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Abstract

We study the survey propagation algorithm [18, 4, 3], which is an iterative technique that
appears to be very effective in solving random k-SAT problems even with densities close to
threshold. We first describe how any SAT formula can be associated with a novel family of
Markov random fields (MRFs), parameterized by a real number ρ ∈ [0, 1]. We then show
that applying belief propagation—a well-known “message-passing” technique—to this family
of MRFs recovers various algorithms, ranging from pure survey propagation at one extreme
(ρ = 1) to standard belief propagation on the uniform distribution over SAT assignments at
the other extreme (ρ = 0). Configurations in these MRFs have a natural interpretation as
generalized satisfiability assignments, on which a partial order can be defined. We isolate cores
as minimal elements in this partial ordering, and prove that any core is a fixed point of survey
propagation. We investigate the associated lattice structure, and prove a weight-preserving
identity that shows how any MRF with ρ > 0 can be viewed as a “smoothed” version of the naive
factor graph representation of the k-SAT problem (ρ = 0). Our experimental results suggest
that random formulas typically do not possess non-trivial cores. This result and additional
experiments indicate that message-passing on our family of MRFs is most effective for values of
ρ 6= 1 (i.e., distinct from survey propagation). Finally, we isolate properties of Gibbs sampling
and message-passing algorithms that are typical for an ensemble of k-SAT problems.
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1 Introduction

The survey-propagation algorithm [18, 4] is an iterative “message-passing” technique designed to
solve high-density random k-SAT problems. Non-rigorous arguments based on the replica method
as well as experimental results both suggest that it may be effective even very close to the satisfia-
bility threshold. Nonetheless, the reasons underlying this remarkable performance are not yet fully
understood.

In this paper, we provide a new perspective on both the survey propagation updates as well as a
larger class of related algorithms. In particular, we introduce a new family of Markov random fields
(MRFs), parameterized by a real number ρ ∈ [0, 1], that can be associated with any k-SAT problem.
We show how a range of algorithms—including survey propagation as a special case—can all be
recovered as the well-known belief propagation algorithm [27] as applied to suitably restricted MRFs
within this family. The configurations in these MRFs have a natural interpretation as generalized
satisfiability assignments, on which a partial ordering can be defined. We refer to minimal elements
in this partial ordering as cores, and we prove that any core is a fixed point of the pure form
of survey propagation (ρ = 1). However, our experimental results suggest that non-trivial cores
typically do not exist for random formulas. This observation motivates deeper study of the full
family of Markov random fields as well as the associated belief propagation algorithms, which we
denote by SP(ρ), for the range 0 < ρ < 1. Accordingly, we study the lattice structure of the
generalized assignments, and prove a combinatorial identity that reveals how the distribution for
ρ ∈ (0, 1] can be viewed as a “smoothed” version of the MRF with ρ = 0. The latter MRF is
simply the uniform distribution over (ordinary) satisfying assignments, which is conjectured to be
disconnected for high density random formulas [17, 18, 4]

Our experimental results on the SP(ρ) algorithms indicate that they are most effective for values
of ρ close to but different from 1. One intriguing possibility is that the effectiveness of pure survey
propagation (i.e., SP(1)) may be a by-product of the fact that SP(ρ) is most effective for values of
ρ less than but close to 1. In addition, we consider alternative sampling-based methods (e.g., Gibbs
sampling) for computing marginals for the extended MRFs. Success of such alternative methods
provides independent confirmation of the significance of the extended MRF representation in the
success of survey propagation.

We also study properties of both message-passing and Gibbs sampling that are typical over a
random ensemble of k-SAT problems. We establish results that link the typical behavior of Gibbs
sampling and message-passing algorithms under suitable initialization, and when applied to the
extended family of MRFs with ρ sufficiently close to one.

The fact that the pure form of survey propagation (i.e., SP(1) in our notation) is a form of
belief propagation was first conjectured by Braunstein et al. [4], and established independently of
our work by Braunstein and Zecchina [5]. However, the latter paper treats only the case ρ = 1, and
does not provide a natural combinatorial interpretation. Our result given here is a generalization,
in that it applies to the full range of ρ ∈ [0, 1]. Moreover, the combinatorial structures intrinsic to
our Markov random fields—namely cores and lattices—highlight the importance of values ρ 6= 1,
and provide insight into the success of survey propagation and variants thereof.

The remainder of this paper is organized as follows. Section 2 introduces the background and
notation necessary to set up the problem. In Section 3, we define a family of Markov random fields
(MRFs) over generalized satisfiability assignments, and prove that survey propagation and related
algorithms correspond to belief propagation on these MRFs. Section 4 is devoted to analysis of
the combinatorial properties of this family of extended MRFs, as well as some experimental results
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on cores and Gibbs sampling. In Section 5, we consider properties of random ensembles of SAT
formulae, and prove results that link the performance of survey propagation and Gibbs sampling
to the choice of Markov random field. We conclude with a discussion in Section 6.

2 Background

2.1 The k-SAT problem and factor graphs

We begin with notation and terminology necessary to describe the k-SAT problem. Let C and V
represent index sets for the clauses and variables, respectively, where |V | = n and |C| = m. We
denote elements of V using the letters i, j, k etc., and members of C with the letters a, b, c etc. We
use xS to denote the subset of variables {xi : i ∈ S}.

In the k-SAT problem, the clause indexed by a ∈ C is specified by the pair (V (a), Ja), where
V (a) ⊂ V consists of k elements, and Ja := (Ja,i : i ∈ V (a)) is a k-tuple of {0, 1}-valued weights.
The clause indexed by a is satisfied by the assignment x if and only if xV (a) 6= Ja. Equivalently,
letting δ(y, z) denote an indicator function for the event {y = z}, if we define the function

ψJa
(x) := 1 −

∏

i∈V (a)

δ(Ja,i, xi), (1)

then the clause a is satisfied by x if and only if ψJa
(x) = 1. The overall formula consists of the

AND of all the individual clauses, and is satisfied by x if and only if
∏

a∈C ψJa
(x) = 1.

As illustrated in Figure 1, any instance of the k-SAT problem can be associated with a particular
bipartite graph on the variables (denoted by circular nodes) and clause (denoted by square nodes),
where the edge (a, i) between the clause a ∈ C and variable i ∈ V is included in E if and only if
i ∈ V (a). Following Braunstein et al. [4], it is convenient to introduce two labellings of any given
edge—namely, solid or dotted, corresponding to whether Ja,i is equal to 0 or 1 respectively. We
denote by p(x) ∝ ∏

a∈C ψJa
(x) the uniform distribution on satisfying assignments of a formula.

a

b c

d

1

2
3

4 5

Figure 1. Factor graph representation of a 3-SAT problem on n = 5 variables with m = 4 clauses,
in which circular and square nodes correspond to variables and clauses respectively. Solid and dotted
edges (a, i), respectively, correspond to the weightings Ja,i = 0 and Ja,i = 1 respectively. The clause
a is defined by the neighborhood set V (a) = {1, 2, 3} and weights Ja = (0, 1, 1). In traditional
notation, this corresponds to the formula (x1∨ x̄2∨ x̄3)∧ (x̄1∨x2∨x4)∧ (x̄2∨x3∨x5)∧ (x̄2∨x4∨x5).

As an illustration, it can be read off from Figure 1 that clause a is defined by the neighborhood
structure V (a) = {1, 2, 3} with associated weight vector Ja = (0, 1, 1). The k-SAT problem can
also be associated with a particular distribution defined as a Markov random field. Recall that a
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given instance of k-SAT can be specified by the collection of clause functions {ψJa
: a ∈ C}, as

defined in equation (1). Using these functions, let us define a probability distribution over binary
sequences via

p(x) :=
1

Z

∏

a∈C

ψJa
(x), (2)

where Z :=
∑

x∈{0,1}n

∏
a∈C ψJa

(x) is the normalization constant Note that this definition makes
sense if and only if the k-SAT instance is satisfiable, in which case the distribution (2) is simply
the uniform distribution over satisfying assignments.

For later use, we define the sets

C(i) := {a ∈ C : i ∈ V (a)}, C+(i) := {a ∈ C(i) : Ja,i = 0}, (3)

with C−(i) := C(i)\C+(i). Note that C(i) = C+(i) ∪ C−(i) is the set of clauses including the
variable xi. For each pair (a, i) ∈ E, the set C(i)\{a} of clauses that neighbor i, excluding a can be
divided into two (disjoint) subsets, depending on whether their preferred assignment of xi agrees
(in which case b ∈ Cs

a(i)) or disagrees (in which case b ∈ Cu
a (i)) with the preferred assignment of

xi corresponding to clause a. More formally, we define

Cs
a(i) := {b ∈ C(i)\{a} : Ja,i = Jb,i }, Cu

a (i) := {b ∈ C(i)\{a} : Ja,i 6= Jb,i }. (4)

2.1.1 Random instances and threshold phenomena

The k-SAT problem for k ≥ 3 is a classical NP complete problem [7]. This fact does not rule out
the existence of efficient algorithms for deciding if random formulas are satisfiable, or for finding
satisfying assignments for random formulas when they are satisfiable. Accordingly, of interest to us
are random instances of the k-SAT problem, where given a density parameter α, we choose m = αn
clauses uniformly and without replacement from the set of all k-clauses on n variables. In terms of
the factor graph representation, this procedure samples a random (n,m)-bipartite graph, in which
each clause a ∈ C has degree k.

Clearly, a random formula becomes increasingly difficult to satisfy as the clause density α
increases. Friedgut [10] showed that the probability that a formula is satisfiable exhibits a sharp
threshold at a value αc(n). It is widely believed that αc(n) is independent of n. Rigorous bounds
on αc can be found in various papers [11, 11, 6, 8, 9, 13, 1], whereas Monasson and Zecchina [19]
derive approximations based on“replica method” calculations.

In several papers in the statistical physics literature [e.g., 17, 18, 4], it is argued that in addition
to the threshold αc, there is another threshold αd < αc (for k = 3, αd ≈ 3.921), which marks the
transition between a phase in which the satisfying assignments form a single cluster, and a phase
where they form an exponential number of disconnected clusters. The clustering is in terms of a
neighborhood structure in which assignments that are close in Hamming distance are considered
neighbors. It is conjectured, moreover, that one manifestation of this phase transition is in the
complexity of finding a solution. In particular, polynomial time algorithms that use only local
information are expected to fail with high probability for random k-SAT instances with α > αd.
This conjecture is consistent with previous results [23] on belief propagation applied to the usual
factor graph representation of k-SAT, as in Figure 1.
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2.2 Survey propagation

We now provide an explicit description of the SP(ρ) family of algorithms. For any given ρ ∈ [0, 1],
the algorithm involves updating messages from clauses to variables, as well as from variables to
clauses. Each clause a ∈ C passes a real number ηa→i ∈ [0, 1] to each of its variable neighbors
i ∈ V (a). In the other direction, each variable i ∈ V passes a triplet of real numbers Πi→a =
(Πu

i→a,Π
s
i→a,Π

∗
i→a) to each of its clause neighbors a ∈ C(i). The precise form of the updates are

given in Figure 2.

Message from clause a to variable i:

ηa→i =
∏

j∈V (a)\{i}

[
Πu

j→a

Πu
j→a + Πs

j→a + Π∗
j→a

]
. (5)

Message from variable i to clause a:

Πu
i→a =

[
1 − ρ

∏

b∈Cu
a (i)

(1 − ηb→i)

]
∏

b∈Cs
a(i)

(1 − ηb→i). (6a)

Πs
i→a =

[
1 −

∏

b∈Cs
a(i)

(1 − ηb→i)

]
∏

b∈Cu
a (i)

(1 − ηb→i). (6b)

Π∗
i→a =

∏

b∈Cs
a(i)

(1 − ηb→i)
∏

b∈Cu
a (i)

(1 − ηb→i). (6c)

Figure 2: SP(ρ) updates

We pause to make a few comments about these SP(ρ) updates:

1. Although we have omitted the time step index for simplicity, equations (5) and (6) should be
interpreted as defining a recursion on (η,Π). The initial values for η are chosen randomly in
the interval (0, 1).

2. The idea of the ρ parameter is to provide a smooth transition from the original naive belief
propagation algorithm to the survey propagation algorithm. As shown in [4], setting ρ = 0
yields the belief propagation updates applied to the probability distribution (2), whereas
setting ρ = 1 yields the pure version of survey propagation.

2.2.1 Intuitive “warning” interpretation

To gain intuition for these updates, it is helpful to consider the pure SP setting of ρ = 1. As
described by Braunstein et al. [4], the messages in this case have a natural interpretation in terms
of probabilities of warnings. In particular, at time t = 0, suppose that the clause a sends a warning
message to variable i with probability η0

a→i, and a message without a warning with probability
1 − η0

a→i. After receiving all messages from clauses in C(i)\{a}, variable i sends a particular
symbol to clause a saying either that it can’t satisfy it (“u”), that it can satisfy it (“s”), or that it
is indifferent (“∗”), depending on what messages it got from its other clauses. There are four cases:

5



1. If variable i receives warnings from Cu
a (i) and no warnings from Cs

a(i), then it cannot satisfy
a and sends “u”.

2. If variable i receives warnings from Cs
a(i) but no warnings from Cu

a (i), then it sends an “s”
to indicate that it is inclined to satisfy the clause a.

3. If variable i receives no warnings from either Cu
a (i) or Cs

a(i), then it is indifferent and sends
“∗”.

4. If variable i receives warnings from both Cu
a (i) and Cs

a(i), a contradiction has occurred.

The updates from clauses to variables are especially simple: in particular, any given clause sends a
warning if and only if it receives “u” symbols from all of its other variables.

In this context, the real-valued messages involved in the pure SP(1) all have natural probabilistic
interpretations. In particular, the message ηa→i corresponds to the probability that clause a sends
a warning to variable i. The quantity Πu

j→a can be interpreted as the probability that variable j
sends the “u” symbol to clause a, and similarly for Πs

j→a and Π∗
j→a. The normalization by the

sum Πu
j→a + Πs

j→a + Π∗
j→a reflects the fact that the fourth case is a failure, and hence is excluded

a priori from the probability distribution
Suppose that all of the possible warning events were independent. In this case, the SP message

update equations (5) and (6) would be correct. This independence assumption is valid on a graph
without cycles, and in that case the SP updates do have a rigorous probabilistic interpretation. It
is not clear if the equations have a simple interpretation in the case ρ 6= 1.

2.2.2 Decimation based on survey propagation

Supposing that these survey propagation updates are applied and converge, the overall conviction
of a value at a given variable can be computed from the incoming set of equilibrium messages as

µi(1) ∝
[

1 − ρ
∏

b∈C+(j)

(1 − ηb→j)

]
∏

b∈C−(j)

(1 − ηb→j).

µi(0) ∝
[

1 − ρ
∏

b∈C−(j)

(1 − ηb→j)

]
∏

b∈C+(j)

(1 − ηb→j).

µi(∗) ∝
∏

b∈C+(j)

(1 − ηb→j)
∏

b∈C−(j)

(1 − ηb→j).

To be consistent with their interpretation as (approximate) marginals, the triplet {µi(0), µi(∗), µi(1)}
at each node i ∈ V is normalized to sum to one.

We define the bias of a variable node as B(i) := |µi(0) − µi(1)|. The decimation algorithm based
on survey propagation [4, 5] consists of the following steps:

1. Run SP(1) on the SAT problem. Extract the fraction β of variables with the largest biases,
and set them to their preferred values.

2. Simplify the SAT formula, and return to Step 1.

Once the maximum bias over all variables falls below a pre-specified tolerance, the Walk-SAT
algorithm is applied to the formula to find the remainder of the assignment (if possible).
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2.2.3 Clusters

The motivation behind the SP algorithm is to distinguish between assignments inside one cluster,
and assignments from different clusters. The goal of initial phases of decimation is to fall within a
cluster; once inside the cluster, the induced problem is easy to solve, in that any “local” algorithm
should perform well within a given cluster. Within each cluster, a distinction can be made between
frozen variables—ones that do not change their value within the cluster—and free variables that
do change their value in the cluster. A concise description of a cluster is an assignment of {0, 1, ∗}
to the variables with the frozen variables taking their frozen value, and the free variables taking
the joker or wild card value ∗.

It will be shown in Proposition 4 that SP(1), when initialized at a satisfying assignment, con-
verges to an assignment in the space {0, 1, ∗}n such that (i) every variable that is assigned a value
in {0, 1}, if flipped, would cause a contradiction in at least one clause, and (ii) every variable that
is ∗ can be assigned a value (separately) without rendering any clause unsatisfied. Such an assign-
ment, which we will refer to as core assignment, can be considered as a summary of a cluster. This
interpretation motivates analysis in the following section.

3 Markov random fields over generalized assignments

In this section, we begin by introducing the notion generalized assignment, and then use it to define
a family of Markov random fields (MRFs) over these assignments. We demonstrate how a family
of message-passing algorithms—including the SP(ρ) family as a particular case—can be recovered
by applying the well-known belief propagation algorithm to this family of MRFs.

3.1 Generalized assignments

We allow the variables x = {x1, . . . , xn} to take values in {0, 1, ∗}, to which we refer as a generalized
assignment. It will be convenient, when discussing the assignment of a variable xi with respect to
a particular clause a, to use the notation sa,i := 1 − Ja,i and ua,i := Ja,i to indicate, respectively,
the values that are satisfying and unsatisfying for the clause a.

Definition 1. A generalized assignment x is invalid for a clause a if either

(a) all variables are unsatisfying (i.e., xi = ua,i for all i ∈ V (a)), or

(b) all variables are unsatisfying except for exactly one index j ∈ V (a), for which xj = ∗.

Otherwise, the generalized assignment x is valid for clause a, and we denote this event by VALa(xV (a)).
We say that a generalized assignment is valid for a formula if it is valid for all of its clauses.

The motivation for deeming case (a) invalid is clear, in that any generalized assignment that
does not satisfy the clause must be excluded. Note that case (b) is also invalid, since (with all other
variables unsatisfying) the variable xj is effectively forced to sa,i, and so cannot be assigned the ∗
symbol.

For a valid generalized assignment, the subset of variables that are assigned either 0 or 1 values
can be divided into constrained and unconstrained variables in the following way:
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Definition 2. We say that a variable xi is the unique satisfying variable for a clause if it is
assigned sa,i whereas all other variables in the clause (i.e., the variables {xj : j ∈ V (a)\{i}}) are
assigned ua,j. A variable xi is constrained by clause a if it is the unique satisfying variable.

We let CONi,a(xV (a)) denote an indicator function for the event that xi is the unique satisfying
variable in the generalized assignment xV (a) for clause a. A variable is unconstrained if it has 0 or
1 value, and is not constrained.

We define S∗(x) := {i ∈ V : xi = ∗} as the set of ∗-variables, with analogous definitions for
the sets Sc(x) and So(x), corresponding to constrained and unconstrained variables respectively.
Finally, we use n∗(x), nc(x) and no(x) to denote the respective sizes of these three sets.

Let ωo and ω∗ be parameters in the interval [0, 1], corresponding respectively to the “weights”
of unconstrained variables and stars. We define weights of generalized assignments in the following
way: invalid assignments x have weight W (x) = 0, and for any valid assignment x, we set

W (x) := (ωo)no(x) × (ω∗)
n∗(x).

Our primary interest is the probability distribution given by pW (x) ∝ W (x). In contrast to the
earlier distribution p, it is important to observe that this definition is valid for any SAT problem,
whether or not it is satisfiable, as long as ω∗ 6= 0, since the all-∗ vector is always a valid generalized
assignment. Note that if ωo = 1 and ω∗ = 0 then the distribution pW (x) is the uniform distribution
on satisfying assignments.

3.2 Associated Markov random fields

Next we show how the distribution pW can be represented by a Markov random field for any choices
of ωo, ω∗ ∈ [0, 1]. Doing so requires the addition of another dimension to our representation, which
allows us to assess whether a given variable is constrained or unconstrained. We define the parent
set of a given variable xi, denoted by Pi, to be the set of clauses for which xi is the unique satisfying
variable. Immediate consequences of this definition are the following:

(a) If xi = 0, then we must have Pi ⊆ C−(i).

(b) If xi = 1, then there must hold Pi ⊆ C+(i).

(c) The setting xi = ∗ implies that Pi = ∅.

Note also that Pi = ∅ means that xi cannot be constrained. For each i ∈ V , let P(i) be the
set of all possible parent sets of clause i. Due to the restrictions imposed by our definition, Pi

must be contained in either C+(i) or C−(i) but not both. Therefore, the cardinality1 of P(i) is
2|C

−(i)| + 2|C
+(i)| − 1.

Our extended Markov random field is defined on the Cartesian product space X1 × . . . × Xn,
where Xi := {0, 1, ∗} × P(i). The distribution factorizes as a product of compatibility functions at
the variable and clause nodes of the factor graph, which are defined as follows:

1Note that it is necessary to subtract one so as not to count the empty set twice.
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Variable compatibilities: Each variable node i ∈ V has an associated compatibility function
of the form:

Ψi(xi, Pi) :=





ωo : Pi = ∅, xi 6= ∗
ω∗ : Pi = ∅, xi = ∗

1 : for any other valid (Pi, xi)
(7)

The role of these functions is to assign weight to the generalized assignments according to the
number of unconstrained and star variables, as in the weighted distribution pW .

Clause compatibilities: The compatibility functions at the clause nodes serve to ensure that
only valid assignments have non-zero probability, and that the parent sets PV (a) := {Pi : i ∈ V (a)}
are consistent with the assignments xV (a) := {xi : i ∈ V (a)} in the neighborhood of a. More
precisely, we require that the generalized assignment xV (a) is valid for a (i.e., VALa(xV (a)) = 1)
and that for each i ∈ V (a), exactly one of the two following conditions holds:

(a) a ∈ Pi and xi is constrained by a or

(b) a /∈ Pi and xi is not constrained by a.

The following compatibility function corresponds to an indicator function for the intersection
of these events:

Ψa

(
xV (a), PV (a)

)
:= VALa(xV (a)) ×

∏

i∈V (a)

δ
(
Ind[a ∈ Pi], CONa,i(xV (a))

)
. (8)

We now form a Markov random field over generalized assignments and parent sets by taking the
product of variable (7) and clause (8) compatibility functions

pgen(x, P) ∝
∏

i∈V

Ψi(xi, Pi)
∏

a∈C

Ψa

(
xVa

, PV (a)

)
. (9)

It is straightforward to verify that pgen = pW .

3.3 Survey propagation as an instance of belief propagation

We now consider the form of the belief propagation (BP) updates as applied to the MRF pgen

defined by equation (9). We refer the reader to Section A for the definition of the BP algorithm
on a general factor graph. The main result of this section is to establish that the SP(ρ) family
of algorithms are equivalent to belief propagation as applied to pgen with suitable choices of the
weights ωo and ω∗.

In order to do so, we begin by introducing some notation necessary to describe the BP updates
on the extended MRF. The BP message from clause a to variable i, denoted by Ma→i(·), is a
vector of length |Xi| = 3 × |P(i)|. Fortunately, due to symmetries in the variable and clause
compatibilities defined in equations (7) and (8), it turns out that the clause-to-variable message
can be parameterized by only three numbers, {Mu

a→i,M
s
a→i,M

∗
a→i}, as follows:

Ma→i(xi, Pi) =





M s
a→i if xi = sa,i, Pi = S ∪ {a} for some S ⊆ Cs

a(i),

Mu
a→i if xi = ua,i, Pi ⊆ Cu

a (i),

M∗
a→i if xi = sa,i, Pi ⊆ Cs

a(i) or xi = ∗ , Pi = ∅,
0 otherwise.

(10)
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where M s
a→i,M

u
a→i and M∗

a→i are elements of [0, 1].
Now turning to messages from variables to clauses, it is convenient to introduce the notation

Pi = S ∪ {a} as a shorthand for the event

a ∈ Pi and S = Pi\{a} ⊆ Cs
a(i),

where it is understood that S could be empty. In Appendix B, we show that the variable-to-clause
message Mi→a is fully specified by values for pairs (xi, Pi) of six general types:

{(sa,i, S ∪ {a}), (sa,i, ∅ 6= Pi ⊆ Cs
a(i)), (ua,i, ∅ 6= Pi ⊆ Cu

a (i)), (sa,i, ∅), (ua,i, ∅), (∗, ∅)}.
The BP updates themselves are most compactly expressed in terms of particular linear combinations
of such basic messages, defined in the following way:

Rs
i→a :=

∑

S⊆Cs
a(i)

Mi→a(sa,i, S ∪ {a}) (11a)

Ru
i→a :=

∑

Pi⊆Cu
a (i)

Mi→a(ua,i, Pi) (11b)

R∗
i→a :=

∑

Pi⊆Cs
a(i)

Mi→a(sa,i, Pi) +Mi→a(∗, ∅). (11c)

Note that Rs
i→a is associated with the event that xi is the unique satisfying variable for clause

a; Ru
i→a with the event that xi does not satisfy a; and R∗

i→a with the event that xi is neither
unsatisfying nor uniquely satisfying (i.e., either xi = ∗, or xi = sa,i but is not the only variable
that satisfies a).

With this terminology, the BP algorithm on the extended MRF can be expressed in terms of
the following recursions on the triplets (M s

a→i,M
u
a→i,M

∗
a→i) and (Rs

i→a, R
u
i→a, R

∗
i→a):

BP updates on extended MRF:
Messages from clause a to variable i

Ms
a→i =

∏

j∈C(a)\{i}

Ru
j→a

Mu
a→i =

∏

j∈C(a)\{i}

(Ru
j→a +R∗

j→a) +
∑

k∈C(a)\{i}

(Rs
k→a −R∗

k→a)
∏

j∈C(a)\{i,k}

Ru
j→a −

∏

j∈C(a)\{i}

Ru
j→a

M∗
a→i =

∏

j∈C(a)\{i}

(Ru
j→a +R∗

j→a) −
∏

j∈C(a)\{i}

Ru
j→a.

Messages from variable i to clause a:

Rs
i→a =

∏

b∈Cu

a
(i)

Mu
b→i

[ ∏

b∈Cs

a
(i)

(Ms
b→i +M∗

b→i)
]

Ru
i→a =

∏

b∈Cs

a
(i)

Mu
b→i

[ ∏

b∈Cu

a
(i)

(Ms
b→i +M∗

b→i) − (1 − ωo)
∏

b∈V u

a
(i)

M∗
b→i

]

R∗
i→a =

∏

b∈Cu

a
(i)

Mu
b→i

[ ∏

b∈Cs

a
(i)

(Ms
b→i +M∗

b→i) − (1 − ωo)
∏

b∈Cs

a
(i)

M∗
b→i

]
+ ω∗

∏

b∈Cs

a
(i)∪Cu

a
(i)

M∗
b→i.

We provide a detailed derivation of these BP equations on the extended MRF in Appendix B.

10



Since the messages are interpreted as probabilities, we only need their ratio, and we can normalize
them to any constant. At any iteration, approximations to the local marginals at each variable
node i ∈ V are given by (up to a normalization constant):

Fi(0) ∝
∏

b∈C+(i)

Mu
b→i

[ ∏

b∈C−(i)

(M s
b→i +M∗

b→i) − (1 − ωo)
∏

b∈C−(i)

M∗
b→i

]

Fi(1) ∝
∏

b∈C−(i)

Mu
b→i

[ ∏

b∈C+(i)

(M s
b→i +M∗

b→i) − (1 − ωo)
∏

b∈C+(i)

M∗
b→i

]

Fi(∗) ∝ ω∗

∏

b∈C(i)

M∗
b→i

The following theorem establishes that the SP(ρ) family of algorithms is equivalent to belief
propagation on the extended MRF:

Theorem 3. For all ω∗ ∈ [0, 1], the BP updates on the extended (ω∗, ωo)-MRF pgen are equivalent
to the SP(ω∗) family of algorithms under the following restrictions:

(a) the constraint ωo + ω∗ = 1 is imposed, and

(b) all messages are initialized such that Mu
a→i = M∗

a→i for every edge (a, i).

Proof. Under the constraint ωo + ω∗ = 1, if we initialize Mu
a→i = M∗

a→i on every edge, then there
holds Rs

i→a = R∗
i→a and consequently Mu

a→i = M∗
a→i remains true at the next iteration. Initializing

the parameters in this way and imposing the normalization Mu
a→i +M

∗
a→i = 1 leads to the following

recurrence equations:

M s
a→i =

∏
j∈C(a)\{i}R

u
j→a∏

j∈C(a)\{i}(R
∗
j→a +Ru

j→a)

where:

Ru
i→a =

∏

b∈Cs
a(i)

(1 −M∗
b→i)

[
1 − ω∗

∏

b∈Cu
a (i)

(1 −M∗
b→i)

]

R∗
i→a =

∏

b∈Cu
a (i)

(1 −M s
b→i).

These updates are equivalent to SP(ω∗) by setting ηa→i = M s
a→i, Πu

i→a = Ru
i→a, and Πs

i→a+Π∗
i→a =

R∗
i→a.

Remarks:

1. Theorem 3 is a generalization of the result of Braunstein and Zecchina [5], who showed that
SP(1) is equivalent to belief propagation on a certain MRF.

2. The essence of Theorem 3 is that the pure survey propagation algorithm, as well as all the
ρ-variants thereof, are all equivalent to belief propagation on our extended MRF with suitable
parameter choices. This equivalence is important for a number of reasons:

11



(a) Belief propagation is a widely-used algorithm for computing approximations to marginal
distributions in general Markov random fields [27, 15]. It also has a variational interpre-
tation as an iterative method for attempting to solve a non-convex optimization problem
based on the Bethe approximation [27]. Among other consequences, this variational in-
terpretation leads to other algorithms that also solve the Bethe problem, but unlike
belief propagation, are guaranteed to converge [26, 28, 25].

(b) Given the link between SP and extended MRFs, it is natural to study combinatorial and
probabilistic properties of the latter objects. In Section 4, we show how so-called“cores”
arise as fixed points of SP(1), and we prove a weight-preserving identity that shows how
the extended MRF for general ρ is a “smoothed” version of the naive MRF.

(c) Finally, since BP (and hence SP) is computing approximate marginals for the MRF, it
is natural to study other ways of computing marginals and examine if these lead to an
effective way for solving random k-SAT problems. We begin this study in Section 4.5.

3. The initial messages have very small influence on the behavior of the algorithm, and they are
typically chosen to be uniform random variables in (0, 1). In practice, for ωo + ω∗ = 1 if we
start with different values for Mu

a→i and M∗
a→i they soon converge to become equal.

4. If we restrict our attention to 3-SAT, the equations have simpler form. In particular for a
clause a on xi, xj , xk, the messages to variable node i are:

M∗
a→i = Ru

j→aR
u
k→a

Mu
a→i = R∗

j→aR
∗
k→a +Rs

j→aR
u
k→a +Ru

j→aR
s
k→a

M∗
a→i = R∗

j→aR
∗
k→a +R∗

j→aR
u
k→a +Ru

j→aR
∗
k→a.

4 Combinatorial properties

This section is devoted to investigation of the combinatorial properties associated with the family
of extended Markov random fields defined in the previous section. We begin by defining a directed
graph on all valid generalized assignments that can be reached from a given satisfying assignment.
Of particular interest are the minimal elements in the partial ordering defined by this directed
graph, to which we refer as cores.

4.1 Directed graph and partial ordering

The vertex set of the directed graph G consists of all valid generalized assignments. The edge set
is defined in the following way: for a given pair of valid generalized assignments x and y, the graph
includes a directed edge from x to y if there exists an index i ∈ V such that (i) xj = yj for all j 6= i;
and (ii) yi = ∗ and xi 6= yi. We label the edge between x and y with the index i, corresponding to
the fact that y is obtained from x by adding one extra ∗ in position i.

This directed graph G has a number of properties:

(a) Valid generalized assignments can be separated into different levels based on their number
of unconstrained variables. In particular, assignment x is in level n∗(x). Thus, every edge is
from an assignment in level l − 1 to one in l, where l is at most n.

12



(b) The out-degree of any valid generalized assignment x is exactly equal to its number of un-
constrained variables no(x).

(c) It is an acyclic graph so that its structure defines a partial ordering; in particular, we write
y < x if there is a directed path in G from x to y. Notice that all directed paths from x to y
are labeled by indices in the set T = {i ∈ V : xi 6= yi = ∗}, and only the order in which they
appear is different.

Given the partial ordering defined by G, it is natural to consider elements that are minimal in
this partial ordering. For any valid generalized assignment x and a subset S ⊆ V , let γS(x) be the
minimal y < x, such that the path from x to y is labeled only by indices in S. It is easy to show
(for details, see Appendix C) that there always exists a unique γS(x). We define a core assignment
to be a valid generalized assignment y ∈ {0, 1, ∗}n such that for any i ∈ V such that yi 6= ∗, the
variable yi is constrained by at least one clause of the formula. We say that a core assignment
y is non-trivial if n∗(y) < n, so that it has at least one constrained {0, 1} variable. Under this
definition, it follows that for any generalized assignment x, the associated minimal element γV (x)
is a core assignment.

Given a valid ordinary assignment z ∈ {0, 1}n, an interesting object is the subgraph of general-
ized assignments that lie below it in the partial ordering. It can be seen that any pair of elements
in this subgraph have both a unique maximal element and a unique minimal element, so that any
such subgraph is a lattice [22].

0010

*0*0

*010

*0*****0

001*

0*1**01*

**1* 0***

****

1 4

1

4 32

23 4

2 1 3

1324

000000

0000**

00000*0000*0
6 5

5 6

(a) (b)

Figure 3. Lattice structure of generalized assignments. (a) For the formula (x1∨x2∨x3)∧(x̄2∨x̄3∨x4)
and the satisfying assignment z = (0, 0, 1, 0), the core is trivial (i.e., all γV (z) = (∗, ∗, ∗, ∗)). (b) For
the formula (x̄1∨x2∨x3)∧(x1∨ x̄2∨x4)∧(x2∨ x̄3∨x4)∧(x1∨x3∨ x̄4)∧(x̄1∨x5∨x6)∧(x̄4∨ x̄5∨ x̄6),
the satisfying assignment z = (0, 0, 0, 0, 0, 0) has the non-trivial core γV (z) = (0, 0, 0, 0, ∗, ∗).

Figure 3 provides an illustration of these definitions. Panel (a) corresponds to the formula
(x1 ∨ x2 ∨ x3)∧ (x̄2 ∨ x̄3 ∨ x4), and shows the subgraph of the full directed graph G that lies below
(in the partial ordering) the satisfying assignment z := (0, 0, 1, 0). Each edge is labeled with the
index i ∈ V that changes from unconstrained to ∗ in moving from the upper to lower level. In
this case, the associated core assignment γV (z) = (∗, ∗, ∗, ∗) is trivial. Panel (b) illustrates the
analogous subgraph for the formula (x̄1 ∨ x2 ∨ x3)∧ (x1 ∨ x̄2 ∨ x4)∧ (x2 ∨ x̄3 ∨ x4)∧ (x1 ∨ x3 ∨ x̄4)∧
(x̄1 ∨ x5 ∨ x6) ∧ (x̄4 ∨ x̄5 ∨ x̄6), and the satisfying assignment z = (0, 0, 0, 0, 0, 0). In this case, the
core γV (z) = (0, 0, 0, 0, ∗, ∗) is non-trivial.
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4.2 Pure survey propagation as a peeling algorithm

As a particular case of Theorem 3, setting ω∗ = 1 and ωo = 0 yields the extended MRF that
underlies the SP(1) algorithm. In this case, the only valid assignments with positive weight are
those without any unconstrained variables—i.e., core assignments. Thus, the distribution pW for
(ωo, ω∗) = (0, 1) is simply uniform over the core assignments. The following result connects fixed
points of SP(1) to core assignments:

Proposition 4. For a valid assignment x, let SP(1) be initialized by:

Πu
i→a = δ(xi, ua,i), Πs

i→a = δ(xi, sa,i), Π∗
i→a = 0.

Then within a finite number of steps, the algorithm converges and the output fields are

µi(b) = δ(yi, b),

where y = γV (x) and b ∈ {0, 1, ∗}.

Proof. See Appendix C.2.

Thus, SP(1), when suitably initialized, simply strips the valid assignment x down to its core
γV (x). Moreover, Proposition 4, in conjunction with Theorem 3, leads to viewing the pure form
of survey propagation SP(1) as performing an approximate marginalization over cores. Thus, a
crucial question arises: do cores exist for random formulas? While it is easy to construct formulas
with or without cores, to date we have been unable to prove (or disprove) the existence of cores
for high-density random formula. In Section 5, we how that cores, if they exist, must be “large” in
a suitable sense (see Proposition 6). In addition, we have performed experiments to address this
question; these results and the case k = 2 lead to a natural conjecture, which is described below.

4.3 Peeling experiments

We have performed a large number of the following experiments:

1. starting with a satisfying assignment x, change a random one of its unconstrained variables
to ∗,

2. repeat until there are no unconstrained variables.

This procedure, which we refer to as “peeling”, is equivalent to taking a random path from x in
G, by choosing at each step a random outgoing edge. Any such path terminates at the core γV (x).
It is interesting to examine at each step of this process the number of unconstrained variables
(equivalently, the number of outgoing edges in the graph G). For k = 3 SAT problems, panels (a)
and (b) of Figure 4 show the results of such experiments for n = 100 and n = 1000 respectively,
using different values of α. The plotted curves are the evolution of the number of unconstrained
variables as the number of ∗’s increases. On one hand, for n = 100 and α close to threshold,
satisfying assignments often correspond to core assignments; a similar observation was also made
by Braunstein and Zecchina [5]. In contrast, for larger n, this correspondence is rarely the case.
Rather, the generated curves suggest that γV (x) is almost always the all-∗ assignment, and moreover
that for high density α, there is a critical level in G where the out-degrees are very low. Increasing
α results in failure of the algorithm itself, rather than in the formation of real core assignments.
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Figure 4. Evolution of the number of unconstrained variables in the following process: start with a
satisfying assignment, change a random unconstrained variable to ∗ and repeat. Plotted is the result
for (a) n = 100 and (b) n = 1000, for random formulas with k = 3 and α = {2, 2.5, 3, 3.5, 4, 4.1, 4.2}.
In particular, core assignments are on the x-axis, and satisfying assignments are on the y-axis.

Cores for k = 2: For k = 2, the event that there is a path in G from a satisfying assignment
to the all-∗ assignment has a very natural interpretation. In particular, it is equivalent to the
event that the pure-literal rule succeeds in finding an assignment. The pure-literal rule [21] is an
algorithm consisting of the following steps: assign 1 to a variable if it only appears positively in a
clause, and 0 if it only appears negatively in a clause, reduce the formula, and repeat the procedure.
It is straightforward to check that the sequence of variables given by the labels on any path from
the all-∗ assignment to a satisfying assignment can be identified with a sequence of steps of the
pure-literal type. Furthermore, it is known [21] that there is a phase transition for the event that
the pure-literal rule succeeds at α = 1.

A natural conjecture is that an analogous property holds for k ≥ 3: in particular, to postulate
that if α < αc, then with high probability there exists a satisfying assignment x and a sequence of
variables, such that there exists a path in G from x to the all-∗ assignment labeled by this sequence.
Our experiments indicate that this may even be true for almost all satisfying assignments.

Alternative explanation: If (as suggested by our results) non-trivial cores typically do not exist
and therefore cannot explain the success of pure survey propagation, an alternative explanation is
required. Accordingly, we propose studying the behavior of SP(ρ) for ρ ∈ (0, 1). Our experimental
results, consistent with similar reports from Kirkpatrick [14], show that SP(ρ) tends to be most
effective in solving k-SAT for values of ρ < 1. If so, the good behavior of SP(1) may well follow
from the similarity of SP(1) updates to SP(ρ) updates for ρ ≈ 1. To further explore this issue, the
effects of varying the weight distribution (ωo, ω∗), and consequently the parameter ρ, are discussed
in the following section.

4.4 Weight distribution and smoothing

One of the benefits of our analysis is that it suggests a large pool of algorithms to be investigated.
One option is to vary the values of ωo and ω∗. A “good” setting of these parameters should
place significant weight on precisely those valid assignments that can be extended to satisfying
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Figure 5. Performance of BP for different choices of (ωo, wstar) as applied to a particular randomly
chosen formula with n = 10000, k = 3, α = 4.2. Four distinct cases can be distinguished: (i) BP
converges and the decimation steps yields a complete solution, (ii) BP converges and the decimation
steps yield a partial solution, completed by using Walk-SAT, (iii) BP converges but the decimation
steps don’t lead to a solution, and (iv) BP does not converge.

assignments. At the same time, the parameter setting clearly affects the level of connectivity in the
space of valid assignments. Connectivity most likely affects the performance of belief propagation,
as well as any other algorithm that we may apply to compute marginals or sample from the
distribution.

Figure 5(a) shows the performance of belief propagation on the extended MRF for different
values of (ωo, ω∗), and applied to particular random formula with n = 10000, k = 3 and α = 4.2.
For weights satisfying ωo + ω∗ > 1, the behavior is very predictable: although the algorithm
converges, the choices that it makes in the decimation steps lead to a contradiction. Note that
there is a sharp transition in algorithm behavior as the weights cross the line ωo + ω∗ = 1, which
is representative of the more general behavior.

The following result, which we prove in Appendix C.3, provides some justification for the ex-
cellent performance in the regime ωo + ω∗ ≤ 1.

Theorem 5. If ωo +ω∗ = 1, then
∑

y≤xW (y) = ω
n∗(x)
∗ for any valid assignment x. If ωo +ω∗ < 1,

then
∑

y≤xW (y) ≥ (ω∗)
n∗(x) for any valid assignment x.

It should be noted that Theorem 5 has a very natural interpretation in terms of a “smoothing”
operation. In particular, the (ωo, ω∗)-MRF may be regarded as a smoothed version of the uniform
distribution over satisfying assignments, in which the uniform weight assigned to each satisfying
assignment is spread over the lattice associated with it.2

4.5 Gibbs sampling

Based on our experiments, the algorithm SP(ρ) is very effective for appropriate choices of the pa-
rameter ρ. The link provided by Theorem 5 suggests that the distribution pW , for which SP(ρ)—as

2Note, however, that any generalized assignment that belongs to two or more lattices is assigned a weight only

once. Otherwise, the transformation would be a convolution operation in a strict sense.
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an instantiation of belief propagation on the extended MRF—is computing approximate marginals,
must posses good “smoothness” properties. One expected consequence of such “smoothness” is that
algorithms other than BP should also be effective in computing approximate marginals. Interest-
ingly, rigorous conditions that imply (rapid) convergence of BP [24]—namely, uniqueness of Gibbs
measures on the computation tree—are quite similar to conditions implying rapid convergence of
Gibbs samplers, which are often expressed in terms of “uniqueness”, “strong spatial mixing”, and
“extremality” (see, for example [16, 2]).

In this section, we explore the application of sampling methods to the extended MRF as a means
of computing unbiased stochastic approximations to the marginal distributions, and hence biases
at each variable. More specifically, we implemented a Gibbs sampler for the family of extended

SAT α Gibbs ρ
0.4 0.5 0.7 0.9

4.2 0.0493 0.1401 0.3143 0.4255
4.1 0.0297 0.1142 0.3015 0.4046
4.0 0.0874 0.0416 0.2765 0.3873
3.8 0.4230 0.4554 0.1767 0.0737
3.6 0.4032 0.4149 0.1993 0.0582
3.4 0.4090 0.4010 0.2234 0.0821

SAT α Gibbs ρ
0.4 0.5 0.7 0.9

4.2 0.0440 0.1462 0.3166 0.4304
4.1 0.0632 0.0373 0.2896 0.4119
4.0 0.0404 0.0666 0.2755 0.3984
3.8 0.1073 0.0651 0.2172 0.3576
3.6 0.1014 0.0922 0.1620 0.3087
3.4 0.3716 0.3629 0.1948 0.0220

(a) Comparison to SP(0.95) (b) Comparison to SP(0.9)

SAT α Gibbs ρ
0.4 0.5 0.7 0.9

4.2 SP fails SP fails SP fails SP fails
4.1 0.0230 0.0985 0.3236 0.4341
4.0 0.0493 0.0079 0.3273 0.4309
3.8 0.0531 0.0194 0.2860 0.4104
3.6 0.0980 0.0445 0.2412 0.3887
3.4 0.0365 0.0356 0.1301 0.3869

SAT α Gibbs ρ
0.4 0.5 0.7 0.9

4.2 SP fails SP fails SP fails SP fails
4.1 0.1925 0.2873 0.3989 0.4665
4.0 0.0483 0.1092 0.2986 0.4179
3.8 0.0924 0.0372 0.3235 0.4323
3.6 0.0184 0.0304 0.2192 0.4009
3.4 0.0323 0.0255 0.0718 0.3613

(c) Comparison to SP(0.7) (d) Comparison to SP(0.5)

Figure 6. Comparison of SP (β) pseudomarginals for β ∈ {0.95, 0.9, 0.7, 0.5} to marginals estimated
by Gibbs sampling on weighted MRFs with ρ ∈ {0.4, 0.5, 0.7, 0.9} for the range of SAT problems
α ∈ {4.2, 4.1, 4.0.3.8, 3.6, 3.4}. Each entry in each table shows the average `1 error between the biases
computed from the SP (β) pseudomarginals compared to the biases computed from Gibbs sampling
applied to MRF (ρ). Calculations were based on top 50 most biased nodes on a problem of size
n = 1000. The bold entry within each row (corresponding to a fixed α) indicates the MRF (ρ) that
yields the smallest `1 error in comparison to the SP biases.

MRFs developed in Section 3. The Gibbs sampler performs a random walk over the configuration
space of the extended MRF—that is, on the space of generalized valid assignments. Each step of
the random walk entails picking a variable xi uniformly at random, and updating it randomly to
a new value b ∈ {0, 1, ∗} according to the conditional probability pW (xi = b|(xj : j 6= i)). By the
construction of our extended MRF (see equation (9)), this conditional probability is an (explicit)
function of the variables xj and xi appear together in a clause, and of the variables xk such that
xk and xj appear together in a clause, where xj and xi appear together in a clause.
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It is of interest to compare the approximate marginals computed by the SP(β) family of algo-
rithms (to which we refer as pseudomarginals) to the (stochastic) estimates computed by Gibbs
sampler. Given the manner in which the SP pseudomarginals are used in the decimation pro-
cedure, the most natural comparison is between the biases µi(0) − µi(1) provided by the SP (β)
algorithm, and the biases τi(0)− τi(1) associated with the Gibbs sampler (where τi are the approx-
imate marginals obtained from Gibbs sampling on the extended MRF with parameter ρ (denoted
MRF(ρ)). The results of such comparisons for the SP parameter β ∈ {0.95, 0.9, 0.7, 0.5} and the
Gibbs sampling parameter ρ ∈ {0.4, 0.5, 0.7, 0.9} are shown in Figure 6. Comparisons are made for
each pair (β, ρ) in these sets, and over a range of clause densities α ∈ {4.2, 4.1, 4.0.3.8, 3.6, 3.4}. For
fairly dense formulas (e.g., α ≥ 4.0), the general trend is that the SP(β) biases with larger β agree
most closely with the Gibbs biases with ρ relatively smaller (i.e., ρ < β). For lower clause densities
(e.g., α = 3.4), the agreement between the SP(β) and Gibbs biases on MRF (ρ) when β = ρ is
substantially closer.

5 Expansion arguments for random formulas

This section is devoted to the study of properties of the MRF on random formulas. We will
use simple random graph arguments in order to obtain typical properties of cores, as well as the
behavior of Gibbs sampling or message-passing algorithms applied to the MRF associated with a
randomly chosen formula. Throughout this section, we denote pφ

W to denote the MRF distribution
for a fixed formula φ. Otherwise, we write P

n,m for the uniform measure on k-sat formulas with n
variables and m clauses, and P

n,α for the uniform measure on k-sat formulas with n variables and
m = αn clauses. We often drop n, m, and/or α when they are clear from the context. Finally, we

use Eφ
W , E

n,m and E
n,α to denote expectations with respect to the distributions pφ

W , P
n,m and P

n,α

respectively.

5.1 Size of cores

We first prove a result that establishes that cores, if they exist, are typically at least a certain linear
fraction c(α, k) of the total number n of variables.

Proposition 6. Let φ be a random k-sat formula with m = αn clauses where k ≥ 3. Then for all
positive integers C it holds that

P
n,α[ φ has a core with C clauses ] ≤

(
e2αCk−2

nk−2

)C

, (14)

Consequently, if we define c(α, k) := (αe2)−1/(k−2), then with P
n,α-probability tending to one as

n→ +∞, there are no cores of size strictly less than c(α, k)n.

Proof. Suppose that the formula φ has a core with C clauses. Note that the variables in these
clauses all lie in some set of at most C variables. Thus the probability that a core with C clauses
exist is bounded by the probability that there is a set of C clauses all whose variables lie in some
set of size ≤ C. This probability is given by

(
m

C

)(
n

C

)(
C

n

)Ck

,
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which can be upper bounded by

(em
C

)C (en
C

)C
(
C

n

)Ck

=

(
e2αCk−2

nk−2

)C

,

as needed.

5.2 (Meta)-stability of the all ∗ assignment for small ρ

By definition, the extended MRF for ρ = 1 assigns positive mass to the all-∗ vector. Moreover,
Proposition 6 implies that the size of cores (when they exist) is typically linear in n. It follows that
the state space of the MRF for ρ = 1 typically satisfies one of the following properties:

• Either the state space is trivial, meaning that it contains only the all ∗ state, or

• The state space is disconnected with respect to all random walks based on updating a small
linear fraction of the coordinates in each step.

The goal of this section is to establish that a similar phenomenon persists when ρ is close to 1 (i.e.,
when 1 − ρ is small).

We begin by introducing some notions from the analysis of the mixing properties of Markov
chains. Let T be a reversible chain with respect to a measure p on a state space Ω. For sets
A,B ⊂ Ω, write

qT (A,B) =
∑

x∈A,y∈B

p(x)Tx→y =
∑

x∈A,y∈B

p(y)Ty→x.

The conductance of the chain T is defined as

c(T ) = inf
S⊂Ω

{ qT (S, Sc)

p(S)(1 − p(S))
}.

It is well-known that c(T )/2 is an upper bound on the spectral gap of the chain T and that 2/c(T )
is a lower bound on the mixing time of the chain. We note moreover that the definition of T implies
that for every two sets A,B it holds that qT (A,B) ≤ min{p(A), p(B)}.

Definition 7. Consider a probability measure p on a space Ω of strings of length n. Let T be a
Markov chain on Ω. The radius of T denoted by r(T ) is defined by

r(T ) := sup{dH(x, y) : Tx,y > 0}, (15)

where dH is the Hamming distance. We let the radius r-conductance of p denote by c(r, p) be

c(r, p) := sup{c(T ) : T is reversible with respect to p and r(T ) ≤ r}. (16)

Now returning to the random k-SAT problem, we write pρ for the measure pW = pφ
W with

ω∗ = ρ and ωo = 1 − ρ.

Proposition 8. Consider a randomly chosen k-SAT formula with density α. Then there exists a
ρ0 ∈ (0, 1) such that if ρ > ρ0 then P

n[φ ∈ An ∪ Bn] → 1 as n → +∞ where An and Bn are the
following events:
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(I) An consists of all the formulas φ satisfying pφ
ρ [n− n∗(x) ≤ 2

√
(1 − ρ)n] ≥ 1 − exp(−Ω(n)).

(II) Bn consists of all the formulas φ for which the measure pφ
ρ satisfies c(

√
(1 − ρ)n, pρ) ≤

exp(−Ω(n)).

Proof. We let δ be a small positive number to be determined, and set 1 − ρ = δ2. As it suffices to
work with ratios of probabilities, we use the unnormalized weight W φ(x) instead of pφ

W (x).
The proof requires the following:

Lemma 9. Let d be an integer satisfying δn ≤ d ≤ 2δn. For δ sufficiently small, it holds that with
P

n probability going to 1 as n→ ∞
∑2δn

d=δnW
φ[n− n∗ = d]

ρ3n
= exp(−Ω(n)). (17)

Proof. See Appendix D.1.

To establish the proposition, it suffices to show that for any formula φ for which equation (17)
of Lemma 9 is valid, then one of either condition (I) or condition (II) must hold.

(i) First suppose that W φ[n− n∗(x) > 2δn] ≤ ρ3n/2. In this case, condition (I) in the statement
of the proposition follows immediately.

(ii) Otherwise, we may take W φ[n − n∗(x) > 2δn] ≥ ρ3n/2. In this case, we can apply the
conductance bound in order to bound the gap of any operator with radius ≤ δn. Take the set
A to be all x with n− n∗(x) < δn and B be the set of all x with δn ≤ n− n∗(x) ≤ 2δn. Let
T be any Markov chain with radius δn that is reversible with respect to pW . Then we have
qT (A,Ac) = qT (A,B) ≤ p(B). In addition, it holds that W φ[n− n∗(x) < δn] ≥ ρn (since if x
is the all-∗ assignment, we have W φ(x) = ρn); moreover, if we take n sufficiently large, then
we have W φ[δn ≤ n − n∗(x) ≤ 2δn] ≤ ρ3n by Lemma 9. Combining these inequalities, we
obtain that the conductance of T is bounded above by

q(A,Ac)

p(A)p(Ac)
≤ p(B)

p(A)p(Ac)

≤ W φ[δn ≤ n− n∗(x) ≤ 2δn]

W φ[n− n∗(x) < δn]W φ[n− n∗(x) > 2δn]

≤ ρ3n

ρn ρ
3n
2

= ρn/2,

which implies condition (II).

5.3 Message-passing algorithms on random ensembles

The analysis of the preceding section demonstrated that for values of ρ close to 1, any random
sampling technique based on local moves (e.g., Gibbs sampling), if started at the all ∗ assignment,
will take exponentially long to get to an assignment with more than a negligible fraction of non-∗.
This section is devoted to establishing an analogous claim for the belief propagation updates on the
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extended Markov random fields. More precisely, we prove that if ρ is sufficiently close to 1, then
running belief propagation with initial messages that place most of their mass on on ∗ will result
assignments that also place most of the mass on ∗.

This result is proved in the “density-evolution” setting [e.g., 20] (i.e., the number of iterations
is taken to be less than the girth of the graph, so that cycles have no effect). More formally, we
establish the following:

Theorem 10. For every formula density α > 0, arbitrary scalars ε′′ > 0 and δ > 0, there exists
ρ′ < 1, ε′ ∈ (0, ε′′) and γ > 0 such that for all ρ ∈ (ρ′, 1] and ε ∈ (0, ε′), the algorithm SP (ρ)
satisfies the following condition.

Consider a random formula φ, a random clause b and a random variable i that belongs to the
clause b. Then with probability at least 1 − δ, if SP (ρ) is initialized with all messages η0

a→j < ε,
then the inequality ηt

b→i < ε′ holds for all iterations t = 0, 1, . . . , γ log n.

The first step of the proof is to compare the SP iterations to simpler “sum-product” iterations.

Lemma 11. For any ρ ∈ [0, 1], the SP (ρ) iterations satisfy the inequality:

ηt+1
a→i ≤

∏

j∈V (a)\{i}

min


1, (1 − ρ) + ρ

∑

b∈C(j)\{a}

ηt
b→j




Proof. See Appendix D.2.

Since our goal is to bound the messages ηt+1
a→i, Lemma 11 allows us to analyze the simpler

message-passing algorithm with updates specified by:

ηt+1
a→i =

∏

j∈V (a)\{i}

min


1, (1 − ρ) + ρ

∑

b∈C(j)\{a}

ηt
b→j


 . (18)

The next step is to bound the probability of “short-cycles” in the computation tree correspond-
ing to the message-passing updates specified in equation (18). More formally, given a formula φ,
we define a directed graph G(φ) = (V,E), in which the vertex set V consists of messages ηa→i. The
edge set E includes the edge ηa→i → ηb→j belongs to E if and only if j ∈ V (a)\{i} and b ∈ Cu

a (i).
In words, the graph G(φ) includes an edge between the ηa→i and ηb→j if the latter is involved in
the update of ηa→i specified in equation (18).

Lemma 12. Let G(φ) be the random graph generated by choosing a formula φ uniformly at random
with αn clauses and n variables. Let v be a vertex of G(φ) chosen uniformly at random. For all
clause densities α > 0, there exists γ > 0 such that with probability 1 − o(1), the vertex v does not
belong to any directed cycle of length smaller than γ log n in G(φ).

Proof. The proof is based on standard arguments from random graph theory [e.g., 12].

Our analysis of the the recursion (18) on the computation tree in based on an edge exposure
technique that generates a neighborhood of a vertex v in the graph G(φ) for a random φ. More
specifically, pick a clause a and a variable i in a at random. Now for each variable j ∈ V (a)\{i},
expose all clauses b containing j (but not any other of the variables appearing so far). Then for
each such b, we look at all variables k ∈ V (b)\{j}, and so on. We consider the effect of repeating
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this exposure procedure over t = γ logn steps. When the vertex ηa→i does not belong to cycles
shorter than t in G(φ), such an analysis yields a bound on ηt

a→i.
Note that each clause can expose at most k−1 variables. Recall that we generate the formula φ

by choosing each of the Nc = 2k
(
n
k

)
clauses with probability αn/Nc. The distribution of the number

of clauses exposed for each variable is thus dominated by Bin(Mc, αn/Nc) where Mc = 2k
(

n
k−1

)
. An

equivalent description of this process is the following: each vertex v = ηa→i exposes Xv neighbors
ηb→j , where the distribution of the collection {Xv} is dominated by a collection {Yv} of i.i.d. random
variables. Moreover, the Y ’s are jointly distributed as the sum of k − 1 i.i.d. Bin(Mc, αn/Nc)
variables.

The proof requires the following lemma on branching processes.

Lemma 13. Consider a branching process where each vertex gives birth to Y children. Assume
further that the branching process is stopped after m levels and let K > 0 be given.

The notion of a good vertex is defined inductively as follows. All vertices at level m are good.
A vertex at level m − 1 is good if it has ` children and ` ≤ K. By induction for s ≥ 2 we call a
vertex at level m− s good if v has ` children v1, . . . , v` with ` ≤ K and

(a) Either all of v1, . . . , v` have at most K children, of which all are good; or

(b) all of v1, . . . , v` have at most K children, of which all but one are good.

Denote by p(m,K) the probability that the root of the branching process is good. Then

inf
0≤m<∞

p(m,K) = 1 − exp(−Ω(K)).

Proof. See Appendix D.3.

We are now equipped to complete the proof of Theorem 10. Using Lemma 12, first choose
γ = γ(α) such that a random vertex in G(φ) does not belong to cycles shorter than γ log n with
probability 1− o(1). Next use Lemma 13 to choose K such that the probability inf0≤m<∞ p(m,K)
that the root of the branching process is good is at least 1 − δ/2.

Next we define a pair of functions θ and ζ (each mapping R×R to the real line) in the following
way:

θ(ε, ρ) := ((1 − ρ) +Kρε), ζ(ε, ρ) := θ (θ(ε, ρ), ρ) × θ
(
θ(ε, ρ)2, ρ

)
.

Setting ε′ := min(ε′′, 1
2K3 ), observe that θ(ε′, 1) = Kε′ and therefore θ2(ε′, 1) ≤ ε′

4 and

ζ(ε′, 1) = θ(Kε′, 1)θ((Kε′)2, 1) = (K2ε′)(K4ε′2) = K6ε′3 ≤ ε′

4
.

It now follows by continuity that there exists ρ′ < 1 such that for all 1 ≥ ρ ≥ ρ′ it holds that

θ2(ε′, ρ) ≤ ε′

2 , ζ(ε′, ρ) ≤ ε′

2 . (19)

We claim that the statement of the theorem holds with the choices of γ, ε′ and ρ′ above. Indeed,
choose a formula φ with density α at random and let v = ηa→i be a random vertex of G(φ). With
probability at least 1 − δ/2, the vertex v does not belong to any cycle shorter than t = γ log n.

Since v does not belong to any such cycle, the first t levels of the computation tree of v may
be obtained by the exposure process defined above. We will then compare the computation tree to
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an exposure process where each variable gives birth to exactly Bin(Mc, αn/Nc) clauses. Since the
messages are generated according to (18), any bound derived on the values of non-∗ messages for
the larger tree implies the same bound for the real computation tree.

We now claim that if v is a good vertex on that tree, then the message at v after t iterations—
namely, ηt

a→i—-is at most ε′. Since a vertex of the tree is good with probability 1 − δ/2, proving
this claim will establish the theorem.

We prove this claim by induction on s, where m − s is the level of w. For s = 0, the claim
follows immediately from the initialization of the messages. For s = 1, observe that equation (18)
implies that if w = ηb→j is good at level m− 1, then

ηb→j ≤ θk−1(ρ, ε) ≤ θ2(ρ, ε′) ≤ ε′

2
.

For the general induction step, assume that w = ηb→j at level m− s is good and s ≥ 2. There are
two cases to consider:

(i) w has all its grand children good. In this case we repeat the argument above twice to obtain
ηb→j ≤ ε′.

(ii) Exactly one of w = ηb→j grand children is not good. Let y′ = ηd′→`′ denote the grand-child
and y = ηd→` denote y parent. Then by equation (18):

ηd→` ≤ (1 − ρ) +Kρε′ = θ(ε′, ρ).

Using (11) again yields

ηd→` ≤ ((1 − ρ) +Kρθ(ε′, ρ))((1 − ρ) +Kρθ2(ε′, ρ))k−2

≤ ((1 − ρ) +Kρθ(ε′, ρ))((1 − ρ) +Kρθ2(ε′, ρ)) = ζ(ε′, ρ) ≤ ε′/2,

which completes the proof.

6 Conclusion

In this paper, we introduced a new family of Markov random fields (MRFs) that can be associated
with any k-SAT instance. We showed that the survey propagation updates, as well as a larger class
of related algorithms, can all be recovered by applying the well-known belief propagation updates
to these MRFs (with appropriate settings of the MRF parameters). This equivalence is impor-
tant because the belief propagation algorithm is a widely-used method, and its behavior is fairly
well-understood for specific problem classes. The perspective given in this paper focuses attention
on the representational issue of how to choose an appropriate MRF for a given SAT problem. To
this end, we showed how configurations in these MRFs have a natural interpretation as generalized
satisfiability assignments, and developed a number of results on the associated combinatorial struc-
ture. Moreover, we proved a weight-preserving identity—showing how, with appropriate parameter
choices, MRFs in the extended family can be viewed as smoothed versions of the naive MRF rep-
resentation of the k-SAT problem—that provides initial guidelines for selecting MRF parameters.
Finally, we investigated the typical properties of both message-passing and Gibbs sampling over a
random ensemble of k-SAT problems. In future work, it would be interesting to explore suitably
modified applications of the extended MRFs described here to other combinatorial problems for
which survey propagation is useful (e.g., coloring problems).
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A Belief propagation on a generic factor graph

Given a subset S ⊆ {1, 2, . . . , n}, we define xS := {xi | i ∈ S}. Consider a probability distribution
on n variables x1, x2, . . . , xn, that can be factorized as

p(x1, x2, . . . , xn) =
1

Z

n∏

i=1

ψi(xi)
∏

a∈C

ψa(xV (a)), (20)

where for each a ∈ C the set V (a) is a subset of {1, 2, . . . n}; and ψi(xi) and ψa(xV (a)) are non-
negative real functions, referred to as compatibility functions, and

Z :=
∑

x

[ n∏

i=1

ψi(xi)
∏

a∈C

ψa(xV (a))
]

(21)

is the normalization constant or partition function.
A factor graph representation of this probability distribution is a bipartite graph with vertices

V corresponding to the variables, called variable nodes, and vertices C corresponding to the sets
V (a) and called function nodes. There is an edge between a variable node i and function node a if
and only if i ∈ V (a). We write also a ∈ C(i) if i ∈ V (a).

We want to compute the marginal probability of a single variable i for such a distribution:

p(xi) =
∑

{xj ,j∈V \{i}}

p(x1, x2, . . . , xn).

The belief propagation or sum-product algorithm [15] is an efficient algorithm for computing
the marginal probability distribution of each variable, assuming that the factor graph is acyclic.
The essential idea is to use the distributive property of the sum and product operations to compute
independent terms for each subtree recursively. These recursions can be cast as a message-passing
algorithm, in which adjacent nodes on the factor graph exchange intermediate values. Let each
node only have access to its corresponding compatibility function. As soon as a node has received
messages from all neighbors below it, it can send a message up the tree containing the term in the
computation corresponding to it. In particular, let the vectors Mi→a denote the message passed by
variable node i to function node a; similarly, the quantity Ma→i denotes the message that function
node a passes to variable node i.

The messages from function to variables are updated in the following way:

Ma→i(xi) ∝
∑

xV (a)\{i}

[
ψa(xV (a))

∏

j∈V (a)\{i}

Mj→a(xj)
]
. (22)

In the other direction, the messages from variable nodes to function nodes are updated as follows

Mi→a(xi) ∝ ψi(xi)
∏

b∈C(i)\{a}

Mb→i(xi). (23)
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It is straightforward to show that for a factor graph without cycles, these updates will converge
after a finite number of iterations. Upon convergence, the local marginal distributions at variable
nodes and function nodes can be computed, using the message fixed point M̂ , as follows:

Fi(xi) ∝ ψi(xi)
∏

b∈C(i)

M̂b→i(xi) (24a)

Fa(xV (a)) ∝ ψa(xV (a))
∏

j∈V (a)

M̂j→a(xj). (24b)

The same updates, when applied to a graph with cycles, are no longer exact due to presence of
cycles. An exact algorithm will generally require exponential time. For certain problems, including
error-control coding, applying belief propagation to a graph with cycles gives excellent results. Since
there are no leaves on graphs with cycles, usually the algorithm is initialized by sending random
messages on all edges, and is run until the messages converge to some fixed value [15].

B Derivation of BP updates on the extended MRF

B.1 Messages from variables to clauses

We first focus on the update of messages from variables to clauses. Recall that we use the notation
Pi = S ∪ {a} as a shorthand for the event

a ∈ Pi and S = Pi\{a} ⊆ Cs
a(i),

where it is understood that S could be empty.

Lemma 14 (Variable to clause messages). The variable to clause message vector Mi→a is fully
specified by values for pairs (xi, Pi) of the form:

{(sa,i, S ∪ {a}), (sa,i, ∅ 6= Pi ⊆ Cs
a(i)), (ua,i, ∅ 6= Pi ⊆ Cu

a (i)), (sa,i, ∅), (ua,i, ∅), (∗, ∅)}.
Specifically, the updates for these five pairs take the following form:

Mi→a(sa,i, Pi = S ∪ {a}) =
∏

b∈S

M s
b→i

∏

b∈Cs
a(i)\S

M∗
b→i

∏

b∈Cu
a (i)

Mu
b→i (25a)

Mi→a(sa,i, ∅ 6= Pi ⊆ Cs
a(i)) =

∏

b∈Pi

M s
b→i

∏

b∈Cs
a(i)\Pi

M∗
b→i

∏

b∈Cu
a (i)

Mu
b→i (25b)

Mi→a(ua,i, ∅ 6= Pi ⊆ Cu
a (i)) =

∏

b∈Pi

M s
b→i

∏

b∈Cu
a (i)\Pi

M∗
b→i

∏

b∈Cs
a(i)

Mu
b→i (25c)

Mi→a(sa,i, Pi = ∅) = ωo

∏

b∈Cs
a(i)

M∗
b→i

∏

b∈Cu
a (i)

Mu
b→i (25d)

Mi→a(ua,i, Pi = ∅) = ωo

∏

b∈Cu
a (i)

M∗
b→i

∏

b∈Cs
a(i)

Mu
b→i (25e)

Mi→a(∗, Pi = ∅) = ω∗

∏

b∈C(i)\{a}

M∗
b→i. (25f)

Proof. The form of these updates follows immediately from the definition (7) of the variable com-
patibilities in the extended MRF, and the BP message update (23).
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B.2 Forms of R quantities

In this section, we compute the specific forms of the linear sums of messages defined in equation (11).
First, we use the definition (11a) and Lemma 14 to compute the form of Rs

i→a:

Rs
i→a :=

∑

S⊆Cs
a(i)

Mi→a(sa,i, Pi = S ∪ {a})

=
∑

S⊆Cs
a(i)

∏

b∈S

M s
b→i

∏

b∈Cs
a(i)\S

M∗
b→i

∏

b∈Cu
a (i)

Mu
b→i

=
∏

b∈Cu
a (i)

Mu
b→i

[ ∏

b∈Cs
a(i)

(M s
b→i +M∗

b→i)
]
.

Similarly, the definition (11b) and Lemma 14 allows us compute the following form of Ru
i→a:

Ru
i→a =

∑

S⊆Cu
a (i)

Mi→a(ua,i, Pi = S)

=
∑

S⊆Cu
a (i),S 6=∅

∏

b∈S

M s
b→i

∏

b∈Cu
a (i)\S

M∗
b→i

∏

b∈Cs
a(i)

Mu
b→i + ωo

∏

b∈Cu
a (i)

M∗
b→i

∏

b∈Cs
a(i)

Mu
b→i

=
∏

b∈Cs
a(i)

Mu
b→i

[ ∏

b∈Cu
a (i)

(M s
b→i +M∗

b→i) − (1 − ωo)
∏

b∈Cu
a (i)

M∗
b→i

]
.

Finally, we compute R∗
i→a using the definition (11c) and Lemma 14:

R∗
i→a =

[ ∑

S⊆Cs
a(i)

Mi→a(sa,i, Pi = S)
]

+Mi→a(∗, Pi = ∅)

=
[ ∑

S⊆Cs
a(i),S 6=∅

∏

b∈S

M s
b→i

∏

b∈Cs
a(i)\S

M∗
b→i

∏

b∈Cu
a (i)

Mu
b→i

]
+ ωo

∏

b∈Cs
a(i)

M∗
b→i

∏

b∈Cu
a (()i)

Mu
b→i

+ ω∗

∏

b∈Cs
a(i)

M∗
b→i

∏

b∈Cu
a (i)

M∗
b→i

=
∏

b∈Cu
a (i)

Mu
b→i

[ ∏

b∈Cs
a(i)

(M s
b→i +M∗

b→i) − (1 − ωo)
∏

b∈Cs
a(i)

M∗
b→i

]
+ ω∗

∏

b∈Cs
a(i)∪Cu

a (i)

M∗
b→i.

B.3 Clause to variable updates

In this section, we derive the form of the clause to variable updates.

Lemma 15 (Clause to variable messages). The updates of messages from clauses to variables
in the extended MRF take the following form:

M s
a→i =

∏

j∈V (a)\{i}

Ru
j→a (26a)

Mu
a→i =

∏

j∈V (a)\{i}

(Ru
j→a +R∗

j→a) +
∑

k∈V (a)\{i}

(Rs
k→a −R∗

k→a)
∏

j∈V (a)\{i,k}

Ru
j→a −

∏

j∈V (a)\{i}

Ru
j→a (26b)

M∗
a→i =

∏

j∈V (a)\{i}

(Ru
j→a +R∗

j→a) −
∏

j∈V (a)\{i}

Ru
j→a. (26c)
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Proof. (i) We begin by proving equation (26a). When xi = sa,i and Pi = S∪{a} for some S ⊆ Cs
a(i),

then the only possible assignment for the other variables at nodes in V (a)\{i} is xj = ua,j and
Pj ⊆ Cu

a (j). Accordingly, using the BP update equation (22), we obtain the following update for
M s

a→i = Ma→i(sa,i, Pi = S ∪ {a}):

M s
a→i =

∏

j∈V (a)\{i}

∑

Pj⊆Cu
a (j)

Mj→a(ua,j , Pj)

=
∏

j∈V (a)\{i}

Ru
j→a.

(ii) Next we prove equation (26c). In the case xi = ∗ and Pi = ∅, the only restriction on the
other variables {xj : j ∈ V (a)\{i}} is that they are not all unsatisfying. The weight assigned to
the event that they are all unsatisfying is

∑
{

Sj⊆Cu
a (j) : j∈V (a)\{i}

}
∏

j∈V (a)\{i}

Mj→a(ua,j , Sj) =
∏

j∈V (a)\{i}

[ ∑

Sj⊆Cu
a (j)

Mj→a(ua,j , Sj)
]

=
∏

j∈V (a)\{i}

Ru
j→a. (27)

On the other hand, the weight assigned to the event that each is either unsatisfying, satisfying or
∗ can be calculated as follows. Consider a partition Ju ∪ Js ∪ J∗ of the set V (a)\{i}, where Ju, Js

and J∗ corresponds to the subsets of unsatisfying, satisfying and ∗ assignments respectively. The
weight W (Ju, Js, J∗) associated with this partition takes the form

∑
{

Sj⊆Cu
a (j) : j∈Ju

}
∑

{
Sj⊆Cs

a(j) : j∈Js
}

∏

j∈Ju

Mj→a(ua,j , Sj)
∏

j∈Js

Mj→a(sa,j , Sj)
∏

j∈J∗

Mj→a(∗, ∅).

Simplifying by distributing the sum and product leads to

W (Ju, Js, J∗) =
∏

j∈Ju

[ ∑

Sj⊆Cu
a (j)

Mj→a(ua,j , Sj)
] ∏

j∈Js

[ ∑

Sj⊆Cs
a(j)

Mj→a(sa,j , Sj)
] ∏

j∈J∗

Mj→a(∗, ∅)

=
∏

j∈Ju

Ru
j→a

∏

j∈Js

[
R∗

j→a −Mj→a(∗, ∅)
] ∏

j∈J∗

Mj→a(∗, ∅),

where we have used the definitions ofRu
j→a andR∗

j→a from Section B.2. Now summingW (Ju, Js, J∗)
over all partitions Ju ∪ Js ∪ J∗ of V (a)\{i} yields

∑
Ju∪Js∪J∗

W (Ju, Js, J∗)

=
∑

Ju⊆V (a)\{i}

∏

j∈Ju

Ru
j→a

∑

Js∪J∗=V (a)\{Ju∪i}

{ ∏

j∈Js

[
R∗

j→a −Mj→a(∗, ∅)
] ∏

j∈J∗

Mj→a(∗, ∅
}

=
∑

Ju⊆V (a)\{i}

∏

j∈Ju

Ru
j→a

∏

j∈V (a)\{Ju∪i}

R∗
j→a

=
∏

j∈V (a)\{i}

[
Ru

j→a +R∗
j→a

]
, (28)
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where we have used the binomial identity twice. Overall, equations (27) and (28) together yield
that

M∗
a→i =

∏

j∈V (a)\{i}

[
Ru

j→a +R∗
j→a

]
−

∏

j∈V (a)\{i}

Ru
j→a,

which establishes equation (26c).

(iii) Finally, turning to equation (26b), for xi = ua,i and Pi ⊆ Cu
a (i), there are only two

possibilities for the values of xV (a)\{i}:

(a) either there is one satisfying variable and everything else is unsatisfying, or

(b) there are at least two variables that are satisfying or ∗.

We first calculate the weight W (A) assigned to possibility (a), again using the BP update equa-
tion (22):

W (A) =
∑

k∈V (a)\{i}

∑

Sk⊆Cs
a(k)

Mk→a(sa,k, S
k ∪ {a})

∏

j∈V (a)\{i,k}

∑

Sj⊆Cu
a (j)

Mj→a(uj,a, S
j)

=
∑

k∈V (a)\{i}

Rs
k→a

∏

j∈V (a)\{i,k}

Ru
j→a, (29)

where we have used the definitions of Rs
k→a and Ru

k→a from Section B.2.
We now calculate the weight W (B) assigned to possibility (b) in the following way. From our

calculations in part (ii), we found that the weight assigned to the event that each variable is either
unsatisfying, satisfying or ∗ is

∏
j∈V (a)\{i}

[
Ru

j→a+R∗
j→a

]
. The weight W (B) is given by subtracting

from this quantity the weight assigned to the event that there are not at least two ∗ or satisfying
assignments. This event can be decomposed into the disjoint events that either all assignments
are unsatisfying (with weight

∏
j∈V (a)\{i}R

u
j→a from part (ii)); or that exactly one variable is ∗ or

satisfying. The weight corresponding to this second possibility is
∑

k∈V (a)\{i}

[
Mk→a(∗, ∅) +

∑

Sk⊆Cs
a(k)

Mk→a(sk,a, S
k)

] ∏

j∈V (a)\{i,k}

∑

Sj⊆Cu
j (a)

Mj→a(uj,a, S
j)

=
∑

k∈V (a)\{i}

R∗
k→a

∏

j∈V (a)\{i,k}

Ru
j→a.

Combining our calculations so far we have

W (B) =
∏

j∈V (a)\{i}

[
Ru

j→a +R∗
j→a

]
−

∑

k∈V (a)\{i}

R∗
k→a

∏

j∈V (a)\{i,k}

Ru
j→a −

∏

j∈V (a)\{i}

Ru
j→a.(30)

Finally, summing together the forms of W (A) and W (B) from equations (29) and (30) respectively,
and then factoring yields the desired equation (26b).

C Proofs for Combinatorial Properties

C.1 Minimal elements

Proposition 16. For any valid assignment x and S ⊆ V , there is a unique minimal y < x
such that the path from x to y is labeled only by indices in S. Furthermore So(y) ∩ S = ∅ and
S∗(y) = S∗(x) ∪ T , where T ⊆ S is the set of labels on any path from x to y.
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Proof. The second assertion in the proposition statement is true for a minimal y because if there
is i ∈ S ∩ So(y) then there would be an outgoing edge from y labeled by an element in S, and y
would not be minimal. The equivalence S∗(y) = S∗(x)∪T follows directly from the definition of G
and its edge labels.

To prove the uniqueness statement, suppose that there are two minimal such assignments y1

and y2, and the paths from x to y1 and y2 are labeled by sets of indices T1, T2 ⊆ S respectively. If
T1 = T2 then y1 = y2, so let us assume that T1 and T2 are distinct. Without loss of generality, we
may take T1\T2 6= ∅. Consider a particular path from x to y1, with labels t1, t2, . . . tr, where r = |T1|.
Let ti be the first label such that ti /∈ T2. Then its corresponding variable is unconstrained when the
variables indexed by {t1, . . . ti−1} ∪ S∗(x) ⊆ T2 ∪ S∗(x) are assigned ∗, therefore it is unconstrained
in y2. This implies that there exists an edge out of y2 that is labeled by ti ∈ S, which contradicts
the assumption that y2 is minimal.

C.2 Proof of Proposition 4

We say that a variable i belongs to the core if yi 6= ∗. We say that a clause a belongs to the core if
all the variables in the clause belong to the core. We first show by induction that

I. If a and i belong to the core and yi is not the unique satisfying variable for a then Πu
i→a =

δ(xi, ua,i) and Πs
i→a = δ(xi, sa,i), and

II. If a and i belong to the core and yi is the unique satisfying variable for a then ηi→a = 1.

Clearly, I. holds at time 0. Therefore, it suffices to prove that if I. holds at update t then so does
II. and that if II. holds at update t then I. holds at time t+ 1.

Suppose that I. holds at time t. Let a and i belong to the core such that yi is the unique
satisfying variable of the clause a. By the induction hypothesis for all j ∈ V (a) \ {i} it holds that
Πu

j→a = δ(xj , ua,j) = 1. This implies that ηi→a = 1 as needed.
Suppose that II. holds at time t. Let a and i belong to the core such that yi is not unique

satisfying for a. By the assumption, it follows that there exists b which belong to the core such that
yi is the unique satisfying variable for b. This implies by the induction hypothesis that ηi→b = 1.
It is now easy to see that at update t+ 1: Πu

i→a = δ(xi, ua,i) and Πs
i→a = δ(xi, sa,i).

Note that the claim above implies that for all times t and all i such that yi 6= ∗ it holds that
µi(b) = δ(yi, b).

Let i1, i2, . . . , is be a “peeling-path” from x to y. In other words, the variable i1 is not uniquely
satisfying any clause. Once, this variable is set to ∗, the variable i2 is not uniquely satisfying any
clause etc. We claim that for all 1 ≤ t ≤ s, for all updates after time t and for all clauses a such
that it ∈ V (a) it holds that ηit→a = 0. The proof follows easily by induction on t. This in turn
implies that if for all updates after time t µit(b) = δ(yi, ∗), from which the result follows.

C.3 Proof of Theorem 5

We start with the case ωo + ω∗ = 1. Let A denote the set of generalized assignments z such that
zj ∈ {xj , ∗} for all j ∈ V . We refer to these as the set of assignments consistent with x. Let
B = {y : y ≤ x} be the set of valid assignments that are reachable from x. Notice that all y ∈ B
are valid and consistent with x, but not every valid assignment in A is reachable from x. We will
let S∗(z) denote the set of variables assigned ∗ both for valid and invalid assignments z.
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Figure 7. The directed graph G and the map σ for the formula (x1∨x2∨x3)∧ (x̄2∨ x̄3∨x4) and the
satisfying assignment (0, 0, 1, 0). The solid arrows denote edges in G and the dashed arrows denote
σ.

We define a map between all assignments consistent with x and the set of reachable ones. Let
σ : A→ B be defined as

σ(z) := γS∗(z)(x).

Notice that if y ∈ B then σ(y) = y. The map is, of course, many-to-one. We define what we’ll
show is the reverse map. For y ∈ B let

τ(y) := {z ∈ A : S∗(z) = S∗(y) ∪ T, T ⊆ Sc(y)}.

Lemma 17. For any y ∈ B and z ∈ A, z ∈ τ(y) if and only if σ(z) = y.

Proof. Let z ∈ τ(y) so that S∗(z) = S∗(y)∪ T for some T ⊆ Sc(y). σ(z) = γS∗(z)(x) is the minimal
valid assignment such that the path from x to it is labeled only by elements in S∗(z). We’ll show
that y satisfies these properties, and therefore by proposition 16, y = σ(z). Any path from x to
y (which exists since y ∈ B) is labeled by S∗(y)\S∗(x) ⊆ S∗(z). Furthermore, for every i ∈ S∗(z),
i /∈ So(y) so there is no outgoing edge from y labeled by an element in S∗(z). Therefore y is
minimal.

Let y = σ(z) = γS∗(z)(x). By proposition 16 there is no i ∈ S∗(z) such that i ∈ So(y).
Therefore S∗(z) ⊆ S∗(y) ∪ Sc(y). Further we have that S∗(y) ⊆ S∗(z) ∪ S∗(x) = S∗(z), therefore
S∗(z) = S∗(y) ∪ T for some T ⊆ Sc(y). Hence z ∈ τ(y).

For a set of generalized assignments X let W (X) =
∑

x∈X W (x). Let W ∅(z) = (ω∗)
n∗(z) ×

(ωo)n−n∗(z), denote the weight of any generalized assignment, if the formula had no clauses. For
such a formula all generalized assignments are valid. Observe that if we restrict our attention to
the assignments that are consistent with x,

W ∅(A) =
∑

z∈A

W ∅(z)

=
∑

S⊆V \S∗(x)

(ω∗)
|S∗(x)|+|S| × (ωo)n−|S∗(x)|−|S|

= (ω∗)
|S∗(x)| × (ω∗ + ωo)n−|S∗(x)|

= (ω∗)
n∗(x)

30



We show that when clauses are added to the formula, the total weight under x is preserved
as long as x is still valid. In particular when an assignment z that is consistent with x becomes
invalid, it passes its weight to an assignment that is still valid, namely σ(z), which has fewer ∗
variables than z.

W (y) = (ω∗)
n∗(y) × (ωo)no(y) × 1nc(y)

= (ω∗)
n∗(y) × (ωo)no(y) × (ω∗ + ωo)nc(y) (31)

=
∑

T⊆Sc(y)

(ω∗)
n∗(y)+|T | × (ωo)no(y)+nc(y)−|T |

=
∑

T⊆Sc(y)

W ∅(z : S∗(z) = S∗(y) ∪ T )

= W ∅({z : S∗(z) = S∗(y) ∪ T, T ⊆ Sc(y)})

= W ∅(τ(y)).

Finally, we have: ∑

y≤x

W (y) =
∑

y≤x

W ∅(τ(y)) = W ∅(A) = (ω∗)
n∗(x)

where we used the fact that the sets τ(y) for y ∈ B partition A by lemma 17.
The proof of the case ωo + ω∗ < 1 is similar except that equation (31) becomes an inequality:

W (y) = (ωo)no(y) × (ω∗)
n∗(y) × 1nc(y) ≥

∑

T⊆Sc(S)

W ∅(τ(y)).

When an assignment z that is consistent with x becomes invalid, it passes more than its own weight
to σ(z).

D Proofs for random formulae

D.1 Proof of Lemma 9

In order to prove (17), it suffices by the Markov inequality to show that for every integer d in the
interval [δn, 2δn], it holds that

E
n[W φ[n− n∗ = d]]

ρ3n
= exp(−Ω(n)). (32)

To establish (32), consider a fixed set of d variables. The average W -weight assigned to the event
that this set of size d constitutes all the non-star variables is bounded by

ρn−d
d∑

r=0

(1 − ρ)d−r

(
d

r

)(
αn

r

)
(d/n)kr,

where r represents the number of constrained variables. We obtain this bound by the following
reasoning. First, the n − d variables assigned ∗ all receive weight ρ. Otherwise, if r out of the
remaining d variables are constrained, there must be r clauses chosen from a total of αn, and each
such clause must have all of its k variables chosen from within the set of d non-star variables.

31



Consequently, the total probability of having d non-star variables is bounded by

ρn−d

(
n

d

) d∑

r=0

(1 − ρ)d−r

(
d

r

)(
αn

r

)(
d

n

)kr

≤ ρn−d
(en
d

)d
d∑

r=0

(1 − ρ)d−r

(
ed

r

)r (αen
r

)r
(
d

n

)kr

= ρn−d

(
(1 − ρ)en

d

)d d∑

r=0

(
e2dk+1α

r2(1 − ρ)nk−1

)r

,

Recalling that 1 − ρ = δ2 and d ∈ [δn, 2δn], we obtain that the last expression is at most

ρn−2δn

(
δ2en

δn

)d 2δn∑

r=0

(
e2(2 δn)k+1α

r2δ2nk−1

)r

= ρn−2δn(δe)d
2δn∑

r=0

(
e22k+1δk−1n2α

r2

)r

≤ ρn−2(δe)δn
2δn∑

r=0

(
2k+1αδk−1n2e2

r2

)r

,

where the final inequality is valid when δe < 1. A straightforward calculation yields that the

function g(r) :=
(

2k+1αδk−1e2n2

r2

)r
is maximized at r∗ =

√
2k+1αδk−1n and the associated value is

g(r∗) = e2r∗ . Consequently, the sum above is bounded by

2δnρn−2δn(δe)δne2r∗ = 2δnρn−2δn

[
δ exp

(
1 +

2r∗

δn

)]δn

= 2δnρn−2δn
[
δ exp

(
1 +

√
2k+3αδk−3

)]δn

≤ 2δnρn−2δn
[
δ exp

(
1 +

√
2k+3α

)]δn
.

This expression is exponentially smaller than ρ3n for large n if

[
δ exp

(
1 +

√
2k+3α

)]δ
< ρ3 = (1 − δ2)3. (33)

Inequality (33) holds for sufficiently small δ > 0, which establishes the lemma.

D.2 Proof of Lemma 11

It will be useful to denote
∏

b∈Cs
a(i)(1 − ηb→i) by Ps(i) and

∏
b∈Cu

a (i)(1 − ηb→i) by Pu(j). With this
notation, the j’th term in (5) is given by

Πu
j→a

Πu
j→a + Πs

j→a + Π∗
j→a

=
(1 − ρPu(j))Ps(j)

(1 − ρPu(j))Ps(j) + (1 − Ps(j))Pu(j) + Ps(j)Pu(j)

=
(1 − ρPu(j))Ps(j)

Ps(j) + Pu(j) − ρPs(j)Pu(j)
≤ 1 − ρPu(j).

We therefore conclude that
ηa→i ≤

∏

j∈V (a)\{i}

(1 − ρPu(j)) .
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On the other hand, we have Pu(j) =
∏

b∈Cu
a (i)(1 − ηb→i) ≥ max

(
0, 1 − ∑

b∈Cu
a (i) ηb→i

)
, so that

1 − ρPu(j) ≤ min


1, (1 − ρ) + ρ

∑

b∈Cu
a (i)

ηb→i


 .

This yields the bound ηt+1
a→i ≤ ∏

j∈V (a)\{i} min
(

1, (1 − ρ) + ρ
∑

b∈Cu
a (i) η

t
b→j

)
, from which equa-

tion (18) follows.

D.3 Proof of Lemma 13

We start by estimating the probability that a vertex is bad by induction. Let gK denote the
probability that v has more than K children, or that one of v’s children has more than K children.
Clearly,

gK ≤ (K + 1)P[Y ≥ K] ≤ (K + 1)(k − 1)P[Bin(Mc,
αn

Nc
) ≥ K

k − 1
] ≤ exp(−Ω(K)). (34)

Write q(m,K) = 1− p(m,K) and note that q(0,K) = 0 and q(1,K) ≤ gK . By induction, A vertex
can be bad for two reasons: it has two many descendants in the two levels below it, or it has 2 bad
descendant in the two levels below it. We may thus bound the probability of a vertex being bad as

q(s,K) ≤ gK + P[Bin(K2, q(s− 2,K)) ≥ 2]. (35)

Note also that
P[Bin(K2, q(s− 2,K)) ≥ 2] ≤ K4q(s− 2,K)2. (36)

Combining (35) and (36) yields

q(s,K) ≤ gK +K4q(s− 2,K)2. (37)

By (34) when K is sufficiently large K4(2gK)2 < gK . Thus when K is sufficiently large, it follows
from equation (37) that

q(s,K) ≤ 2gK

for all s. Finally when K is sufficiently large p(s,K) ≥ 1 − 2gK for all s and 1 − 2gK ≥ 1 −
exp(−Ω(K)) as needed.
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