1 ,···,S

im
m )T ||2

2

+[Si1
1 − S

im+1

1 , · · · , Sim
m − Si2m

m ]∆[Si1 − Sim+1 , · · · , Sim − Sim+m ]e−
||(S

i1
1 −S

im+1
1 ,···,S

im
m −S

i2m
m )||2

2 }

= Op(n
− 1

2 ), from U-statistics’ asymptotic normality (Koroljuk & Borovskich 1994).
(14)

Next, for simplicity let W ∗ = γ(η∗),∆∗ = γ′(η∗), then

ρ′′(γ(η∗), Pn)

= 2
∫
Rm{|En[(itT (∆∗)S)eitT W ∗X ] −

∑m
k=1En[(itk(∆

∗
k)S)eitkW ∗

k
X ]

∏
j 6=k En[eitjW ∗

j X ]|2
−Im{(En[(tT (∆∗)S)2eitT W ∗X ] − ∑m

k=1En[(tk(∆
∗
k)S)2eitkW ∗

k
X ]

∏
j 6=k En[eitjW ∗

j X ]

−
∑m

k=1En[tk∆
∗
kSe

itkW ∗
k

X ]
∑

j 6=k En[itj∆
∗
jSe

itjW ∗
j X ]

∏
l 6=k,j En[eitlW

∗
l

X ]) ∗ ςn(t,W ∗X)}dG(t),

where by checking weak convergence

∫
|En[(itT (∆∗)S)eitT W ∗X ] −

m∑

k=1

En[(itk(∆
∗
k)S)eitkW ∗

k
X ]

∏

j 6=k

En[eitjW ∗
j X ]|2dG(t)

is bounded below in probability by 1
2min||∆||=1,∆∈TS(W0)W

−T
0

d2

dη2ρ(I+η∆, P0)|η=0 (see Claim

3 in Appendix A) which is greater than 0, and that

|
∫
Rm Im{(En[(tT (∆∗)S)2eitT W ∗X ] − ∑m

k=1En[(tk(∆
∗
k)S)2eitkW ∗

k
X ]

∏
j 6=k En[eitjW ∗

j X ]

− ∑m
k=1En[tk∆

∗
kSe

itkW ∗
k

X ]
∑

j 6=k En[itj∆
∗
jSe

itjW ∗
j X ]

∏
l 6=k,j En[eitlW

∗
l

X ]) ∗ ςn(t,W ∗X)}}dG(t)|

≤
∫
Rm{(|t|2 +m|t|)En(|S|2) +m

∏m
k=1 tk(En(|S|))2} ∗ |ςn(t,W ∗X)|dG(t)|

= En|S|2
∫
Rm |t|2|ςn(t,W ∗X)|dG(t) +m(En|S|)2

∫
Rm

∏m
k=1 tk|ςn(t,W ∗X)|dG(t)

=op(1),

by recalling that ςn(t,W ∗X) →P 0 and is bounded by 2, and hence (13) holds.

The desired result follows.

18



Efficient Independent Component Analysis (I)

Appendix C

Lemma 8 Let (X1, · · · ,Xn) and (Y1, · · · , Yn) be IID sequence from two independent popu-
lation with cdf F and G separately, m = F−1(1

2) and m̂ = med(αnXi +βnYi : i = 1, · · · , n).
Assume that F has a first derivative, F ′(x) is continuous at m with F ′(m) > 0. The
following results hold:

(i). If αn − 1 = op(1) and βn − 1 = op(1), then m̂−m = op(1);
(ii). If

√
n(αn − 1) = Op(1),

√
nβn = Op(1), supxF

′(x) <∞ and
∫

[F (m− ty) − 1

2
]dG(y) = O(t) as t→ 0, (15)

then
√
n(m̂−m) = Op(1);

(iii). Especially, under conditions of (ii) with (15) replaced by E|Y | <∞,
√
n(m̂−m) =

Op(1); this can be extended straightforwardly to the sum of more than two random variables.

Proof Define H(t, a, b) = P (aX + bY ≤ t) =
∫
R F ( t−by

a )dG(y),a 6= 0, then it follows that
H(m, 1, 0) = 1

2 . Let Ψ = {f : f(x) = I(αx1 + βx2 ≤ t), t ∈ R, x ∈ R2}, then it is easy to
see that Ψ is a VC-subgraph with VC-dimension 4.

First we show (i). By ULLN (van der Geer 2000), supf∈Ψ |Enf(X) − Ef(X)| → 0
in probability, thus EnI(αnX + βnY ≤ m̂) − H(αn, βn, m̂) = op(1); and by definition
EnI(αnX + βnY ≤ m̂) − 1

2 = Op(n
−1), then H(m̂, αn, βn) − 1

2 = op(1). Since F is uniform

continuous, for any y ∈ R, F ( m̂
αn

− βn

αn
y) − F ( m̂

αn
) →p 0 as n → +∞, then by Dominated

Convergence Theorem we have
∫

R
[F (

m̂− βny

αn
) − F (

m̂

αn
)]dG(y) = op(1), i.e., H(m̂, αn, βn) − F (

m̂

αn
) = op(1),

thus F ( m̂
αn

)− F (m) = op(1). Since F ′(x) is continuous at m and F ′(m) > 0, it must follow
that m̂ = m+ op(1).

Next prove (ii). By P-Donsker’s property (van der Geer 2000, van der Vaart & Wellner
1996)

sup|f1−f2|<δ

√
n|[Enf1(X) − Ef1(X)] − [Enf2(X) − Ef2(X)]| →p 0, as δ → 0, n→ ∞.

From (i) we have m̂ = m+ op(1), thus

√
n|[EnI(αnX + βnY ≤ m̂) −H(m̂, αn, βn] − [EnI(X ≤ m) − 1

2
]| = op(1).

By definition of m̂,
√
n(EnI(αnX + βnY ≤ m̂) − 1

2) = op(1), so

√
n(H(m̂, αn, βn) − 1

2
) =

√
n(EnI(X ≤ m) − 1

2
) + op(1),

On the other side,
√
n(H(m̂, αn, βn) − 1

2)

=
√
n(m̂−m)H(m̂,αn,βn)−H(m,αn,βn)

m̂−m

+
√
n(αn − 1)H(m,αn,βn)−H(m,1,βn/αn)

α̂n−1

+
√
n(H(m, 1, βn

αn
) − 1

2).
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By dominated convergence theorem,

H(m̂, αn, βn) −H(m,αn, βn)

m̂−m
=

∫
F ( m̂−βny

αn
) − F (m−βny

αn
)

m̂−m
dG(y) = F ′(m) + op(1),

and
H(m,αn, βn) −H(m, 1, βn/αn)

α̂n − 1
= −mF ′(m) + op(1).

And by assumption there is a sequence of r.v.s Zn = Op(1) such that H(m, 1, βn/αn)− 1
2 =

βn

αn
Zn.

Hence,

√
n(m̂−m) =

√
n(EnI(X ≤ m) − 1

2) −√
n(αn − 1)mF ′(m) +

√
n βn

αn
Zn + op(1)

F ′(m) + op(1)
= Op(1).

(16)
For (iii), since E|Y | <∞ implies that in the proof of (ii) Zn = F ′(m)E[Y ] + op(1), (15)

still holds. In case of sum of more than two variables with one coefficient converging to 1
and others to 0, under conditions similar to (iii),

√
n-consistency of the median still holds

and the proof is very similar.

Note: Even if E|Y | = ∞, the lemma’s condition of (ii) may still hold, e.g: let X be
U [0, 1] and Y be Cauchy, m = 0.5, W.L.O.G let t > 0, then

∫
F (m− ty) − 1

2

t
dG(y) =

∫ ∫

|y|≤ 1
2t

ydG(y) −
∫

y> 1
2t

dG(y) ∗ 1

2t
+

∫

y<− 1
2t

dG(y) ∗ 1

2t
= 0.

In general cases, we need to check whether or not
∫
|ty|≤1

F (m−ty)−0.5
t dG(y) and

∫
|ty|>1

F (m−ty)−0.5
t dG(y)

are both bounded from ∞.
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