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1. Introduction

Microarray time course experiments differ from other microarray experiments in that
gene expression values at different time points can be correlated. This may happen
when the mRNA samples at successive time points are taken from the same organism
or cell culture. Such longitudinal experiments make it possible to monitor and study
the temporal aspects of biological processes of interest for thousands of genes simulta-
neously. Two major categories of time course experiments are those involving periodic
and developmental phenomena, respectively. Periodic time courses typically concern
natural biological processes such as the cell cycle or circadian rhythms, where the time
profiles follow regular patterns (Cho et al., 1998; Spellman et al., 1998; Storch et al.,
2002). On the other hand, in developmental time course experiments, we measure gene
expression levels at a series of times in a developmental process, or after applying a
treatment such as a drug to the organism, tissue or cells (Chu et al. 1998; Wen et
al. 1998; Tamayo et al. 1999). In this case we typically have few prior expectations
concerning the temporal patterns of gene expression. The gene ranking method we
develop in this paper is mainly for developmental time courses, although it is straight-
forward to apply it to periodic time courses.

A typical microarray time course dataset consists of expression measurements of GG
genes across k time points, under one or more biological conditions (e.g. wildtype ver-
sus mutant). The number of genes G (10,000-20,000) is very much larger than the
number of time points k, which can be 5-10 for shorter, and 11-20 for longer time
courses. Many such experiments are unreplicated due to cost or other limitations, and
when replicates are done, the number n is typically quite small, say 2-5.

One of the statistical challenges here is to select nonconstant genes, that is, genes with
any change in expression level over time. Such genes are of interest to biologists be-
cause they are often involved in the biological processes motivating the experiment.
This challenge arises from the fact that there are very few time points, and very many
genes. The series are usually so short that we cannot consider using standard time series
methods such as the Fourier transform or wavelets. The gene ranking/selection problem
in replicated microarray time course experiments is relatively new. The most widely
used methods have focused on identifying differentially expressed genes for replicated
microarray experiments across two or more independent sample groups (e.g. Baldi and
Long 2001, Efron et al. 2001, Tusher et al. 2001, Dudoit et al. 2002, Lonnstedt and
Speed 2002, Broberg 2003, Ge et al. 2003, Kendziorski et al. 2003, Reiner et al. 2003,
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Smyth 2004). These methods may not be entirely appropriate as they do not address
the fact that microarray time course samples are often correlated. Only a few methods
have been proposed for ranking and selecting genes in the replicated microarray time
course context. Hero and Fleury (2002) and Fleury et al. (2002) described a valu-
able method called Pareto front analysis to rank and select genes using multi-criterion
optimization. Their Pareto fronts and the variants seek to select genes with large val-
ues for all the criteria (contrasts) of interest. Park et al. (2003) proposed a two-way
anova model with permutations to compare temporal profiles from different experi-
mental groups. Their approach is essentially in the same spirit as the standard F-test
with adjusted p-values, and ignores the correlation structure among times. Guo et al.
(2003) constructed a variant of the robust Wald-statistic, taking into account the pos-
sible within-subject correlations, to select genes with temporal changes. Bar-Joseph et
al. (2003) used a maximization technique to compare temporal profiles reconstructed
using B-splines from two nonhomogeneous time courses. Yuan et al. (2003) suggested
hidden Markov models, incorporating the dependency among times, to select differen-
tially expressed genes from multiple biological conditions. Luan and Li (2004) proposed
a B-spline model-based method to identify differentially expressed genes from periodic
time courses. Microarray time course experiments can involve correlations among the
observations for the same gene. The ordinary F-statistic comparing times, as we would
when comparing a number of groups, ignores such correlations, and is likely to be in-
efficient in the presence of temporal correlations. Even if it was effective, the question
of estimating 10,000 different variances needs to be considered.

In this paper we develop a multivariate empirical Bayes LOD score we call the M B-
statistic, and a T? statistic to rank genes in order of evidence of nonconstancy in
expression level over time, taking into account any correlations among observations
at different times, and the replication. In essence, we want to measure change across
time in relation to replicate variation within and correlation between times, keeping
the analysis as gene-specific as we can.

Suppose that for each gene g, g = 1,...,G, we have n, independent time series, and
that we model these as 7.7.d. random vectors from a multivariate normal distribution,
with gene-specific means p, and gene-specific covariance matrices 3,. We use the
natural conjugate priors for p, and ¥,. i.e., an inverse Wishart prior for 3, and a
dependent multivariate normal prior for p,. The details in this paper differ in two

ways from the standard conjugate priors. First, we also have an indicator I, such that



4 Yu Chuan Tai and Terence P. Speed

I, = 1 for nonconstant genes and I, = 0 for constant genes, and the priors for p, differ
in these two cases. Second, in order to get a simple closed form expression for the
M B-statistic, we assume that the gene-specific covariance matrix ¥, commutes with
the k x k projection matrix P = k‘llkl;ﬁ, i.e., for all g, PX, = 3¥,;P. Thus a k x k
inverse Wishart prior for X, is replaced by a (k — 1) x (k — 1) inverse Wishart prior
for a part of ¥, and an inverse gamma prior for the remainder. These two part priors
are independent, see section 5.2 for details.

The multivariate empirical Bayes model proposed in this paper is motivated by the
analogous univariate hierarchical model proposed in Lonnstedt and Speed (2002) for
identifying differentially expressed genes in two-color comparative microarray experi-
ments, and the more recent extensions by Smyth (2004). It is shown there that the
univariate log posterior odds is equivalent to the square of the univariate moderated t-
statistic f;, when all the genes have the same degrees of freedom. Furthermore, Smyth
(2004) derives improved hyperparameter estimates using the marginal sampling distri-
butions of univariate moderated t-statistic fg and the sample variance 53. Both the
univariate log posterior odds (B-statistic) in Lonnstedt and Speed (2002) and Smyth
(2004), and the univariate moderated t-statistic ¢, in Smyth (2004), consider just one
parameter or contrast at a time in the null hypotheses. They are not for null hy-
potheses with two or more parameters or contrasts of interest simultaneously. Smyth
(2004) introduces a partly-moderated F-statistic extending the univariate moderated
t-statistic, which is the ordinary F-statistic from the linear model, with a moderated
variance in the denominator. This partly-moderated F-statistic is useful for the si-
multaneous comparison of multiple uncorrelated coefficients or contrasts. However, as
mentioned above, this is not the case in the microarray time-course experiment con-
text. Both the M B-statistic and the 7?2 statistic derived in this paper allow multiple
parameters simultaneously, while retaining the correlation structure among these pa-
rameter estimates, together with the moderation property, and can be applied to both
single-channel and two-color microarray experiments.

This paper is organized as follows. After briefly explaining the rationale of moder-
ation in the microarray time course context in section 2, we formally state the null
and alternative hypotheses of the one-sample gene ranking problem. Section 4 shows
the moderated versions of the standard likelihood-ratio statistic and the one-sample
Hotelling T? statistic. We formally build up our multivariate empirical Bayes model

and derive the M B statistic and the T2 statistic in section 5. Section 6 describes
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how to estimate the hyperparameters of our multivariate empirical Bayes model, using
the information across genes. In sections 7 and 8 we derive the expressions for the
posterior odds under special and limiting cases of interest. In particular, we show in
section 7 that the posterior odds under the constraint that time point samples are
independent is equivalent to the product of univariate odds. Section 9 reports results
from a simulation study we perform to compare the M B-statistic and the T? statistic
with other statistics. We discuss the extensions for future work of our multivariate

empirical Bayes model in section 10.

2. Why moderation?

The idea of moderation has entered into the analysis of microarray data implicitly or
explicitly in several forms (Tusher et al. 2001, Efron et al. 2001, Lonnstedt and Speed
2002, Broberg 2003, Smyth 2004). Smyth (2004) explicitly introduced the moderated
t-statistic ¢ in the univariate general linear model setting, using parametric empirical
Bayes. Here the rationale is briefly explained in the microarray time course context.
Typically, genes with large overall amounts of change across time and with small repli-
cate variances are the best candidates to follow up. However, given thousands of
genes in a microarray time course experiment, the replicate variance-covariance ma-
trices are very poorly estimated. Genes with small amounts of change over time and
small replicate variances can have large between to within time F-statistics because
these statistics are inflated by small denominators. We consider such genes as likely
false-positives, i.e. incorrectly inferred to be changing over time. On the other hand,
genes with large amounts of change over time, but with large replicate variance, may
have small F-statistics, and such genes may be false-negatives. By moving (shrinking)
the gene specific variance (or more generally, covariance matrix) toward a common
value, estimated from the whole gene set, the total number of false positives and false

negatives can probably be reduced.

3. Hypothesis testing

The gene ranking/selection problem described above can be formally stated as a hy-
pothesis testing problem. However, in this paper we only seek a statistic for ranking
genes in the order of evidence against the null hypothesis; we do not hope to obtain
raw or adjusted p-values as in Ge et al. (2003).

For any single gene g, suppose that X, ...... , Xgn are n i.7.d. kx1 time course random
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vectors from multivariate normal distribution with gene-specific mean vector p, and
covariance matrix 3, denoted by Ni(py,3,), g =1, ..., G. We make the multivariate
normality assumption because relative or absolute gene expression measurements are
approximately normal on the log scale, and this is the most convenient extension to
the multivariate case. Our results are to be judged on their practical usefulness, not
on the precise fit of our data to a multivariate normal distribution. However, as will be
seen shortly, our final formulae involve the multivariate t distribution. Thus a measure
of robustness is built in, and so our approach will probably be about as effective for
elliptically distributed random vectors. To simpify the notation, the subscript g will
be dropped for the rest of the paper. The statistical models presented in the remaining
sections are for an arbitrary single gene g.

Following the notation in Bickel and Doksum (2001), the null hypothesis is denoted
by H, while the alternative hypothesis is denoted by K. The null hypothesis corre-
sponding to a gene’s expression levels being constant is H : g = pol, ¥ > 0, where
1o is a scalar representing the expected value of the gene’s expression level at any time
point under H, and 1 is the £x1 constant vector of 1s. The alternative hypothesis is

K @ p # pol, ¥ > 0. Later we consider the special case py = 0.

4. The moderated LR-statistic

A standard likelihood-ratio statistic can be used directly to test the null hypothesis H
against the alternative hypothesis K. According to standard multivariate results (e.g.
Mardia et al. 2000), under the alternative hypothesis that there are no constraints on

p and ¥, the maximum likelihood estimates are:

fx =X, T =118,

where S = (n — 1)t 3" | (X; — X)(X; — X)' is the sample covariance matrix. As in
Mardia et al. (2000), under the null hypothesis H, the maximum likelihood estimates
for g and X are

X 1'S7'X <~ :

where d = fix — fry. The likelihood ratio statistic for testing H against K becomes

LR = 2(I7% — [9%) = nlog (1 + le’s—ld) .
—
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The statistic nd'S~'d is the one-sample Hotelling T2 statistic, and by section 5.3.1b
in Mardia et al. (2000) it follows the Hotelling T2 distribution 7%(k — 1,n — 1) under
H. Thus under the null hypothesis ((n — k + 1)nd'S™*d)/((n — 1)(k — 1)) has an
F-distribution with degrees of freedom (k — 1,n — k + 1).

In the microarray time course context, the number of replicates is typically smaller
than the number of time points, and so S has less than full rank. Furthermore, as
discussed above, we wish to moderate the sample covariance matrix. Our moderated
S will take the form

5 vA+ (n—1)S
v+n—1

where v > (0 controls the degree of moderation, and A is the common £ X k matrix
toward which S is smoothed. In section 5.6 we give the theoretical reason for choos-
ing this moderated variance-covariance matrix S. We explain in section 7.3 how we
estimate v and A. Replacing S with S in the LR-statistic, the moderated LR-statistic

1S
LR = 2(I7% — I7%%) = nlog (1 + %a"sv—la) (1)

When all the genes have an equal number of replicates n, equation (1) is a monotonic
increasing function of nd'S—'d and hence they are equivalent. We define the quadratic
form nd’'S™'d = [|n'/2S/2d||? to be the moderated one-sample Hotelling 72 statistic.
This is quite similar to the T? statistic we derive in section 5. The moderated LR~
statistic and the moderated one-sample Hotelling 72 statistics are hybrids of likelihood
and Bayesian statistics since S is estimated using the multivariate empirical Bayes pro-

cedure we describe in section 7.3.

5. Multivariate hierarchical Bayesian model
5.1 Transformation

For each gene, let I be an indicator random variable such that

I 1 if K is true
10 if His true.

We suppose that I has a Bernoulli distribution with success probability p, 0 < p < 1
across genes. Let P = k_llkl;g be the k x k projection matrix onto the rank 1 space

of constant vectors, where 1, = (1,...,1) a k x 1 vector of 1s. Let P¢ = I, — P be the
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projection onto the orthogonal complement of R(P). We can write any vector pu € R*
as p = Pp + P, and in the case I = 0, the second term P¢p vanishes. We build up
our multivariate hierarchical Bayesian model by assigning an inverse Wishart prior for

the gene-specific covariance matrix 3 first:
3 ~ Inv-Wishart,((vA)™).

Given ¥, we assign multivariate normal priors for the gene-specific mean p for the case

of nonconstant genes (I = 1) and constant genes (I = 0), respectively.

pE, I =1~ N (0,7 'PEP + kPSP
pE,I=0~ N (0,7 'PEP).

Given X and I = 0, the covariance matrix PXP guarantees that p is a constant vector,
while when [ = 1, the extra component P*¥P¢ adds further variance to p so that it

becomes a nonconstant vector. The posterior odds are

PI=1X,8) p PXS[I=1)

P(I=0X,S) 1-pPX,S[I=0)

The above equality holds by the Bayes rule. In order to obtain the full expression, we
need to derive P(X, S|l = 1) and P(X, S|/ = 0). We have

PRSI = [ PR.SIZ.1)P(EID

= [ ([ P& Slnz 0Pz Daw) Psinas

= [ ([ PRl D PSPl D ) P15
= [ ([ PRz D Pl D) PiSIS. PRI

:/P(X|2,I)P(S|E,I)P(E|I)d2.

Thus, to derive the joint sampling distribution of X and S given I, we need to derive
P(X|%, 1) first. When I = 0, we have

PX[S.1=0)= [ P(X|p.Z.1 = 0)P(RIZ.T = 0)dn,
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and the same holds for P(X|X, I = 1). It turns out that given ¥ and I = 0, X has a
multivariate normal distribution with mean 0 and covariance matrix (n~!3X+7"'PXP).
To get a closed-form expression for the joint sampling distribution P(X, S|I) and hence
the posterior odds, we find it necessary to make an additional assumption, namely
that PYX = XP. It is shown in section 5.5 that this assumption gives us simple
distributional results. With this assumption, given ¥ and I = 0, X is a multivariate
normal distribution with mean 0 and covariance matrix (n™'3 + 77'XP). Similarly,
given ¥ and I = 1, X is a multivariate normal distribution with mean 0 and the
covariance matrix (n71X + 771XP + x1XP°).

For the rest of the paper, unless stated otherwise, we assume PX = XP, and we make

use of the following lemma:

Lemma 1 Suppose T is any k x k orthogonal matriz whose first row is constant. Write
T = (TE),TII)/, where Ty is the first row of T, and Ty is the remainder. Then, for
any X > 0 satisfying PX = P, TET =3 is a k x k block diagonal matriz with the
scalar 5% > 0 as the first block and (k—1) x (k—1) matriz 31 > 0 as the second block:

1.e.
;= 52 0
TYXT =¥ = ~
0o X
Proof:

From the condition PX = XP, we conclude that the row and column sums are all
equal, i.e., for all 7 and 7, Zle oij = Zle oij = «, say. We have a > 0 because

1’21 = a1'1 = ak > 0 by positive definiteness. Now we can write

TST — TOETE) TOET:1 |
T,XT, T,XT)

We now show that TOET/1 = 0. We have TyX = ak,"%ll, and thus
T()ET = Oék’_i]. Tl = ak™ (Tl ) = 0,

since T11 = 0.
We next show ToXT, > 0 and T;XT] > 0. First,

T()ETO = ak™ (TO ) =a>0.
Next, take a (k — 1)-vector a # 0. Then

aT YT a=(Ta)X(T)a) > 0.
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This proves that T; 3T, > 0, and the proof is complete.

As an example, let T be the Helmert matrix, where the ji—th element of T is de-
fined as
ti=1/Vk for j=1i=1 .,k
ti=1/3/j(G—1) for 2<j<k1<i<j-1
ti=—0—1)/vi(i—1) for 2<j<ki=j
tjiy=0 for 2<j<k—-17+1<i<k.
Here T is partitioned into its first row T (1 x k) and its last k-1 rows T ((k—1) x k).
Since the Xj,...,X,, are i.i.d. N(u,X), the transformed random vectors TX; are also

multivariate normally distributed with mean Tp and covariance matrix f], ie.
TXy, -, TXy T, X ~ N(Tup, ).

By lemma 1, the matrix 3 is a block diagonal matrix with 2 as the first block, and
il as the second block. Defining 7; = k=1 2?21 Xij, then VkZ; and the random vector
T X; are independent and normally distributed, with distributions

{ VEF|Top, 52~ N(Top,52),

T, X|Tip, 21 ~ N(Tip,Z)).

This transformation allows us to separate the gene expression changes into constant
and non-constant changes.
5.2 Priors
The prior for 3 is first set through the independent priors for 52 and f)l. We suppose
that 62 and il are independently distributed, with an inverse gamma distribution with
shape parameter £/2 and scale parameter £\?/2, and an inverse Wishart distribution

with degrees of freedom v and scale matrix vA, respectively (Gelman et al. 2000), i.e.
&2 ~ inv-gamma (%5, %5)\2) ,
(2)
3 ~ Inv-Wishart,((vA) ™).
The prior for T has four parts. We assign independent priors to Top and Ty,

separately for the cases I =1 and I = 0. For the case [ = 1, priors are

Tou|o®, I =1~ N (0,7'5%),

Tl#f’§17[ =1~N (0,7’]_1§1> s
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where 6 > 0 is the mean, and x > 0 and n > 0 are scale parameters. When I = 0,

Ty p = 0 with probability 1. Thus, the priors in this case are

Top|o?, 1 =0~ N (0,x7'6%),
(4)
T1[L|21,I:0 =0.

It is reasonable to assume P(Tou|52, I = 0) = P(Top|?, I = 1) for large genome-wide
arrays since there is no obvious reason why the expected grand mean of the expression
levels for nonconstant genes should differ from that of constant genes. For two-color
comparative microarray experiments, it is also reasonable to assume 6 = 0.

5.3 Likelihoods

Define 2 = n ' > " | #; and T:X = n~' Y7 | T)X,. By a standard property of the
multivariate normal distribution, Z and T;X are independent. The independent sums
of squares and products associated with Z and T, X are s = (n—1)"' 30" (& — )7,
and S; = (n— 1) 3" (T, X; — T:X)(T,X; — T1X)', respectively. It is well known
that z and s? are sufficient statistics for Top and 52, while T X and S; are sufficient
statistics for Ty and il, respectively. It is sufficient to set up the likelihoods of these

four random variables for our hierarchical model, and these follow from

( VkZ | Top, 6% ~ N (Top,n'5?)

ks® |67 ~ (n—1)716"x; 1,

T, X |Tip, E ~ N (Tlu,?flfh) ; ®)

Sl ‘ il ~ Wishartn_l <(n - 1>_1§31> .

5.4 Univariate joint sampling distribution
Once the priors and likelihoods are set, the joint sampling distributions can be deter-
mined for the cases I = 1 and I = 0. For the case I = 1, the joint sampling distribution

1s written as

P(VkZ, ks*, T1X, 8|1 = 1)

:////P(\/Ea?,k,g?"rli,Sl|T0u’5z,Tlu’il’[:1)

P(Top, 5%, Typt, 31|11 = 1) dTop d52 d Ty pu d3.
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Since we assume that (Top,52) and (Typ, %) are independent, and (v/kZ, ks?) and

(T1X, S;) are also independent, given (Tou,5%) and (T, X1), respectively, the above

expression becomes

//P(\/Eiz,k32|T0u, 62,1 = 1)P(Top, 5|1 =1)dTopds? x
//P(Tli, Si|Typ, 51,1 = 1) P(Typ, S| T = 1) ATy dS, (6)

= P(Vkz,ks*|I = 1)P(T,X,Sy|I = 1),
where

P(WVkZ ks*|I = 1) = /P(\/Eﬂ&?, I =1)P(ks?|62,1 = 1)P(6%I = 1)d5>.

Now VkZ|62,I = 1 is normally distributed with mean # and variance (n~' + x') 52.
The joint sampling distribution of vkZ and ks? is therefore

1
[ (M) ks ) (nT—l)%mfl) <%> 2¢

CEDT(E) Vori e

P(WVkZ ks*|I = 1) =

n—l4r—1
2

- -1 (n+€)
(WEIH)Q + ks*(n—1) + /\2£> ?

Following Smyth (2004), the univariate moderated ¢-statistic is defined as
{=n2(k2z - 0)5",

where §2 = (n — 14+ &)7!((n — 1)ks? + £A?) is the reciprocal of the posterior mean of
572 given ks?. By Smyth (2004), the statistic ¢ is independent of s> and distributed as
a scaled ¢ with n —1+¢ degrees of freedom and scale parameter /£~ (n + k) (Gelman
et al. 2000). Thus
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The distribution of £ given I = 0 is the same as that given I = 1.
5.5 Multivariate joint sampling distribution

In this section we derive the joint sampling distribution of T;X and S;. When I = 1,

it can be written as

PT,X, Sy = 1) = /P(T1K|f31, [ = DPS S0 T = DP(E|T = 1)d5,.

Since P(T\X|%,1 = 1) = /P(TK;TW, 1,1 = 1)P(Ty1p|E1, I = 1)dTyp, the
first term inside the integral, the distribution of T;X, given >, and I = 1,is (k — 1)-

variate normal with mean 0 and variance (n=! +n~1) 3. T herefore, the joint sampling
distribution of T;X and S, given I = 1 is

P(TX,Si|I=1)=
/P(Tlmil, [ =1)P(S:|Z,1 = 1)P(Z,|I = 1)d%, 7)

= /(2#)_%(’“_1) ‘(n‘1 +HE, = exp {—%(Tlf)/ ((n_1 + 77_1)21)1 Tli} X

(n — R0 |S 30018, B0 Dy fAir(S (0 - 1)8,)}

25(n=D(k-DT, (1)

WG INER SHETC 6:Ep{ Lr(vAST )}

ax
221/(k UFk l(%) !

(27T>—%(k—1)(n_1)%(k 1)(n—1) ’S ‘ (n—k— 1)’ ’% L(k-1)v (n—1+n—1)*%(k*1)
22 (1= D(-Dogv =Dy (=)D (%)

/|§31|_%(n+y+k)><

exp {—g ((Tli)’ ((n—l +n7h) il) T X + tr(Z7 (n — 1)S;) + tr(yAfz;l)) } A3,
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The last integrand in equation (7) is
/‘il‘é(n+u+k)x

(8)
exp {—%tr <§]1_1 ((TF1 +p 7! TlﬁlT/1 +(n—1)S; + VA)) } 4.

Using the probability density function of the inverse Wishart distribution (Gelman et
al. 2000), equation (8) integrates to

2%(k—1)(n+1/)1'1k_1 ( n—2&-y )

I Fot)” (9)
(nt+n ) T/ XXT,+(n—1)S; +vA

Equation (7) becomes

P(Tlx, Sl|[ - 1) -

' (nJ”')

2 3(k=1)
Dot (%57) Tea (

x (n— 1)%(kfl)(nfl)yfé(kfl)nﬂ_f%(kfl) (nil 4 7771)_

)

AN

|A|~27|S,|2(n k=D
L1 + (n71 + nfl)yA)fl(Tlilex)/ + (,,TAl)fl Sl|%(n+u)

n

X

Thus, given I = 1, T;X and S; follow a Student-Siegel distribution (Aitchison and
Dunsmore, page 257). Following Aitchison and Dunsmore’s notation, this distribution

is denoted by
StSiy_1(v;0,(n "+ HA;n —1,(n —1)"'wA).

5.6 Multivariate moderated ¢-statistic
A multivariate moderated ¢-statistic t is defined, in the hope that it will serve as a

useful complement to the multivariate log posterior odds. We write

[ SIS

T:X, (10)

where Sy is the inverse of the posterior mean of X;! given S,

1 (n=1)Si+vA
 on—14v

S = [E(X{'S))]
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By Gupta and Nagar (2000), the Jacobian transformation from T;X to t is J(T;X —
t) = [n~1/2SV?|. Substituting for T;X in terms of £ in the joint sampling distribution
of T:X and S;, and multiplying the resulting expression by J(T;X — t), the joint

sampling distribution of t and S; is derived:
P(t,Si|I=1) =

I‘kfl n+v—1 ’SI|%(n—k—1)

X
n—1 v v Lip— v _ Lintrv—
Ly (%5) Toor (3) [ZA 2D [Ty + (24) 18y 20D

I (ntv —5(k=1)
o () e

1 n o\ )
(14 (5 )ee)
n—14+v \n+n

The above expression factorizes into parts involving S; only and t only, proving that

t and S; are independent. It is apparent that t has a multivariate t-distribution
with n 4+ v — k + 1 degrees of freedom, scale parameter n + v — 1, covariance matrix
7~ (n 4 n)Ix_1, and mean vector 0. This distribution is denoted by t|/ = 1 ~

te1(n+tv—k+1,n+v—1,0,7""(n+n)I;_1) (Gupta and Nagar 2000) with probability

density function

~ I (2t —3(k=1)
Pl =1)= W_%(k_l)r (nSVQkL) (n ;; 77) (n—1+ I/)_%(k_l)x
2

1 n ~r~ 7%(n+u)
(1+ (i )Ee)
n—1+v \n+n

It is straightforward to see that t|1 = 0 ~ t;_;(n+v—k+1,n+v—1,0,I;_1). Given I =
1, S; is distributed as generalized type-1I beta distribution with parameters (n —1)/2,

(11)

v/2, scale matrix vA/(n — 1), and location matrix 0. The distribution is denoted
by GBI, ((n—1)/2,v/2,vA/(n —1),0) (Gupta and Nagar 2000) with probability
density function

‘Sl|%(n—k—1)

Bror("5 5) [ 120D T + ()18 20D

S| —

P(SiI=1)=
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The marginal sampling distribution of S; does not depend on [ so that P(S;|I =0) =
P(S{|I =1).

5.7 Posterior Odds
The posterior odds are the probability that the expected time course p is nonconstant
(i.e.,I = 1) over the probability that p is constant (i.e., I = 0), given the sufficient
statistics ¢, ks?, t, and S;. Following Smyth’s (2004) notation, we denote the multivari-
ate posterior odds by

P(I =1t ks t,S)) p P(t,ks®t,S|=1) p PE|I=1)

© P(I=0|,ks?,t,S;) 1—pP(i ks?t,S4]I=0) 1—pP(t|I=0)

The last equality holds because t,s%,t, and S; are mutually independent and the
distributions of £, s> and S; do not depend on I. Plugging in the density functions of
t in section 5.6, and defining T2 = t't, O become

3(n+v)

o__P" ( 7 )%(H) n—1+v+tt
n+1 n—1+u+(ni+n>f’£

l=p
D ( n )5(k1) n—1+v+T°
I—-p\n+n n_1+y+(L)f2

n+n

Following the tradition in genetics, the log base 10 of the above expression is called the
LOD score. To distinguish it from the LOD score (also called the B-statistic) in the
univariate model of Lonnstedt and Speed (2002) and Smyth (2004), the multivariate
LOD score in this paper is called the M B-statistic,

MB = logloO. (13)

When all genes have the same number of replicates n, equation (13) is a monotonic
increasing function of T2 = t't. This shows that the M B statistic is equivalent to the
T? statistic when n is the same across genes, and therefore, one is encouraged to use
the T2 statistic in this case since it does not require the estimation of n and leads to
the same rankings as equation (13). Under H, (k—1)"'T? has an F distribution with
degrees of freedom (k—1,n+v —k+1), or equivalently, (n+v—k+ 1)~ (n+v —1)T?
has a Hotelling 7% distribution 7%(k—1,n+v—1). It turns out that O (or equivalently,

the M B-statistic) simplifies in several special and limiting cases of interest. We discuss
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these in sections 7 and 8.

6. Hyperparameter estimation

Section 5 shows that the M B-statistic for assessing whether or not a time course is
constant depends on (k% — k + 6)/2 hyperparameters: v, A,n, and p. In practice, we
need to estimate these hyperparameters, and plug in our estimates into the formula for
gl, t, O,...etc. Slightly abusing our notation, we will use the same symbols for these
estimates, relying on context to make it clear whether we are assuming the hyperpa-
rameters known or not. In our multivariate model, many more hyperparameters need
to be estimated, compared to the univariate models in Lonnstedt and Speed (2002)
and Smyth (2004), both of which have 4 hyperparameters. Smyth (2004) derives closed
form estimators for the hyperparameters in the univariate linear model setting, using
the marginal sampling distributions of the statistic £ and the sample variance s, and
shows that the estimators are better than the simple estimators in Lonnstedt and
Speed (2002). Following Smyth (2004), the aim of this section is to derive estimators
for the hyperparameters in our multivariate model. In general, the hyperparameter n
associated with the nonconstant case I = 1 is estimated based on only a small subset of
genes, while v and A are estimated using the whole gene set. Instead of estimating the
proportion of differentially expressed genes p, we only plug in an user-defined value for
p since the choice of p does not affect the rankings of genes based on the M B-statistic.
6.1 EB estimation of v and A

The hyperparameter v determines the degree of smoothness between S; and A. The
method we use to estimate v builds on that used to estimate dj in section 6.2 in Smyth
(2004). However, unlike dy in Smyth (2004), v is associated with the (k-1) x (k-1) di-
mensional matrix f]l. Therefore, a method appropriate to this multivariate framework
is needed. Let Ty; be the j-th row of Ty. Then T;;X,,...,T{;X,, are n independent
scalar random variables. Since T has k-1 rows, it follows that we have k-1 sets of such
data. Let ©; be the estimated prior degrees of freedom for the j-th set of data based on
the method proposed in section 6.2 in Smyth (2004). Our estimation of v is based on
the following two-step strategy. For the simulation study, the constraint that v > k+5
is enforced because this guarantees that the third moment of 3 exists (Gupta and
Nagar 2000) and the corresponding s simulated are more stable. Furthermore, such
constraint guarantees the positive definiteness of the estimated A. As the first step,

set v as U = max(mean(V;),k + 5). This estimated  is used to estimate A. Once A
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is estimated, ¥ is reset to be o = mean(?;). In practice, one can even just plug in a
user-defined value vy which gives the desired amount of smoothing. In such a case, the
first step sets 7 = max(vy, k +5). This ¥ is used to estimate A. After A is estimated,
U can be reset to the user-defined value 1.

Our estimate of A comes after the first step in the estimation of v. Section 5.6 shows
that under our model S; follows the generalized type-II beta distribution, with the
expectation (v — k)"'vA. By the weak law of large numbers, S; converges in prob-
ability to (v — k)"'vA. We thus estimate A by o~'(# — k)S;. If # — oo, then A is
estimated by S;. It is shown in our simulation study that this estimate of A is close to
its true value. The above estimates work well on real data. A theoretical analysis of
the estimation of our hyperparameters will be given in a later paper. For the moment
we content ourselves with obtaining reasonable estimates.

6.2 EB estimation of 7

The hyperparameter 7 is related to the moderated t of nonconstant genes. The method
we use to estimate n builds on that of estimating vy in Smyth (2004), except that

we now need to deal with the multivariate case. Let #; be the jth element of t,

j = 17 ..,l{? — 1. i.e., Z?j = n1/2§j_1T1jX where S? = (n — ].)_1 Z?:I(lexi — leX>2,

§5=(n—1+v)""((n—1)s; +vA?) and A} is the jth diagonal element of A. As in
section 6.3 in Smyth (2004), each t~j gives an estimate of n, call it 7;, based on the top

p/2 portion of genes with the largest |¢;|. We set ) to be the mean of 7);, j = 1, ..., k—1.

7. Special cases

This section derives expressions for the posterior odds under additional constraints on
the distributions of p and 3.

7.1 ¥ = 0%,

The case ¥ = %I, corresponds to the fact that the time samples are independent
across different time points, and the variances at different times are equal. This special
case is of interest because it corresponds to the standard microarray analysis problem
of comparing k different independent groups (e.g. k treatments). It is clear that if
Y = 0%l then PX = XP and 3= 0?I;. Suppose that the prior for o2 is

1 1
o ~inv-gamma | =v, =vA\? | .
22

Define s? = (n —1)7' 37" | (T;X; — T1;X)?, 82 = (n— 1+v) ' ((n —1)s? + vA?), and

j
th = nl/QleXféj_l, j=1,..,k — 1. In this case, the posterior odds are equivalent to a
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product of k — 1 independent univariate odds:

(n+v)

1(k—1) k-1 _ -2
O:L( n )2 n—1+v+t; (14)

and the M B-statistic is equivalent to the sum of £ — 1 univariate B-statistics.
7.2 X =0iP + 03I, — P).

This slightly more general case corresponds to an assumption that the distribution of

=

the X, is exchangeable across times. It should and does lead to the same expression

as we obtained in section 7.1. Set the priors for o7 and o3 as

1.1

o7 ~inv-gamma | =&, =EN? |,
2772
1

02 ~ inv-gamma 51, Elm2 ,

¢ >0and !> 0. Define 33 = (n — 1 +1)7'((n — 1)s + Im?), where s7 is the same as
that defined in section 7.1. Denote the individual univariate moderated t-statistics by
t; =n'/?Ty;X5; ', j=1,..k— 1. Using the fact that TPT is a k x k 0 matrix with
the (1, 1)-element replaced with a 1, 3 is found to be a diagonal matrix with o7 as the
first diagonal element, and o2 in the remaining k& — 1 diagonal entries. The posterior

odds become
% (n+1)

o P ( n )%(k_l)]ﬁ n—l—l—l—i—t}2 (15)

n+n

essentially the same as equation (14).

73 pu=0

A case of special interest is H : p = 0, i.e., the gene stays at 0 over time. This is a sub
hypothesis of H : u = pol. In this case, the assumption PX = P can be dropped.

The priors are

Y ~ Inv-Wishart,((vA)™"),
pE, 1 =1~ Ny0,77'%),
pl|=, I =0~ N0,0),

and it is straightforward to show that the posterior odds O become

N . %(n+1/)
n—14+v+T?

o1t (:h)

[NIE

(16)
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In this case, the multivariate moderated t-statistic is t = n%g_%f, where

S=m—-14v)" ((n—1)S+vA), and T? = t't. Under H, k=T has an F distribution
with degrees of freedom (k,n + v — k). The T? statistic is identical to the one-sample
moderated Hotelling 72 statistic in section 4. It is easy to show that, here, as in section
5.6, S is independent of I and is distributed as a generalized type II beta distribution,
with dimension parameter k, degrees of freedom (n — 1)/2 and v/2, and location and

scale matrices (n — 1)7'vA and 0, respectively, namely

1 |S|%(n—k—2)
B3 5) A DL+ () 7 sy

n—1

P(S|I=1)=P(S|I =0) =

To calculate g, we need to estimate v and A. This is similar to section 6.1 except
that we are dealing with a k£ x k matrix. The parameter v is first estimated based
on the transformed data TX;,..., TX,,, and then we apply the same procedure as in
section 6.1; putting v as v = max(mean(v;),k + 6),j = 1,...,k. This estimated v is
used to estimate A. Once A is estimated, ¥ is reset to be 7 = mean(7;). As in section
6.1, we can even just plug in a user-defined value vy which gives the desired amount
of smoothing. In such case, the first step sets o = max(vy, k + 6). This ¥ is used to
estimate A. After A is estimated,  is reset to the user-defined value vy. The matrix
A is estimated by 771 — k — 1)S. If o = oo, A is estimated by S. We also use this
procedure described above to estimate the S for the one-sample moderated Hotelling
T? statistic in section 4.

When k£ = 1, the above expression reduces to the univariate posterior odds in
Lonnstedt and Speed (2002) and Smyth (2004).
7.4 n=1.
When n = 1, that is, when there is no replication at all, each gene has its own unkown
variability. The multivariate moderated t-statistic becomes t = A~/2T;X. The pos-
terior odds are obtained by plugging in n = 1 in the equation (12), and are found to
be a function of T1X only. Since there is no replication, our hyperparameters must be
assigned values, for example from previous experiments.
7.5 k=2
When k = 2, i.e. when there are only two time points, the alternative hypothesis states
that there is change between these two time points. Our multivariate model should

and does reduce to the univariate model in Lonnstedt and Speed (2002) and Smyth
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(2004). The posterior odds become

' - 3(ntv)
2 —
L=p\n+n n—1+u+<ni+n>t~2

8. Limiting cases

We now list a number of limiting cases, for most of which the answer is either known
or expected.

8.1 v — oo.

In this case, the smoothed multivariate variance-covariance matrix S, reduces to A.
The multivariate t-statistic is thus t., = n'/2A~Y2T,X, and Tfo = t_to, and the

posterior odds become

3(k=1) 1 _
o= h) R
l—p\n+n 2\n+n

8.2 v — oo and ¥ = 0°I.
As in section 7.1, define fooj = n1/2/\*1T1jX, 7 =1,..,k — 1. The posterior odds

become
Lk—1) k-1
2 1
o=-"_ d exp | = n ..
1—p\n+n 2\n+n/) ="

J

83 v —0.

In this case, the multivariate moderated t-statistic reduces to the ordinary unmoderated
L , .

multivariate ¢-statistic, t = n%S1 T, X. Let T? = t't. The posterior odds become

5 (k=1) 1 T2

2 —

O:L( n > y n—1+
L=p\ntn n—1+ (1)1

_1
Here S, * can be obtained by using a g-inverse.
8.4 v —0and X = o%l,.
In this case, the univariate moderated t-statistic in section 7.1 reduces to the unmod-

erated t-statistic, £; = t; = n'/?Ty;Xs; ', j = 1,...,k — 1. The posterior odds become

o-_ P ( 7 )Wmﬁ n—1+1%
C1l-p\n+ny )

o \n -1+ (2

1
Eﬂ

2
t5
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8.5 v — o0 and p=0.
In the case of ¥ — oo and p = 0, the multivariate moderated t-statistic in section 7.3

becomes to = n2A"2X, and ffo = t__to. The posterior odds become

k
D n 1 n 72
o=_2_ - T2 ).
1—p(n+n> mp(? <n+n) °°)

8.6 v —0and u=0.

In this case, the multivariate unmoderated t-statistic is t = n%S’%X, and T? = t't.

=

The posterior odds become

N[ =
3

o P ( n )%k n—1+T7
t=pAntn) \n-1+ (34) 1

9. Simulation Study

9.1 Method

In this section we report on a small simulation study based on an actual example we
have met. We simulate 100 data sets, each with 20, 000 genes. The genes are simulated
independently, which we regard as an assumption that makes sense to compare meth-
ods, but it should be kept in mind that gene expression measures in real data can be
quite dependent. In each simulated data set, 400 out of the 20,000 genes are assigned
to be nonconstant. i.e., p = 0.02. Each gene is simulated with three independent repli-
cates (n = 3) and eight time points (k = 8). The other hyperparameters are: v = 13,
£=3,2=0.3, 0 =0 (two-color experiments), x = 0.02, n = 0.08, and

14.69 0.57 099 040 0.55 051 —-0.23
0.57 1536 1.22 0.84 1.19 091 0.86
099 1.22 1441 247 181 1.51 1.07
A= 0.40 084 247 1705 240 232 1.33 x 1073,
0.55 1.19 181 240 15.63 3.31 2.75
0.51 091 151 232 331 1338 3.15
—-0.23 0.86 1.07 133 275 3.15 1290

The correlation matrix of A is
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1 0.04 0.07 0.03 0.04 0.04 —0.02
0.04 1 0.08 0.05 0.08 0.06 0.06
0.07 008 1 0.16 0.12 0.11 0.08
0.03 005 016 1 0.15 0.15 0.09 ;
0.04 008 0.12 015 1 023 0.20
0.04 0.06 0.11 0.15 023 1 0.24
—0.02 0.06 0.08 0.09 0.19 0.24 1

and we see clear evidence of serial correlation. The statistics compared are the (1)
M B-statistic, or equivalently, the T2 statistic; (2) M B-statistic in the special case
3 = 0% (section 7.1); (3) M B-statistic in the limiting case v — oo (section 8.1);
(4) M B-statistic in the limiting case v — 0 (section 8.3); (5) ordinary F-statistic
from a two-way anova with time and replicate effects; (6) partly-moderated F-statistic
proposed in Smyth (2004) from a two-way anova model with time and replicate ef-
fects; (7) one-sample moderated Hotelling T statistic ||n!/2S~/2d||? derived in sec-
tion 4, or equivalently, the moderated L R-statistic, where the degree of moderation
and the common matrix toward which each sample covariance matrix moves is es-
timated by using the same method estimating v and A in section 6.1, see section
7.3 for a discussion on estimating S. (8) The variance across time course replicates
(nk—1)7'>" Zle(Xij — Z)?. A comphrehensive comparison among all the pub-
lished methods using both simulations and real data will be given in a later study. Here
each of the eight statistics incorporates either none (e.g. variance) or one (ordinary
F-statistic) or more of the followings: moderation, correlation structure, and replicate
variance and thus can be used to show the importance of the above properties. It is not
appropriate to set the prior degrees of freedom v to be a very small number, since we
have the constraint that v > k& — 1. We choose v to be k+5 = 13 because it simulates
more stable s across genes.
9.2 Results
Figure 1 displays examples of simulated nonconstant genes as in a-c, and constant
genes as in d-f. The expected time course p of simulated constant genes may center
around 0 as in e, or away from but parallel with 0, as in d and f.

Table 1 compares the means and standard deviations of the hyperparameter esti-
mates of the diagonal elements of A ()\?), j=1,...,k — 1 with their true values. The

mean estimate of A is very close to the true A , and the standard deviations are very
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Figure 1: Plots of simulated nonconstant a-c and constant d-f genes. The solid line
is the expected time course vector u, and the dashed line is the sample average time

course vector X. Points of the same shape are time point samples for the same replicate.

small. The hyperparameter 7 is always under-estimated (mean=0.026, SD=0.002),
which agrees with section 8 in Smyth (2004), where vy was usually over-estimated.
The hyperparameter v is also always under-estimated (mean=7.024, SD=0.19), which
is fine because we do not want to over smooth the gene specific sum of squares matrix
Si.

To examine the relationship between the T? statistic and the true deviation from con-
stancy, the logo transformed T2 statistic from one simulated dataset is plotted against
the Mahalanobis distance between the expected time course vector pu and its projec-
tion onto the rank 1 constant space g = Pu (Figure 2). The squared Mahalanobis
distance is defined by d(p, 1)> = (u — 2) X~ (u — f1). Figure 2 clearly shows that the
loglof2 are positively correlated with d(u, @t), and most of the 400 true nonconstant
genes achieve higher T? statistics than the constant genes.

Figures 3 and 4 plot the average numbers of false positives against average numbers

of false negatives at different cutoffs. The lines in Figure 3 from left to right represent
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Hyperparameters True Valuex10? Meanx10® SDx10?
A2 14.69 14.71 0.16
A3 15.36 15.37 0.17
A 14.41 14.43 0.15
Vi 17.05 17.04 0.19
¥ 15.63 15.63 0.15
Y 13.38 13.40 0.15
PE: 12.90 12.92 0.17

Table 1: The means and standard deviations (SD) of diagonal elements of estimated
A.

the: M B-statistic (72), one-sample moderated Hotelling 72 statistic (indistinguish-
able from the M B-statistic), M B-statistic with 3 = oI}, (section 7.1), M B-statistic
with v — oo (section 8.1), partly-moderated F-statistic (Smyth 2004), ordinary F-
statistic, M B-statistic with v — 0 (section 8.3), and variance. The M B-statistic and
the T2 statistic attain almost the same number of false positives and number of false
negatives as the one-sample moderated Hotelling T2 statistic (Figures 3 and 4). The
importance of moderation is highlighted by comparing the lines of the M B-statistic,
the M B-statistic in the limiting case v — oo of section 8.1, and the M B-statistic in
the limiting case that v — 0 of section 8.3. Both of these limiting cases achieve higher
aggregate false positives and false negatives (Figure 3). This result supports the view
stated in section 2 that moderation is important. In particular, the case v — 0 (no
moderation at all) produces much higher numbers of false positives and false negatives.
This is likely due to the poor estimation of sample variance-covariance matrices with a
small number of replicates. Indeed, the ordinary unmoderated F-statistic which ignores
the correlation structure achieves smaller numbers of false positives and false negatives
than the unmoderated M B-statistic. A similar situation also arises in the microarray
discrimination context, see section 7 of Dudoit et al. (2002). The partly-moderated
F-statistic (Smyth 2004) which ignores the dependency among times behaves like the
M B-statistic with the special case 3 = ¢2I} in section 7.1 (Figures 3 and 4). More-
over, it achieves fewer false positives and false negatives than the ordinary F-statistic
(Figure 3). Figure 3 also demonstrates the importance of incorporating the correlation

structure among time points. The M B-statistic, TQ, and the one-sample moderated
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Figure 2: The loglof2 statistic versus the true deviation from constancy d(mu, @t) for

one simulated data set. Here 1 denotes nonconstant, and o constant genes.

Hotelling T2 statistic perform better than the partly-moderated F-statistic in Smyth
(2004) and the ordinary F-statistic; the former incorporate the correlation structure
among time points, whereas the latter do not. However, we observe that the amount of
moderation given by the partly-moderated F-statistic in Smyth (2004) is usually much
less than that given by the M B-statistic. When there are a large number of residual
degrees of freedom from the linear model , the partly-moderated F-statistic (Smyth
2004) behaves very much like the ordinary F-statistic. This suggests that the lower
number of false positives and number of false negatives from the M B-statistic than
the partly-moderated F-statistic (Smyth 2004) involve both the incorporation of cor-
relation structures and the amounts of moderation. The incorporation of correlation
structure into the analysis probably has more impact on the results when there are
true biological correlations, see section 10. As expected, the simple variance statistic
across replicates which totally ignores the replicate variances perform the worst. This

demonstrates the importance of incorporating the replicate variances into any statistic.
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Figure 3: Number of false positives versus number of false negatives of all the eight

statistics.

10. Discussion

In this paper we have proposed the multivariate empirical Bayes log posterior odds
(M B-statistics) for replicated microarray time course experiments to rank genes for
evidence of differential expression over time. We have shown in the simulation study
that the M B-statistic, the T2 statistic, and the one-sample moderated Hotelling T
statistic perform best among all the eight statistics compared. This is not entirely
surprising given that we simulated data under our model, but the comparisons are still
informative. In practice, we consider the M B-statistic (or the T2 statistic) performs as
well as the moderated L R-statistic (or the one-sample moderated Hotelling T2 statis-
tic), and one of the values of our multivariate empirical Bayes framework is that it
provides a natural way to estimate the one-sample moderated Hotelling T2 statistic
(section 7.3), while the likelihood-based approach alone does not provide such an esti-
mate.

A question which naturally arises is when we should suppose 3 general rather than
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Figure 4: A closer look of Figure 3. Number of false positives versus number of false

negatives of the best six statistics.

3 = diag(o?,...,0%) or ¥ = o%I; as in section 7.1. We have encountered a number
of microarray time series experiments where there are no biological reasons associated
with the mRNA samples why there should be any correlation between gene expression
levels at different times, but nevertheless, the estimated A is clearly far from diagonal.
It is not hard to think of non-biological reasons why temporal correlations may exist,
all of the "common cause” type: the samples from different points in the time course
may have been processed at the same or similar real times, in the same way, using
similarly treated whole organisms, features which leave their imprint on the resulting
gene expression data no matter how well we normalize before analysis. Perhaps the
reader may see such causes of association as ”fixed” rather than "random”, and object
to their being incorporated as correlations. We tend to agree, but feel that by allowing
a general A and hence ¥ (aparting from our commuting constraints), we permit real
biological as well as technical temporal associations to be incorporated into the anal-

ysis. Whether there is a loss of power when a general ¥ is used rather than, say, a
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diagonal X, is a question we plan to address in the near future. Another question we
plan to investigate in the future is the effect of assuming the same ¥ over all genes,
rather than assigning different covariances for the cases I = 1 and I = 0. Or more
generally, the effect of assuming the same X for the case (I = 1), rather than different
3ls corresponding to different temporal profile classes of genes.

Among the other methods which have been proposed in the literature for this gene
ranking/selection problem from replicated microarray time course data, the Pareto
front analysis described in Hero and Fleury (2002) and Fleury et al. (2002) make
many uses of contrasts and can be applied to both short and long time courses. The
ANOVA model Park et al. (2003) suggested is essentially the same as an unmoder-
ated F-test, which does not incorporate the possible dependency among times, and
does not do any moderation as in Smyth (2004). However, based on our simulation
results and practical experience, moderation appears to be necessary. Genes selected
by the standard F-test without any moderation at all tend to have small amounts
of changes over time and very tight replicates (i.e., the replicate variances are very
small). The B-spline based approach suggested by Bar-Joseph et al. (2003) and Luan
and Li (2004) seem to perform better on data with longer time courses, but may not
be appropriate for shorter time series, which are very common among microarray time
course experiments. The likelihood vector-based method proposed in Guo et al. (2003)
and the hidden Markov model proposed in Yuan et al. (2003), take into account the
dependency among times, and can be applied to both short and long time courses.
The assumption of P¥ = ¥P guarantees the possibility of our mathematical calcu-
lations, and hence our closed-form formula for the M B-statistic. One question which
naturally arises is the impact of such constraint on the rankings of genes. From the
practical point of view, the impact of this constraint on gene rankings is very slight.
The correlations between the rankings of the one-sample M B-statistic with the com-
muting assumption and the moderated Hotelling T2 statistic without the constraint
from the actual examples we have met are typically very high (over 0.99). The cor-
relations between rankings from our simulated data are also over 0.99. It is shown in
section 7.3 that if the null hypothesis is H : g = 0 (i.e. the gene stays at 0 over time)
with the alternative K : p # 0, instead of the null and alternative discussed here,
then the assumption that P3 = ¥P can be dropped. This special case is useful for
the one-sample gene ranking problem from two-channel microarray experiments (e.g.

c¢DNA microarrays), where relative temporal profiles are measured, or two-sample gene
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ranking problem from both single- and two-channel microarray experiments. For the
two-sample problem, see later this section for details.

Our title refers to repicated microarray time course data, but we have not been very
explicit about the nature of the replicates. We could have genes spotted in replicate
on the microarray slide, we could have so-called technical replicates, where mRNA
from the same biological specimen is split, and hybridized to multiple arrays, or we
could have biological replicates, where mRNA samples are taken from different organ-
isms. Naturally, the variability between gene expression measurements across these
different types of replicates will be different, and probably gene-specific. Which level
of variability is relevant to the investigator seeking genes whose absolute or relative
temporal profiles are non-constant is a choice for the analyst in a given context, and
will naturally depend on what is available. For example, we know of one investigator
who had just one set of microarray time course measurements, but these were carried
out on slides for which a subset of the genes were spotted down in quadruplicate. It
is nature in this case we want to make use of this partial replication, and one may
to do so would be to use the approach in this paper, estimating a common A for all
genes, using data from the subset of genes which are replicated. Similarly, we know of
a different investigator who carried out four separate time-course experiments, using
only three biologically distinct samples of cells, one being the basis of a pair of tech-
nical replicates. Here we tried and compared two strategies, one treating the data as
four replicate series, and the other as just three replicates, using the average of the
two technical replicates. Neither approach is entirely satisfactory, but even for a single
time point, we have been unable to derive a moderated t- or B-statistic which incor-
porates multiple strata of variability. Finding a closed-form statistic seems to us to
be an open and probably hard problem, essentially equivalent to wanting closed form
expressions for the Bayesian analysis of normal variance components with conjugate
priors, something presently carried out by MCMC.

As originally defined, the empirical Bayes model proposed in this paper applies only
to the one-sample problem of detecting nonconstant genes from a single biological
condition. However, with minimal changes, it also applies to the two-sample prob-
lem of comparing time course profiles. Suppose that (Z1,Y4)..., (Z,,Y,) are i.i.d.
random pairs corresponding to two different biological conditions, e.g. wildtype and
mutant. Then X; = Z; — Yy,....X,, = Z,, — Y, are the i.i.d. difference time course

vectors between these two conditions, and px = pz — py. The null hypothesis
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H : px = popl corresponds to the null hypothesis that the expected time profiles
pz and py of these two biological conditions have the same shape, and equation
(13) can be applied directly to this problem. Moreover, H : pux = 0 further corre-
sponds to the null hypothesis that gz and py are identical, and it is straightforward
to use the special case in section 7.3 here. The unpaired case can be dealt with in
a similar manner. Suppose Zq,...,Z,, and Y,..., Y, are i.i.d. random vectors from
N(pz,X) and N(py,X), respectively. The sample mean Z ~ N(pz, m~'%) and
Y ~ N(py,n 'E) permit us to test H : py = py using a t-statistic with numerator
(m™' 4+ n"1"Y3(Z — Y) and denominator the square root of the smoothed pooled
covariance matrix S = (n+m — 2+ v) " ((m — 1)Sz + (n — 1)Sy + vA).

The multivariate empirical Bayes model here can also be extended to more general
multivariate empirical Bayes regression models allowing the comparisons among time
course profiles from multiple biological conditions simultaneously, while taking into ac-
count the correlation structure and moderating the estimate of the variance-covariance
matrix (Tai and Speed 2004, in preparation). The multivariate empirical Bayes re-
gression models in this more general context differ from the univariate empirical Bayes
linear models in Smyth (2004) in that Smyth (2004) considers each coefficient or con-
trast individually and independently, while in Tai and Speed (2004), all the contrasts
are considered at the same time and correlated with each other. This extension allows
comparisons of time course profiles among multiple biological conditions (eg. wildtype,
mutantl, mutant2,...etc.) with different sample sizes by setting up appropriate con-
trasts. Moreover, by using appropriate contrasts, we can also deal with the detection
of genes having specific patterns in the one-sample case, and genes having different

specific patterns in the multi-sample case.
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