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1 Introduction

Let B = (B(t), t ≥ 0) denote a standard real Brownian motion started from B(0) = 0 and
Tx = inf {t : B(t) > x} the first passage time above level x ≥ 0. Then for ` > 0 and x 6= 0, the
process

(B(t), 0 ≤ t ≤ `) conditioned on Tx = `

may be called the Brownian first passage bridge of length ` from 0 to x.

It is well known in the Brownian folklore (cf. e.g. [5]) that such first passage bridges may be
represented in terms of the bridges of a 3-dimensional Bessel process. More precisely, for each
λ > 0 there is the identity in distribution

(B(t), 0 ≤ t ≤ ` | Tλ = `)
d
= (λ − BES3(t), 0 ≤ t ≤ ` | BES3(0) = λ,BES3(`) = 0)

where BES3 stands for a 3-dimensional Bessel process. But this representation obscures a
number of fundamental properties of Brownian first passage bridges which follow directly from
their interpretation in terms of a one-dimensional Brownian motion.

The point of this note is to record some of these properties and to suggest that Brownian
first passage bridges should be regarded as basic processes from which other more complex
Brownian processes can be derived by simple path transformations.

We begin with a section devoted to the discrete time analysis of the random walk case,
which is based on elementary combinatorial principles. This leads in Section 3 to an extension
of Vervaat’s transformation for Brownian first passage bridges and other related identities in
distribution. In a fourth part, we shall indicate extensions of these properties to a large class
of bridges with exchangeable increments.

2 The main result in discrete time

Fix two integers λ and n such that 1 ≤ λ ≤ n. Let S = (Si)0≤i≤n be a random chain such that
S0 = 0, Sn = λ. Suppose moreover that the increments, ∆Si = Si − Si−1, i = 1, . . . , n take
their values in the set {−1,+1} and are cyclically exchangeable, that is, for any k = 1, . . . , n,

(∆S1, . . . ,∆Sn)
d
= (∆Sk+1, . . . ,∆Sn,∆S1, . . . ,∆Sk) .

Note that the latter property is equivalent to the fact that for any k = 0, 1, . . . , n − 1, the
shifted chain:

θk(S)i =

{
Si+k − Sk, if i ≤ n − k
Sk+i−n + Sn − Sk, is n − k ≤ i ≤ n

, i = 0, 1, . . . , n .

has the same law as S.

A fundamental example of such chain is provided by the simple random walk conditioned to
be equal to λ at time n.

For k = 0, 1, . . . , λ−1, define the first time at which S reaches its maximum minus k as follows:

mk(S) = inf{i : Si = max
0≤j≤n

Sj − k} .
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When no confusion is possible, we denote mk(S) = mk.

Theorem 1 Let ν be a random variable which is independent of S and uniformly distributed
on {0, 1, . . . , λ − 1}. The chain θmν (S) has the law of S conditioned by the event {m0 = n}.
Moreover, the index mν is uniformly distributed on {0, 1, . . . , n−1} and independent of θmν (S).

The proof of Theorem 1 relies on a simple combinatorial argument. In this direction, denote
by Λ the support of the law of S. In particular, Λ is a subset of

{(s0, . . . , sn) ∈ Rn+1 : s0 = 0, sn = λ, and ∆si ∈ {−1 + 1}, for any i = 1, . . . , n} .

Lemma 2 For every s ∈ Λ, define the set

Λ(s) = {s, θ1(s), . . . , θn−1(s)} .

Then for any s ∈ Λ, the set Λ(s) of the paths in Λ(s) which first hit their maximum at time n,
i.e. Λ(s) = {x ∈ Λ(s) : m0(x) = n}, contains exactly λ elements and may be represented as

Λ(s) = {θm0(s), θm1(s), . . . , θmλ−1
(s)} . (1)

Proof: We can easily see from a picture that for any k = 0, 1 . . . , λ − 1, the path θmk
(s) is

contained in Λ(s). To obtain the other inclusion, it is enough to observe that if i 6= mk, for
k = 0, 1, . . . , λ − 1, then the maximum of θi(s) is reached before time n.

Remark. Lemma 2 is closely related to a combinatorial lemma in Feller [9] XII.6, p.412. Here
we complete Feller’s result by associating a path transformation to the combinatorial result.
Note also that it may be extended to any chain with exchangeable increments, see [2].

Proof of Theorem 1. For every bounded function f defined on {0, 1, . . . , n − 1} and every
bounded function F defined on Zn+1, we have

E (F (θmν (S))f(mν)) =
∑
s∈Λ

P (S = s)
1

λ

λ−1∑
j=0

F (θmj
(s))f(mj) .

But Lemma 2 allows us to write for any s ∈ Λ,

λ−1∑
j=0

F (θmj
(s))f(mj) =

n−1∑
k=0

F (θk(s))f(k)1I{m0(θk(s))=n} ,

so that

E (F (θmν (S))f(mν)) =
∑
s∈Λ

P (S = s)
1

λ

n−1∑
k=0

F (θk(s))f(k)1I{m0(θk(s))=n}

=
n

λ
E
(
F (θU(S))f(U)1I{m0(θU (S))=n}

)
,
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where U is uniform on {0, 1, . . . , n−1} and independent of S. Finally, it follows from the cyclic
exchangeability that the chain θU(S) has the same law as S and is independent of U , hence we
have:

E (F (θmν (S))f(mν)) = E(F (S) |m0(S) = n)E(f(U)) ,

which proves our result.

The following transformation could be viewed as the converse of that in Theorem 1; however,
it is actually a sightly weaker result.

Corollary 3 Let U be uniformly distributed on {0, 1, . . . , n − 1} and independent of S. Con-
ditionally on the event {m0(S) = n}, the chain θU(S) has the same law as S.

3 Main results in the Brownian setting

By obvious Brownian scaling, it is enough to discuss bridges of unit length. So let

(
F br

x (t), 0 ≤ t ≤ 1
)

d
= (B(t), 0 ≤ t ≤ 1 | Tx = 1) .

The following fact is fundamental, and obvious by either random walk approximation or Brow-
nian excursion theory. Write for an arbitrary real-valued process (X(t), t ≥ 0) and y ≥ 0

Ty(X) = inf {t : X(t) > y} and Xt = sup
s≤t

Xs .

Lemma 4 For each fixed λ > 0, the first passage process(
Ta(F

br
λ ), 0 ≤ a ≤ λ

)

is a process with exchangeable increments, distributed as

(Ta(B), 0 ≤ a ≤ λ | Tλ(B) = 1) ,

where (Ta(B), a ≥ 0) is a stable(1/2) subordinator; more precisely

E (exp(−αTa(B))) = exp(−a
√

2α) , α ≥ 0 .

Moreover, conditionally given the process (Ta(F
br
λ ), 0 ≤ a ≤ λ), or, what is the same, given the

past supremum process
(
F

br
λ (t), 0 ≤ t ≤ 1

)
of F br

λ , the excursions of F
br
λ −F br

λ away from 0 are

independent Brownian excursions whose lengths are the lengths of the flat stretches of F
br
λ and

correspond to the jumps of the first passage process
(
Ta(F

br
λ ), 0 ≤ a ≤ λ

)
.

The next statement follows immediately from Lemma 4.
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Proposition 5 Let

Rbr
λ (t) := F

br
λ (t) − F br

λ (t) , 0 ≤ t ≤ 1 .

Then (
Rbr

λ (t), 0 ≤ t ≤ 1
)

d
=

(
|Bbr(t)|, 0 ≤ t ≤ 1 | L0

1(B
br) = λ

)
where Bbr is a standard Brownian bridge and (L0

t (B
br), 0 ≤ t ≤ 1) is the usual process of local

times of Bbr at level 0. Indeed, the above holds jointly with

(
F

br

λ (t), 0 ≤ t ≤ 1
)

d
=

(
L0

t (B
br), 0 ≤ t ≤ 1 | L0

1(B
br) = λ

)
.

We point out that Proposition 5 can also be deduced from different well known path transfor-
mations. For instance, the transformation between |Bbr| and the Brownian meander Bme due
to Biane and Yor [5]. Specifically, we know that if we define Bme = (|Bbr|+L0

s(B
br), 0 ≤ s ≤ 1),

then Bme is a Brownian meander with mint≤s≤1 Bme(t) = L0
t (B

br). We may then use the re-
mark of Imhof [12] that Bme given Bme(1) = λ is a 3-dimensional Bessel bridge from 0 to λ,
so (λ − Bme(1 − s), 0 ≤ s ≤ 1) given Bme(1) = λ is a copy of F br

λ . The fundamental result of

Lévy: (B − B,B)
d
= (|B|, LB), where LB is the local time at 0 of B yields also Proposition 5.

The reflecting Brownian motion conditioned on its local time at level 0 up to time 1, and var-
ious transformations of it, have turned out to be of interest in a number of studies. See Lemma
46 and the discussion below Definition 109 in [17], and the references cited in [17]. Proposition
5 allows a number of results obtained by Chassaing and Janson in [6] to be reformulated in a
simple way with the Brownian first passage bridge regarded as the fundamental process from
which other similar processes can be constructed.

For convenience in formulation of these results, the following notation is useful. First, just
as in the discrete case, for ω ∈ C([0, 1]) and u ∈ [0, 1], let θu ◦ω be the path starting at 0 whose
increments are those of ω with a cyclic shift by u. That is

θu ◦ ω(t) =
{

ω(t + u) − ω(u) if t + u ≤ 1 ,
ω(t + u − 1) + ω(1) − ω(u) if t + u ≥ 1 ,

Observe the identity
θu ◦ θv = θw , where w = u + v mod[1].

Second, for ω ∈ C([0, 1]) and λ > 0, let

δλ ◦ ω(t) = λt − ω(t) , t ∈ [0, 1] ,

so that δλ ◦ω is the path −ω dragged up with drift λ. Note that the operator δλ is an involution,
i.e.

δλ ◦ δλ ◦ ω = ω ,

and that θu and δλ commute,
θu ◦ δλ = δλ ◦ θu .

The first proposition, just to illustrate the notation, is a weaker form of Lemma 4, with the
assertion of exchangeable increments weakened to cyclic exchangeability of increments.
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Proposition 6 Let Ta := Ta(F
br
λ ), 0 ≤ a ≤ λ. Then for each fixed a,

θTa ◦ F br
λ

d
= F br

λ .

Next, we present the analogs for continuous time of Theorem 1 and Corollary 3. We denote
by Bbr

λ the Brownian bridge from 0 to λ and recall its classical construction:

Bbr
λ

d
= δλ ◦ Bbr .

Theorem 7 Let ν be uniformly distributed over [0, λ] and independent of Bbr
λ . Define the r.v.

U = inf{t : Bbr
λ (t) = sup0≤s≤1 Bbr

λ (s) − ν}. Then the process θU(Bbr
λ ) has the law of the first

passage bridge F br
λ . Moreover, U is uniformly distributed over [0, 1] and independent of θU(Bbr

λ ).

The following consequence of Theorem 7 may be interpreted as a converse of the transfor-
mation although the latter is obviously not invertible.

Corollary 8 If U is uniformly distributed over [0, 1] and independent of F br
λ , then the process

θU(F br
λ ) is a Brownian bridge from 0 to λ.

The proof of Theorem 7 follows naturally from the discrete time result treated at the previous
section and some conditioned versions of Donsker’s invariance principle due to Liggett [15] and
Iglehart [11] which we first recall. Let (Sn)n≥0 be the simple random walk, that is S0 = 0 and
Sn =

∑n
k=1 ξk, where ξk, k ≥ 1 are i.i.d. symmetric, {+1,−1} valued random variables. It

follows, as a particular case of Theorem 4 in [15], that the càdlàg process (n−1/2S[nt], 0 ≤ t ≤ 1)
conditioned on the event {Sn = [n1/2λ]} converges weakly towards the Brownian bridge Bbr

λ ,
in the space D([0, 1]) of càdlàg functions. For convenience in the sequel, we will deal with the
continuous process (n−1/2(S[nt] +(nt− [nt])ξ[nt]+1), 0 ≤ t ≤ 1) rather than with (n−1/2S[nt], 0 ≤
t ≤ 1). The following lemma is straightforward from Liggett’s convergence result.

Lemma 9 The process

(B
(n)
λ (t), 0 ≤ t ≤ 1)

(def)
= (n−1/2(S[nt] + (nt − [nt])ξ[nt]+1), 0 ≤ t ≤ 1 |Sn = [n1/2λ]) ,

converges weakly, as n goes to ∞, towards the Brownian bridge Bbr
λ , in the space C([0, 1]) of

continuous functions.

The next step is to define a “discrete” first passage bridge just as we defined the discrete bridge
B

(n)
λ , and to check that it converges weakly towards F br

λ . We did not find such result in the
literature. However, with m0 = inf{i : Si = sup0≤j≤n Sj}, an invariance principle result due to
Iglehart [11] asserts that (up to time reversal), the conditioned process

(n−1/2(S[nt] + (nt − [nt])ξ[nt]+1), 0 ≤ t ≤ 1 |m0 = n) ,

converges weakly towards (Bme
1 − Bme

1−t , 0 ≤ t ≤ 1), where we recall that (Bme
t , 0 ≤ t ≤ 1) is

the Brownian meander. From the discussion after Proposition 5 and the introduction of this
paper, it follows that conditionally on {Bme

1 = λ}, the process (Bme
1 −Bme

1−t , 0 ≤ t ≤ 1) has the
law of the first passage bridge F br

λ .

The next lemma is obtained by following the same arguments as in the proofs of Theorems
(2.23) and (3.4) in Iglehart [11].
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Lemma 10 The process

(F
(n)
λ (t), 0 ≤ t ≤ 1)

(def)
= (n−1/2(S[nt] + (nt − [nt])ξ[nt]+1), 0 ≤ t ≤ 1 |Sn = [n1/2λ],m0 = n) ,

converges weakly, as n goes to ∞, towards the first passage bridge F br
λ , in the space C([0, 1]) of

continuous functions.

We are now able to end the proof of Theorem 7.

Proof of Theorem 7: Fix an integer n ≥ 1. Let (νi) be a sequence of r.v.’s which is
independent of (Si) and such that each νi is uniformly distributed on {0, 1, . . . , [i1/2λ] − 1}.
From Theorem 1, if Un = inf{t : B

(n)
λ (t) = sup0≤s≤1 B

(n)
λ (s) − n−1/2νn}, then the process

θUn(B
(n)
λ ) has the same law as F

(n)
λ . Moreover, Un is uniformly distributed on

{
0, 1

n
, . . . , 1 − 1

n

}
and independent of θUn(B

(n)
λ ). Then Lemmas 9 and 10 enable us to conclude.

Note that the weak limit of the law of F br
λ as λ → 0+ is that of −Bex, where Bex stands for

a standard Brownian excursion (i.e. a bridge with unit length from 0 to 0 of a 3-dimensional
Bessel process). Thus we also have as a corollary:

Corollary 11 (Vervaat [21], Imhof [13], Biane [4]) Let U be uniform [0, 1] and independent of
Bex. Then

θU ◦ Bex d
= Bbr .

Moreover, Bex can be recovered from Bbr := θU ◦ Bex as Bex = θm ◦ Bbr where m is the a.s.
unique time at which Bbr attains its minimum, and then m = 1 − U is independent of Bex.

Since for any u ∈ [0, 1], the shift θu preserves the amplitude of the trajectories, we deduce
from Theorem 7 that the maximum of the three dimensional Bessel bridge (or equivalently,
the amplitude of the first passage bridge) has the same law as the amplitude of the Brownian
bridge. The latter observation, as well as the following proposition, may be deduced from
general calculations for the law of the maximum of diffusion bridges, which may be found for
instance in Kiefer [14] or Pitman and Yor [18], [19].

In [8], Durret and Iglehart obtained the joint law of the maximum and the terminal value of
the Brownian meander:

P

(
sup

0≤t≤1
Bme

t ≤ x, Bme
1 ≤ λ

)
=

∞∑
k=−∞

(
e−(2kx)2/2 − e−(2kx+λ)2/2

)
, 0 < λ ≤ x .

Taking the derivative in the variable λ, we obtain the distribution of the maximum of the
3-dimensional Bessel bridge. From above and Theorem 7, we now deduce the following.

Proposition 12 For 0 < λ ≤ x:

P
(

inf
0≤t≤1

F br
λ (t) ≥ λ − x

)
= P

(
sup

0≤t≤1
Bbr

λ (t) − inf
0≤t≤1

Bbr
λ (t) ≤ x

)

=
eλ2/2

λ

∞∑
k=−∞

(2kx + λ)e−(2kx+λ)2/2 .

7



Letting λ tend to 0 in the above expression, we find the law of the maximum of the normalized
Brownian excursion

P

(
sup

0≤t≤1
Bex(t) ≤ x

)
= 1 + 2

∞∑
k=1

[1 − (2kx)2]e−(2kx)2/2

which is mentioned to be the same as the law of the amplitude of the Brownian bridge in
Vervaat [21] and in earlier works.

Another easy consequence of Theorem 7 is:

Corollary 13 Let µ be the a.s. unique instant when the process δλ ◦ F br
λ attains its minimum.

Then
θµ ◦ δλ ◦ F br

λ
d
= Bex ,

and consequently

θµ ◦ F br
λ

d
= δλ ◦ Bex .

Proof: Defined Bbr = θU ◦ δλ ◦ F br
λ , where U is independent of F br

λ . As the operators θ and δ
commute and δ is an involution, we have θU ◦ F br

λ = δλ ◦ Bbr, and we know from Corollary 8
that Bbr is a standard Brownian bridge.

On the other hand, if m (respectively, µ) is the instant when Bbr (respectively, δλ ◦ F br
λ )

attains its minimum, then it is clear pathwise that

m + U = µ mod[1] ,

and therefore
θµ ◦ δλ ◦ F br

λ = θm ◦ θU ◦ δλ ◦ F br
λ = θm ◦ Bbr.

We conclude applying Vervaat’s identity (cf. Corollary 11) which ensures that the right-hand
side above is distributed as Bex.

Next, recall the construction of the reflecting Brownian motion conditioned on its local time
which is given in Proposition 5. A variation of arguments used above enable us to recover
the collection of results obtained by Chassaing and Janson [6] via consideration of discrete
approximation by parking schemes. As a typical example, we focus on Theorem 2.6 (i) in [6]
which we now re-state.

Corollary 14 (Chassaing and Janson [6]) Set Bex
λ = δλ ◦ Bex, B

ex
λ (t) = max0≤s≤t B

ex
λ (s), and

Rex
λ (t) := B

ex
λ (t) − Bex

λ (t) , t ∈ [0, 1] .

Next, in the notation of Proposition 5, let (`(t), 0 ≤ t ≤ 1) be the process of the local times at
level 0 of Rbr

λ , normalized so that `(1) = λ. Finally, let µ be the a.s. unique time at which δλ ◦ `
attains its minimum. Then,

θµ ◦ Rbr
λ

d
= Rex

λ .
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Proof: By Proposition 5, Rbr
λ = F

br
λ −F br

λ and ` = F
br
λ . A variation of the classical argument

of Skorohod (see e.g. Lemma 2 in [3]) shows the identity

min
0≤s≤t

(λs − F
br
λ (s)) = min

0≤s≤t
(λs − F br

λ (s)) , for every t ∈ [0, 1] .

This entails that the instant of the minimum of δλ ◦ F
br
λ coincides with the instant of the

minimum of δλ ◦ F br
λ , and thus the notation µ for this instant is coherent with Corollary 13.

Now we have
θµ ◦ Rbr

λ = θµ ◦ F
br
λ − θµ ◦ F br

λ . (2)

Because µ is an instant at which F
br
λ increases, we have Rbr

λ (µ) = 0, and thus the left-hand side

in (2) is always nonnegative. On the other hand, the process F
br
λ is increasing, and increases

only at instants t such that F
br
λ (t) = F br

λ (t). By cyclic permutation, θµ ◦ F
br
λ is an increasing

process that increases only when θµ ◦ F
br
λ = θµ ◦ F br

λ . By Skorohod Lemma, we see that

θµ ◦ F
br
λ (t) = max

0≤s≤t
θµ ◦ F br

λ (s) .

An application of Corollary 13 completes the proof of our claim.

Remark. Assuming Proposition 5, Corollary 13 could also be derived from Corollary 14.

As another example of application, we point out the following identity in distribution which
appeared in [3].

Corollary 15 (Bertoin [3]) The laws of ranked lengths of excursions of Rbr
λ and Rex

λ away from
0 are identical.

Proof: This is immediate from Corollary 14.

This law of ranked lengths of excursions, and the associated laws of partitions of n for
n = 1, 2, . . . derived by random sampling from the lengths, are described explicitly in Aldous
and Pitman [1] and Pitman [17]; see especially Section 4.5 in [17]. Other proofs of Corollary
15 have been given by Schweinsberg [20] and Miermont [16]. Their analysis gives the deeper
result that the length of the first excursion of Rex

λ is a size-biased pick from the ranked lengths
of excursions of Rex

λ .

4 Extension to certain bridges with cyclically exchange-

able increments

In this section, we indicate a generalization of the previous results in the Brownian setting to
a large class of processes in continuous time with cyclically exchangeable increments. We start
by introducing some canonical notation.
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Let λ > 0 be fixed and Ω denote the space of càdlàg paths ω : [0, 1] → R such that ω has
no positive jumps, ω(0) = 0 and ω(1) = λ. In other words, Ω is the space of upwards skip-free
bridges with unit length from 0 to 1. We shall use the standard notation ω(t) = sup[0,t] ω for
the (continuous) supremum path.

For every v, t ∈ [0, 1], we set

θv ◦ ω(t) =
{

ω(t + v) − ω(v) if t + v ≤ 1 ,
ω(t + v − 1) + λ − ω(v) if t + v ≥ 1 ,

and denote by mv the largest instant of the overall maximum of θv ◦ ω, viz.

θv ◦ ω(mv−) ≥ θv ◦ ω(t) for all t ∈ [0, 1] and θv ◦ ω(mv−) > θv ◦ ω(t−) for all t ∈]mv, 1[.

In particular, m0 is the largest instant when ω reaches its maximum.

We consider a probability measure P on Ω for which the canonical process ω has cyclically
exchangeable increments. Informally, we should like to define the law corresponding to first
passage bridges, that is to conditioning ω to be maximal at time 1. In this direction, we recall
that the process of first (upwards) passage times of ω is denoted by

Tx = Tx(ω) := inf {t ∈ [0, 1] : ω(t) > x} , x > 0

(with the convention that inf ∅ = ∞). We introduce an independent uniform random variable U
and set Y = ω(1)−λU , so that conditionally on ω, Y is uniformly distributed on [ω(1)−λ, ω(1)].
Finally, anticipating notational coherence, we define P(· | m0 = 1) as the distribution of θTY

◦ω
under P, i.e.

P(· | m0 = 1) :=
∫ 1

0
P(θTω(1)−λu

◦ ω ∈ ·)du .

Under a simple additional hypothesis, we are able to define rigorously the law of ω conditioned
on reaching its overall maximum at time 1.

Proposition 16 Introduce L := {t : ω(t) = ω(t)}, the ascending ladder time set of ω, and for
every ε > 0, denote by

Lε := [0, ε] + L
the ε-right neighborhood of L. Suppose that there are real numbers bε > 0 such that for every
t ∈ [0, 1],

lim
ε→0+

bε

∫ t

0
1{s∈Lε}ds = ω(t) , in L1(P).

Then, when ε → 0+, P(· | m0 ≥ 1−ε) converges in the sense of finite dimensional distributions
towards P(· | m0 = 1).

Proof: It is easily seen that the set of times v ∈ [0, 1] such that the path θv ◦ ω remains
bounded from above by λ can be expressed as

{v ∈ [0, 1] : mv = 1} = {v ∈ L : ω(1) − ω(v) ≤ λ} .
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Similarly, one readily checks that

{v ∈ [0, 1] : mv ≥ 1 − ε} = {v ∈ Lε : ω(1) − ω(v) ≤ λ} .

This enables us to provide the following simple representation for the law of ω conditioned
on m0 ≥ 1 − ε. Specifically, introduce the probability measure Qε on Ω × [0, 1] given by

Qε(dω, dv) = cε1{v∈Lε}1{ω(1)−ω(v)≤λ}dvP(dω) ,

where cε > 0 stands for the normalizing constant. The cyclic exchangeability of the increments
of ω obviously implies that the distribution of θv◦ω under Qε can be identified as the conditional
law P(· | m0 ≥ 1 − ε).

Now the hypothesis of Lemma 4 ensures that for every bounded measurable functional
F : Ω × [0, 1] → R such that the random map v → F (ω, v) is continuous at v for dω(·) almost
every v, P(dω)-a.s., we have

lim
ε→0+

Qε (F (ω, v)) = Q (F (ω, v)) ,

where
Q(dω, dv) := a1{ω(1)−ω(v)≤λ}dω(v) P(dω)

and a = limε→0+ cε/bε is the normalizing constant. The statement follows.

Proposition 16 readily entails the generalization of results of Section 3. For instance, consider
an independent uniform [0, 1] variable V . By definition, the distribution of θV ◦ ω under
P(· | m0 = 1) is the same as that of θV ◦ θTY

◦ ω under P. Since V + TY mod [1] is again
uniformly distributed on [0, 1] and independent of ω, the latter is the same as the law of θV ◦ω
under P, which is P by the cyclic exchangeability of the increment. In other words, we have the
analog of Theorem 7. The analog of Proposition 6 can be derived by even simpler arguments.

Remark. We point out that the hypothesis of Proposition 16 is fulfilled in particular when P

is the distribution of a bridge from 0 to λ of a Lévy process with no positive jumps. Indeed,
recall that the supremum process X of a Lévy process with no positive jumps X can be viewed
as the local time at 0 for the reflected process X −X, which is Markovian. Using techniques of
excursion theory as in Fristedt and Taylor [10], one readily checks that X fulfills the condition
of Proposition 16, and thus the same still holds when conditioning on X(1) = λ (at least for
almost-every λ > 0 with respect to the law of X(1); and the word ‘almost’ may even be dropped
under some regularity condition on the latter).
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to Lévy processes with no positive jumps. Electr. J. Prob. 6 paper 14, pages 1-33.
http://math.washington.edu/ ejpecp/ejp6contents.html

[17] J. Pitman (2002). Combinatorial stochastic processes. Lecture notes for the St
Flour summer school. To appear. Available via http://stat-www.berkeley.edu

/users/pitman/stflour.ps.Z

[18] J. Pitman and M. Yor (1996). Decomposition at the maximum for excursions and
bridges of one-dimensional diffusions. It’s stochastic calculus and probability theory, 293–
310, Springer, Tokyo.

12



[19] J. Pitman and M. Yor (1999). The law of the maximum of a Bessel bridge. Electron.
J. Probab. 4, no. 15, 35 pp.

[20] J. Schweinsberg (2001). Applications of the continuous-time ballot theorem to Brow-
nian motion and related processes. Stochastic Process. Appl. 95, 151-176.

[21] W. Vervaat (1979). A relation between Brownian bridge and Brownian excursion. Ann.
Probab. 7, 141-149.

13


