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Abstract

We consider the problem of estimating the number of false null hy-

potheses among a very large number of independently tested hypotheses,

focusing on the situation in which the proportion of false null hypothe-

ses is very small. We propose a family of methods for establishing lower

100(1−α)% confidence bounds for this proportion, based on the empirical

distribution of the p-values of the tests. Methods in this family are then

compared in terms of ability to consistently estimate the proportion by

letting α → 0 as the number of hypothesis tests increases and the pro-

portion decreases. This work is motivated by a signal detection problem

occurring in astronomy.

1 Introduction

Suppose that a large number of null hypotheses are independently tested and it
is expected that only a small fraction of them are false. In some situations, one
would like to estimate this fraction. Each hypothesis test might be an attempt
to detect an independent realization of a rare signal and the number of actual
signals present is of interest.

An example, which motivated our work, is afforded by the Taiwanese-American
Occultation Survey (TAOS), which we now briefly describe. TAOS will attempt
to detect small objects in the Kuiper Belt, a region of the solar system beyond
the orbit of Neptune. The Kuiper Belt contains an unknown number of objects
(KBOs), most of which are believed to be so small that they do not reflect
enough light back to earth to be directly observed. The purpose of the TAOS
project is to estimate the number of these KBOs down to the typical size of
cometary nuclei (a few km) by observing occultations. The idea of the occulta-
tion technique is simple to describe. One monitors the light from a collection of
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stars that have angular sizes smaller than the expected angular sizes of comets.
An occultation is manifested by detecting the partial or total reduction in the
flux from one of the stars for a brief interval when an object in the Kuiper
Belt passes between it and the observer. Four dedicated robotic telescopes will
automatically monitor 2-3,000 stars every clear night for several years and their
combined results will be used to test for an occultation of each star approxi-
mately every 0.20 seconds, yielding on the order of 1011 tests per year. The
number of occultations expected per year ranges from tens to a few thousands,
depending on what model of the Kuiper Belt is used. Having conducted a large
number of tests, it is then of interest to estimate the number of occultations,
or the occultation rate, since this will provide information on the distribution
of KBOs. Note that in this context we are not so much interested in which
particular null hypotheses are false as in how many are. The TAOS project is
further described in Liang et al. (2002) and Chen et al. (2003).

We will base our analysis on the distribution of the p-values of the hypothesis
tests. Let {Gθ, θ ∈ Θ} be some family of distributions, where θ is possibly
infinite-dimensional and G0(t) = t with 0 ∈ Θ is the uniform distribution on
[0, 1]. All p-values are assumed to be independently distributed according to

Pi ∼ Gθi
, i = 1, . . . , n.

If a null hypothesis is true, the distribution of its p-value is uniform on [0,1] and
Pi ∼ G0. We suppose that neither the family {Gθ(t), θ ∈ Θ} nor the parameter
vector (θ1, . . . , θn) is known, except from the fact that G0 corresponds to the
uniform distribution.

The proportion of the null hypothesis that are false (the fraction of occulta-
tions in the TAOS example) is denoted by λ,

λ = n−1
n∑

i=1

1{θi 6= 0}. (1)

Our goal is to construct a lower bound λ̂ with the property

P (λ̂ ≤ λ) ≥ 1− α (2)

for a specified confidence level 1 − α. Such a lower bound would allow one
to assert, with a specified level of confidence, that the proportion of false null
hypotheses is at least λ̂. The global null hypothesis that there are no false null
hypotheses can be tested at level α by rejecting when λ̂ > 0.

Our construction is closely related to that in Meinshausen and Bühlmann
(2004), which treats the case of possibly dependent tests, but with an obser-
vational structure that allows the use of permutation arguments that are not
available in our case. Another estimate is examined in Nettleton and Hwang
(2003), but it does not have a property like (2). Our methodology is related
to that of controlling the false discovery rate (Benjamini and Hochberg, 1995);
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Storey, 2002), but the goals are different—we are not so much interested in which
particular hypotheses are false as in how many are. However we note that an
estimate of the number of false null hypotheses can be usefully employed in
adaptive control of FDR (Benjamini and Hochberg, 2000). In a modification of
the original FDR method, Storey (2002), also estimated the proportion of false
hypotheses. The empirical distribution of p-values was used in Schweder and
Spjøtvoll (1982) to estimate the number of true null hypotheses; the methods
used there are different than ours and do not provide explicit lower confidence
bounds. The methods in this paper extend a proposal of Genovese and Wasser-
man (2004). We also relate our results to those of Donoho and Jin (2004).

2 Theory and Methodology

The estimate hinges on the definition of bounding functions and bounding se-
quences.

Let U be uniform on [0, 1]. For any real-valued function δ(t) on [0, 1], which is
strictly positive on (0, 1), define Vn,δ as the supremum of the weighted empirical
distribution

Vn,δ := sup
t∈(0,1)

Un(t)− t

δ(t)
.

Definition 1 (Bounding sequence) Let δ(t) be a real-valued function on [0, 1],
strictly positive on (0, 1). A series βn,α is called a bounding sequence for a real-
valued, positive function δ(t) if, for a constant level α,

(a) nβn,α is monotonically increasing with n,

(b) P (Vn,δ > βn,α) < α for all n.

The definition of a bounding sequence depends neither on the unknown
proportion of false null hypotheses nor on the unknown distribution G(t) of
p-values under the alternative.

Denote the empirical distribution of p-values by Fn(t),

Fn(t) :=
n∑

i=1

1{Pi ≤ t}.

An estimate of the proportion λ of false null hypothesis can make use of the fact
that the contribution of true null hypotheses to the difference between Fn(t) and
t is essentially bounded by βn,αδ(t), simultaneously for all t ∈ (0, 1).

Definition 2 Let βn,α be a bounding sequence for δ(t) at level α. An estimate
for the proportion λ of false null hypotheses is given by

λ̂ = sup
t∈(0,1)

Fn(t)− t− βn,αδ(t)
1− t

. (3)
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This estimate is indeed a lower bound for λ, as shown in the following The-
orem.

Theorem 1 Let βn,α be a bounding sequence for δ(t) at level α and λ̂ defined
by (3). Then,

P (λ̂ ≤ λ) ≥ 1− α. (4)

Proof of Theorem 1.

The distribution of p-values Fn is bounded by Fn(t) ≤ λ + (1 − λ)Un0(t),
where n0 = (1− λ)n and Un0(t) is the empirical distribution of n0 independent
Uniform(0,1)-distributed random variables. Thus

P (λ̂ > λ) ≤ P ( sup
t∈(0,1)

λ + (1− λ)Un0(t)− βn,αδ(t)
1− t

> λ) (5)

= P ( sup
t∈(0,1)

(1− λ)(Un0(t)− t)− βn,αδ(t) > 0) (6)

= P ( sup
t∈(0,1)

Un0(t)− t− n

n0
βn,αδ(t) > 0). (7)

As nβn,α is monotonically increasing, nβn,α/n0 ≥ βn0,α and the proof follows
by property (b) in Definition 1.

Asymptotic control Instead of finite-sample control, it is sometimes more
convenient to resort to asymptotic control. A sequence βn,α is said to be an
asymptotic bounding sequence if βn,α fulfills condition (a) from Definition 1 and,
additionally a modified condition (b’),

lim sup
n→∞

P (Vn,δ > βn,α) < α.

If we suppose that the absolute number of false null hypotheses nλ is growing
with n, that is nλ → ∞ for n → ∞, it holds for an asymptotic bounding
sequence that

lim sup
n→∞

P (λ̂ ≤ λ) ≥ 1− α.

Asymptotic control is typically useful in the following situation. For a given
bounding function δ(t) and two sequences an, bn, consider weak convergence of

anVn,δ − bn →D L, (8)

to a distribution L. Any sequence βn,α which satisfies the monotonicity condi-
tion (a) of Definition 1 and, additionally, βn,α ≥ a−1

n (L−1(1− α) + bn), is thus
an asymptotic bounding sequence at level α.

As an important example, consider the bounding function δ(t) =
√

t(1− t).
The following Lemma is due to Jäschke and can be found in Shorack and Wellner
(1986), p. 599, Theorem 1 (18).
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Lemma 1 Let an =
√

2n log log n and bn = 2 log log n+ 1
2 log log log n− 1

2 log 4π.
Then

an sup
t∈(0,1)

Un(t)− t√
t(1− t)

− bn →D E2, (9)

where E is the Gumbel distribution E(x) = exp(− exp(−x)).

Remark 1 The convergence in (9) is in general slow. Nevertheless, the result
is of interest here. First, the number of tested hypotheses is potentially very
large (e.g. 1012 in the TAOS setting described in the introduction). Moreover,
the slow convergence is mainly caused by values of t which are of order 1/n. The
expected value of the smallest p-value of true null hypotheses is at least 1/n and
it might be useful to truncate in practice the range over which the supremum is
taken in (3) to (1/n, 1 − 1/n). Doing so, the following asymptotic results are
still valid, while the approximation by the Gumbel distribution is empirically a
good fit even for moderate values of n (Donoho and Jin, 2004).

Similar weak convergence results for other bounding function can be found
in Csörgő and Horvath (1993) or Shorack and Wellner (1986).

2.1 Bounding functions

The estimate is determined by the choice of the function δ(t), the so-called
bounding function, and a suitable bounding sequence.

There are many conceivable bounding functions. Bounding functions of par-
ticular interest include

- linear bounding function: δ(t) = t.

- constant bounding function: δ(t) = 1.

- standard deviation-proportional bounding function: δ(t) =
√

t(1− t).

The linear bounding function is closely related to the False Discovery Rate
(FDR), as introduced by Benjamini and Hochberg (1995). In the FDR setting,
the empirical distribution of p-values is compared to the linear function t/α. The
last down-crossing of the empirical distribution over the line t/α determines the
number of rejections that can be made when controlling FDR at level α. It
is interesting to compare this to the current setting. In particular, it follows
by a result in Daniels (1945) that the optimal bounding sequence at level α is
given for the linear bounding function by βn,α = 1/α−1. Let λ̂ be the estimate
under the linear bounding function. The estimate vanishes hence, that is λ̂ = 0,
if and only if no rejections can be made under FDR-control at the same level.
Note that the bounding sequence is independent of the number of observations.
This leads to weak power to detect the full proportion λ of false null hypotheses
when the proportion λ is rather high but the distribution of p-values under the
alternative deviates only weakly from the uniform distribution, as shown in an
asymptotic analysis below.
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An estimate under a constant bounding function was already proposed in
Genovese and Wasserman (2004). Using the Dvoretzky-Kiefer-Wolfowitz (DKW)
inequality, a bounding sequence is given by β2

n,α = 1
2n log 2

α . In contrast to the
linear bounding function, this bounding function sequence vanishes for n →∞.
However, the estimate is unable to detect any proportion of false null hypotheses
which is of smaller order than

√
n. The intuitive reason is that the bounding

function δ(t) is not vanishing for small values of t. Any evidence from false null
hypotheses, however strong it may be, is hence lost if there are just a few false
null hypotheses.

As already argued above, a bounding sequence for the standard deviation-
proportional bounding function is given by βn,α = a−1

n (E−1(1−α) + bn), where
E is the Gumbel distribution and an, bn are defined as in Lemma 1. Note that
the bounding sequence is vanishing at almost the same rate as for the constant
bounding function. In contrast to the constant bounding function, however, the
standard deviation-proportional bounding function vanishes for small t. It will
be seen that the standard deviation-proportional bounding function possesses
optimal properties among a large class of possible bounding functions.

Asymptotic properties of bounding sequences Faced with an enormous
number of potential bounding functions, it is of interest to look at general
properties of bounding functions, especially the asymptotic behaviour of the
resulting estimates.

The asymptotic properties turn out to be mainly determined by the be-
haviour of δ(t) close to the origin.

Definition 3 Let, for every ν ∈ [0, 1], Qν be a family of real-valued functions
on [0, 1]. In particular, δ(t) ∈ Qν iff

(a) δ(t) is non-negative and finite on [0, 1] and strictly positive on (0, 1),

(b) δ(1− t) ≥ δ(t) for t ∈ (0, 1
2 ),

(c) the function δ(t) is regularly varying with power ν, that is

lim
t→0

δ(bt)
δ(t)

= bν .

Most bounding functions of interest are members of Qν for some value of
ν ∈ [0, 1]. The constant bounding function is member of Q0, while the linear
bounding function is member of Q1 and the standard deviation-proportional
bounding function is a member of Q1/2.

It holds in general for any bounding function that bounding sequences can
not be of smaller order than the inverse square root of n. In particular, note
that by Definition 1 of a bounding sequence it has to hold for any t ∈ (0, 1)
that P

(
Un(t) − t − βn,αδ(t) > 0

)
< α for all n ∈ N. As nUn(t) ∼ B(n, t) is
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binomially distributed with mean nt and variance proportional to n, it follows
indeed that

lim inf
n→∞

n
1
2 βn,α > 0

Consider now bounding functions δ(t), which are member of Qν with some
ν ∈ ( 1

2 , 1]. It follows directly from Theorem 1.1 (iii), p. 255, in Csörgő and
Horvath (1993) that a more restrictive assumption has to hold in this case,
namely

lim inf
n→∞

n1−νβn,α > 0 (10)

For ν = 1 this amounts to lim infn→∞ βn,α > 0. The linear bounding function is
a member of Q1, explaining the lack of convergence to zero of the corresponding
optimal bounding sequence 1/α− 1.

For bounding functions δ(t) ∈ Qν with ν ∈ [0, 1
2 ], there exists some constant

c > 0, so that cδ(t)2 ≥ t(1 − t). Hence, using Lemma 1, there exist bounding
sequences so that

lim sup
n→∞

( n

log log n

) 1
2 βn,α < ∞. (11)

The different asymptotic behaviour of the bounding sequences influences the
asymptotic power to detect false null hypotheses, as will be seen in the following.

3 Power

We examine the influence of the bounding function δ(t) on the power to detect
false null hypothesis. For simplicity of exposition, it is assumed that the p-values
of all false null hypotheses follow a common distribution G, while p-values of
true null hypotheses have a uniform distribution on [0, 1]. For some γ ∈ (0, 1),
let

λ ∼ n−γ .

A value of γ = 0 corresponds to a fixed proportion of false null hypotheses,
while γ = 1 corresponds to a fixed absolute number of false null hypotheses.
Here all cases between those two extremes are considered.

Bounding sequences with vanishing level For the asymptotic analysis, it
is convenient to let α = αn decrease monotonically for n →∞, so that αn → 0
for n →∞. Note that αn → 0 is equivalent to P (Vn,δ > βn,αn

) → 0 for n →∞.

For notational simplicity, this assumption is strengthened slightly to

Vn,δ/βn,αn
→p 0 n →∞. (12)

In almost all cases of interest, (12) and αn → 0 are equivalent.
To maintain reasonable power, one would like to avoid that the level αn is

vanishing too fast as n →∞. For bounding functions δ(t) ∈ Qν with ν ∈ [0, 1
2 ]

it is required that
lim sup

n→∞

( n

log n

) 1
2 βn,αn < ∞. (13)
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It follows from (11) that it is always possible to find a sequence αn → 0 so that
both (12) and (13) are satisfied. If both (12) and (13) are fulfilled, the sequence
αn is said to vanish slowly. For bounding functions δ(t) ∈ Qν with ν ∈ (1/2, 1],
it will be seen below that the power is poor no matter how slow the sequence
αn vanishes for n → 0.

3.1 Case I: many false null hypotheses, γ ∈ [0, 1
2
)

The fluctuations in the empirical distribution function are negligible compared
to the signal from false null hypotheses if γ ∈ [0, 1

2 ). Hence one should be able
to detect (asymptotically) the full proportion of false null hypotheses in this
first setting.

This is indeed achieved, as long as we look for bounding functions in Qν with
ν ∈ [0, 1

2 ], as shown below. If on the other hand, ν ∈ ( 1
2 , 1], one is in general

unable to detect the full proportion of false null hypotheses. The proportion of
detected false null hypotheses is even converging in probability to zero for large
values of γ if ν is in the range ( 1

2 , 1]. This includes in particular the linear FDR-
style bounding function t ∈ Q1, which is only able to detect a non-vanishing
proportion of false null hypotheses (asymptotically) as long as the proportion λ

is bounded from below, which is only fulfilled for γ = 0.

Theorem 2 Let G be continuous and inft∈(0,1) G′(t) = 0. Let λ̂ be the estimate
under bounding function βn,αδ(t), where δ(t) ∈ Qν with ν ∈ [0, 1] and βn,α is a
bounding sequence. If ν ∈ [0, 1

2 ] and αn vanishes slowly, then, for all γ ∈ [0, 1
2 ),

λ̂

λ
→p 1 n →∞.

However, for ν ∈ ( 1
2 , 1] and γ ∈ (1− ν, 1

2 ),

λ̂

λ
→p 0 n →∞.

Remark 2 The case inft∈(0,1) G′(t) = 0 corresponds to the “pure” case in Gen-
ovese and Wasserman (2004). If inft∈(0,1) G′(t) > 0, the results above (and
below) hold true if λ is replaced by

λ = (1− inf
t∈(0,1)

G′(t))λ.

Without making parametric assumptions about the distribution G under the al-
ternative, identifying λ is indeed the best one can hope for.

The message from the Theorem 2 is that one should look for bounding
functions in Qν with ν ∈ [0, 1

2 ]. This guarantees proper behavior of the estimate
if the proportion λ of false null hypotheses is vanishing slower than the square
root of the number of observations.

8



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

γ

r

ν = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

γ

r

ν = 0.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

γ

r

ν = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

γ

r

Figure 1: For ν = 0 (left), ν = 1/2 (second from left), ν = 1 (second from right),
an illustration of the asymptotic properties of the estimate λ̂. The shaded area
marks those areas in the (r, γ)-plane where λ̂/λ →p 1, whereas for the white
areas λ̂/λ →p 0. The choice ν = 1/2 is seen to be optimal. The corresponding
plot for control of the family-wise error rate is shown on the right for comparison.

3.2 Case II: few false null hypotheses, γ ∈ [1
2
, 1)

As seen above, bounding functions in Qν with ν ≤ 1
2 detect asymptotically the

full proportion λ of false null hypotheses if λ is vanishing not as fast as the
square root of the number of observations.

For γ > 1
2 , no method whatsoever can detect asymptotically the full propor-

tion of false null hypotheses if the distribution under the alternative is fixed. It
is hence interesting to consider cases where the signal from false null hypotheses
is increasing in strength. Let therefore G = G(n), the distribution of p-values
under the alternative, be a function of the number n of tests to conduct. The
superscript is dropped in the following for notational simplicity.

Shift-location testing It is perhaps helpful to think about G as being in-
duced by some shift-location testing problem. For each test it is assumed that
there is a test statistic Zi, which follows some distribution T0 under the null
hypothesis H0,i and some shifted distribution Tµn

under the alternative H1,i,

H0,i : Zi ∼ T0,

H1,i : Zi ∼ Tµn
. (14)

In the Gaussian case, this amounts e.g. to T0 = N (0, 1) and Tµ = N (µn, 1). To
have an interesting problem, one needs for γ ∈ ( 1

2 , 1) in general that the shift µn

between the null and alternative hypothesis is increasing for increasing number
of tests, that is µn → ∞ for n → ∞. On the other hand, one would like to
keep the problem subtle. For the Gaussian case it was shown in Donoho and
Jin (2004) that an interesting scaling is given by µn =

√
2r log n with r ∈ (0, 1).

In this regime, the smallest p-value stems with high probability from a true null
hypothesis. The false null hypotheses have hence little influence on the extremes
of the distribution.

Instead of assuming Gaussianity of the test statistics, Donoho and Jin (2004)
considered a variety of different distributions. Under a generalized Gaussian
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(Subbotin) distribution, the density is for some positive value of κ proportional
to

T ′µ(x) ∝ exp(−|x− µ|κ

κ
).

The case κ = 2 corresponds clearly to a Gaussian distribution, and κ = 1
corresponds to the double exponential case. The shift parameter is chosen then
as

µn = (κr log n)
1
κ (15)

for some r ∈ (0, 1). Note that the expectation of the smallest p-value from
true null hypotheses vanishes like n−1, whereas under the scaling (15), the
median p-value of false null hypotheses vanishes like n−r for n → ∞ with
some r ∈ (0, 1). In fact, consider for any member of the generalized Gaussian
Subbotin distribution the q-quantile G−1(q) of the distribution of p-values under
the alternative. For some constant cq, the q-quantile is proportional to

G−1(q) ∝
∫

µn+cq

exp
(
− xκ

κ

)
dx.

Applying l’Hopitals rule twice, it follows for any c and κ > 0 that

lim
a→∞

log
∫∞

a+c
exp(−xκ

κ )dx

−aκ

κ

= 1.

Thus it holds under the scaling (15) for any every q ∈ (0, 1) and positive κ that
the scaling of the q-quantile is given by

log G−1(q) ∼ −r log n. (16)

With probability converging to 1 for n → ∞, a p-value under a false null
hypothesis is hence larger than the smallest p-value from all true null hypotheses
as long as r ∈ (0, 1). For r > 1, the problem gets trivial as the probability that
an arbitrarily high proportion of p-values under false null hypotheses is smaller
than the smallest p-value from all true null hypotheses converges to 1 for n →∞.

The point of introducing the shift-location model under generalized Gaussian
Subbotin distributions was just to identify (16) with r ∈ (0, 1) as the interest-
ing scaling behaviour of quantiles of G, the p-value distribution for alternative
hypotheses. The setting (16) is potentially of interest beyond any shift-location
model. We adopt the scaling (16) for the following without making any explicit
distributional assumptions about underlying test statistics.

Theorem 3 Let λ ∼ n−γ with γ ∈ [ 12 , 1) and let the distribution G of p-values
under the alternative fulfill (16) for some r ∈ (0, 1). Let λ̂ be the estimate of λ

under a bounding function βn,αδ(t), where δ(t) ∈ Qν with ν ∈ [0, 1
2 ] and βn,αn

is a bounding sequence for δ(t). Let αn vanish slowly. If r > 1
ν (γ − 1

2 ), it holds
for any ε > 0,

λ̂

λ
→p 1. (17)
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If on the other hand, r < 1
ν (γ − 1

2 ), then

λ̂

λ
→p 0. (18)

Remark 3 The analysis was only carried out for functions with ν ∈ [0, 1
2 ] due

to the deficits of the functions with ν ∈ ( 1
2 , 1] discussed in the previous section.

Nevertheless, it would be possible to carry out the same analysis here. For ν = 1,
one obtains e.g. a critical boundary r > γ.

The message from the last theorem is that among all bounding function in
Qν with ν ∈ [0, 1

2 ], it is best to choose a member of Q1/2. Bounding functions in
Q1/2 increase the chance to detect the full proportion λ of false null hypotheses,
as illustrated for a few special cases in Figure 1. The area in the (r, γ)- plane,
where λ̂/λ converges in probability to 1 for a bounding function in Q1/2 includes
in particular all areas of convergence for bounding function in Qν with ν ∈ [0, 1

2 ].

3.3 Connection to the Family-wise error rate

A different estimate of λ is obtained by controlling the family-wise error rate
(FWER). In particular, let the estimate be the total number of p-values less
than the FWER-threshold α/n, divided by the total number of hypotheses,

λ̂ = Fn(
α

n
).

This is an estimate of λ with the desired property P (λ̂ > λ) < α. Controlling
the family-wise error rate has often been criticised for lack of power. Indeed,
in the asymptotic analysis above, it is straightforward to show that the area in
the (r, γ)-plane, where λ̂/λ →p 1 is restricted to the half-plane r > 1 (neglect-
ing again what happens directly on the border r = 1). In comparison to other
estimates proposed here, the family-wise error rate is hence particularly bad
for estimating λ if there are many false null hypotheses, each with a very weak
signal. In addition, the construct requires that p-values can be determined ac-
curately down to precision α/n, which might be prohibitively small. In contrast,
the performance of estimates of the form (3) do not deteriorate significantly if
p-values are truncated at larger values.

The drawbacks of the family-wise error rate are a consequence of the stricter
inference one is trying to make when controlling the family-wise error rate. In
particular, one is trying to infer exactly which hypotheses are false nulls as
opposed to only how many false nulls there are in total. The loss in power is
hence the price one is paying for this more ambitious goal.

3.4 Connection to Higher Criticism

A connection of the proposed estimate to the Higher Criticism method in
Donoho and Jin (2004) for detection of sparse heterogeneous mixtures emerges.
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Figure 2: Comparison between the estimate of λ̂ and detection regions under
Higher Criticism if test statistics follows the location-shift model (14) and are
distributed according to the generalized Gaussian Subbotin distribution with
shift parameter (15). The shaded area in the left panel shows again the area
of convergence in probability of λ̂/λ to 1 for a bounding function in the class
Q1/2. The shaded area in the right panel corresponds to the the region where
Higher Criticism can reject asymptotically the null hypothesis H0 : λ = 0
for κ ≤ 1, including the double-exponential case. The line below marks the
detection boundary for the Gaussian case (κ = 2).

In their setup, p-values Pi, i = 1, . . . , n are distributed i.i.d. according to a
mixture distribution

Pi ∼ (1− λ)H + λG,

where H is the uniform distribution and G the distribution of p-values under
the alternative hypothesis. In Donoho and Jin (2004) the focus is on testing the
global null hypothesis that there are no false null hypotheses at all,

H0 : λ = 0.

In this current paper we are in contrast interested in quantifying the proportion
λ of false null hypotheses. The proportion λ of false null hypotheses, as defined
for the current paper in (1), can be viewed as a realization of a random variable
with a Binomial distribution nλ ∼ B(n, λ). For the asymptotic considerations
of this paper, however, the distinction between λ and λ is of little importance
as the ratio λ/λ converges almost surely to 1 for n →∞.

The two goals of Higher Criticism and the current paper are connected. If
there is evidence for a nonnegative proportion of false null hypotheses with the
method proposed previously, then the global null H0 can clearly be rejected. In
other words, if one obtains a positive estimate λ̂ > 0 with P (λ̂ > λ) < α, then
the global null hypothesis H0 : λ = 0 can be rejected at level α. Note that the
level is correct even for finite samples and not just asymptotically.

The connection between the two methods works as well in the reverse di-
rection if an optimal bounding function is chosen. It emerged in particular
from the analysis above that bounding functions which are member of Q1/2
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have optimal asymptotic properties. For the particular choice of a standard
deviation-proportional bounding function in Q1/2, let λ̂ be an estimate of λ and
let βn,α be a bounding sequence which satisfies

βn,α = n−
1
2 (2 log log n)

1
2 (1 + o(1)).

Donoho and Jin (2004) are not specific about choice of a critical value for Higher
Criticism. However, choosing

√
nβn,α as a critical value meets their require-

ments. The Higher criticism procedure rejects in this case if and only if the
estimate λ̂ of the proportion of false null hypotheses is positive,

{Reject H0 : λ = 0 with Higher Criticism} = {λ̂ > 0}.

If both λ ∼ n−γ and λ ∼ n−γ for some γ ∈ [0, 1], the question arises if the area
in the (γ, r)-plane, where

P (Higher Criticism rejects H0) → 1 (19)

is identical to the area where
λ̂/λ →p 1. (20)

Intuitively, it is clear that it is somewhat easier to test for the global null
hypothesis H0 : λ = 0, as done in Higher Criticism, than to estimate the precise
proportion λ of false null hypotheses, as done in this paper. One would therefore
expect that the area of convergence in the (γ, r)-plane of (19) includes the area
of convergence of (20).

It is hence maybe surprising that for some cases the areas of convergence in
the (γ, r)-plane of (19) and (20) agree. To illustrate the point, consider again
the shift-location model (14) under a generalized Gaussian Subbotin distribution
with parameter κ ∈ (0, 2) and a shift (15) of test statistics under the alternative.

The area in the (γ, r)-plane where λ̂/λ →p 1 is in this setting independent
of the parameter κ. The detection boundary for Higher Criticism, however,
does depend on κ. For the Gaussian case (κ = 2) and in general for κ > 1,
the detection boundary for Higher Criticism is, for γ ∈ (1/2, 1), below the area
where λ̂/λ →p 1. The reason for this is intuitively clear. The Higher Criticism
method looks in these cases for evidence against H0 in the extreme tails of the
distribution G, see Donoho and Jin (2004). At these points, only a vanishing
proportion of all p-values from false null hypotheses can be found. If trying to
estimate the full proportion of false null hypotheses, the evidence for a certain
amount of false null hypotheses has to be found at less extreme points, where one
can expect a significant proportion of p-values from false null hypotheses. This
limits the region of convergence in the sense of (20) compared to the area where
Higher Criticism can successfully reject the global null hypothesis H0 : λ = 0.

However, for κ ≤ 1 (including thus the case of a double exponential distri-
bution) the two areas where (19) and (20) hold respectively are identical, as
shown in Figure 2. In the white area, both Higher Criticism and the current
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method fail to detect (asymptotically) the presence of false null hypotheses and
not even the likelihood ratio test is able to reject in these cases (asymptotically)
the global null hypotheses H0 : λ = 0 that there are only true null hypotheses
(Donoho and Jin, 2004). It is hence of interest to see that for κ ≤ 1 it holds
that λ̂/λ →p 1 whenever the likelihood ratio test succeeds (asymptotically) in
rejecting the global null hypothesis.

4 Numerical Examples

The behaviour of the estimate λ̂ is illustrated by some numerical examples.
The distribution G of p-values under the alternative is induced by shift-location
testing as in (14). The results are shown for the double-exponential distribution
(κ = 1) in Figure 3 and for the Gaussian distribution (κ = 2) in Figure 4. Test
statistics under false null hypotheses are shifted by µn = r log n for κ = 1 and
µn =

√
2r log n for κ = 2.

The proportion λ of false null hypotheses is given by nλ = bn1−γc, which
implies λ ∼ n−γ for n → ∞. The estimate λ̂ is simulated at level α = 0.05
for both κ = 1 and κ = 2 at 100 evenly spaced grid-points in the (r, γ)- plane
100 times each. The average proportion λ̂/λ is calculated and a contour plot
is shown in Figures 3 and 4 respectively for the constant bounding function
(ν = 0), the standard deviation-proportional bounding function (ν = 1/2) and
the linear, FDR-style bounding function (ν = 1).

The areas where λ̂/λ converges to 1 or 0 respectively are separated in both
Figure 3 and Figure 4 by an unbroken line. The asymptotic behaviour seems to
be a good indicator of the performance for finite but reasonably large n.
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Figure 3: For ν = 0 (left column), ν = 1/2 (middle) and ν = 1 (right), a contour
plot of the average detected proportion λ̂/λ of all false null hypotheses over 100
simulations for n = 102 tests (top row), n = 104 (middle row) and n = 106

tests (bottom row). The unbroken line separates the area where λ̂/λ converges
in probability to 1 from the area where the ratio λ̂/λ converges to 0.
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Figure 4: The same as in Figure 3 for a Gaussian distribution (κ = 2) of the
test statistics.

16



References

[1] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery
rate: a practical and powerful approach to multiple testing. Journal of the
Royal Statistical Society, Series B 57, 289-300.

[2] Benjamini, Y. and Hochberg, Y. (2000). The adaptive control of the False
Discovery Rate in multiple hypothesis testing with independent statistics.
Journal of Educational and Behavioral Statistics 25, 60-83.
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[9] Meinshausen, N. and Bühlmann, P. (2004). Upper bounds for the number of
true null hypotheses and novel estimates for error rates in multiple testing.
Manuscript

[10] Nettleton, D. and Hwang, G. (2003). Estimating the number of false null
hypotheses when conducting many tests. Technical Report, Department of
Statistics, Iowa State University.

[11] Schweder, T. and Spjøtvoll, E. (1983). Plots of p-values to evaluate many
tests simultaneously. Biometrika 69, 493-502.

[12] Shorack, G. and Wellner, J. (1986). Empirical Processes with Applications
to Statistics. Wiley.

[13] Storey, J. (2002). A direct approach to false discovery rates. Journal of the
Royal Statistical Society, Series B 64, 479-408.

17



6 Appendix

Proof of Theorem 2. First it is shown that, as long as γ ∈ (0, 1
2 ) and ν ≤ 1

2 ,
for any given ε > 0,

P (λ̂ < (1− ε)λ) → 0 n →∞. (21)

For any t < 1,

λ̂ = sup
t∈(0,1)

Fn(t)− t− βn,αn
δ(t)

1− t
(22)

≥ F (t)− t

1− t
+

Fn(t)− F (t)− βn,αn
δ(t)

1− t
(23)

= λ
G(t)− t

1− t
+

Fn(t)− F (t)− βn,αn
δ(t)

1− t
. (24)

As inft∈(0,1) G′(t) = 0, and hence supt∈(0,1)(G(t) − t)/(1 − t) = 1, there exists
by continuity of G(t) some t1 so that (G(t1)− t1)/(1− t1) > (1− ε/2). Setting
ε̃ = 1

2 (1− t1)ε, it suffices to show that for every ε > 0,

P (βn,αnδ(t1) + F (t1)− Fn(t1) > ελ) → 0 n →∞.

As Fn(t1) − F (t1) = OP (n−
1
2 ) and λ ∼ n−γ with γ < 1

2 , this follows from the
finiteness of δ(t) and, as αn vanishes slowly, from (13). This completes the first
part of the proof of Theorem 2.

For the second part, it suffices to show that for ν ∈ ( 1
2 , 1] and γ ∈ (1− ν, 1

2 ),
and any ε > 0,

P (λ̂ > ελ) → 0 n →∞. (25)

In this regime, the penalty βn,αnδ(t) is asymptotically larger than the signal
from false null hypotheses. Using the definition of λ̂, the notation n0 = (1−λ)n
and n1 = λn, and Fn(t) = λGn1(t) + (1− λ)Un0(t), it follows that

P (λ̂ > ελ) = P ( sup
t∈(0,1)

Fn(t)− t− βn,αn
δ(t)

1− t
> ελ)

= P ( sup
t∈(0,1)

λ
Gn1(t)− t

1− t
− ελ + (1− λ)

Un0(t)− t

1− t
− βn,αn

δ(t)
1− t

> 0)

≤ P ( sup
t∈(0,1)

λ
Gn1(t)− t

1− t
− ελ− βn,αn

2
δ(t)
1− t

> 0) + (26)

P ( sup
t∈(0,1)

(1− λ)
Un0(t)− t

1− t
− βn,αn

2
δ(t)
1− t

> 0). (27)

Observe in (27) that (1 − λ)−1βn,αn = nβn,αn/n0 ≥ βn0,αn ≥ βn0,αn0
. Thus

(27) can be bounded by P (Vn0,δ > βn0,αn0
/2). By (12) and n0 → ∞ it follows

that (27) vanishes for n → ∞. It remains to show that (26) vanishes as well.
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Let t2 = sup{t ∈ (0, 1) : G(t) ≤ ε/2}. Using Bonferroni’s inequality, (26) is
bounded by

P ( sup
t∈(0,t2]

λ
Gn1(t)− t

1− t
− ελ > 0) + (28)

P ( sup
t∈(t2,1)

λ
Gn1(t)− t

1− t
− βn,αn

2
δ(t)
1− t

> 0) (29)

The first term (28) is bounded by P (Gn1(t2) > ε), which vanishes for n → ∞
as n1 = λn → ∞ and, by definition of t2, G(t2) ≤ ε/2. Using Gn1(t) ≤ 1, the
second term (29) equals zero if βn,αn

inft∈(t2,1) δ(t)/(1− t) > 2λ. By conditions
(a) and (b) in Definition 3, it holds that inft∈(t2,1) δ(t)/(1− t) > 0. By (10), it
follows furthermore that βn,αn

/λ →∞ for n →∞, which completes the proof.

Proof of Theorem 3. First it is shown that for r > 1
ν (γ − 1

2 ),

P (λ̂ < (1− ε)λ) → 0 n →∞. (30)

Here, the penalty is again asymptotically larger than the signal from false null
hypotheses for a fixed point t ∈ (0, 1). However, as the signal from false null
hypotheses is increasing in strength for larger n, the evidence for a certain
amount of false null hypotheses can be found at decreasing values of t. Using
the definition of λ̂, for any t ∈ (0, 1), λ̂ ≥ Fn(t) − t − βn,αn

δ(t) and hence, for
any t ∈ (0, 1),

λ̂/λ− 1 ≥ (1−Gn1(t))− t− 1− λ

λ
(t− Un0(t))−

1
λ

βn,αn
δ(t),

where again n1 = λn and n0 = (1 − λ)n. Choosing tn,τ = n−r+τ for some
0 < τ < r− 1

ν (γ− 1
2 ), observe that by (16) it follows that 1−G(n−r+τ ) = o(1).

Hence

λ̂/λ− 1 ≥ (1−G(tn,τ ))− |G(tn,τ )−Gn1(tn,τ )|
−tn,τ − λ−1|tn,τ − Un0(tn,τ )| − λ−1βn,αn

δ(tn,τ )

= o(1)− op(1)− o(1)−Op(nγ−( 1
2+ r−τ

2 ))−O(nγ−( 1
2+(r−τ)ν) log n)

The proof of (30) follows as γ < 1
2 + ν(r − τ) ≤ 1

2 + r−τ
2 .

Second, it has to be shown that P (λ̂ > ελ) → 0 if r < 1
ν (γ − 1

2 ). Again,
the evidence for a certain amount of false null hypotheses would have to be
found at decreasing values of t. However, the decrease has to be so fast in this
regime that the signal from false null hypotheses is not captured. Using again
the notation n1 = λn and n0 = (1 − λ)n, it holds that λ̂ = supt∈(0,1) Dn,λ(t),
where

Dn,λ(t) :=
λ(Gn1(t)− t) + (1− λ)(Un0(t)− t)− βn,αn

δ(t)
1− t

(31)

Choose a sequence tn,ρ = n−r−ρ for some 0 < ρ < 1
ν (γ − 1

2 ) − r. The regions
(0, tn,ρ] and (tn,ρ, 1) are considered separately for the following. In particular
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it is shown that both P (supt∈(0,tn,ρ] Dn,λ(t) > ελ) and P (supt∈(tn,ρ,1) Dn,λ(t) >

ελ) vanish for n →∞. For t > tn,ρ, it holds that

P ( sup
t∈(tn,ρ,1)

Dn,λ(t) > ελ) ≤ P ( sup
t∈(tn,ρ,1)

λ + (1− λ)
Un0(t)− t

1− t
− βn,αn

δ(t)
1− t

> 0)

≤ P ( sup
t∈(tn,ρ,1)

(1− λ)
Un0(t)− t

1− t
− βn,αn

2
δ(t)
1− t

> 0)

+ 1{ sup
t∈(tn,ρ,1)

λ− βn,αn

2
δ(t)
1− t

> 0}

= P ( sup
t∈(tn,ρ,1)

(Un0(t)− t)− n

n0

βn,αn

2
δ(t) > 0) (32)

+ 1{ inf
t∈(tn,ρ,1)

βn,αn

2
δ(t)
1− t

< λ}. (33)

By (12) and as nβn,αn is monotonically increasing, (32) vanishes for n → ∞.
For (33), as δ ∈ Qν , there exists some constant c so that inft∈(tn,ρ,1) δ(tn,ρ) ≥
cn−ν(r+ρ). It follows by r + ρ < 1

ν (γ − 1
2 ) that inft∈(tn,ρ,1) βn,αn

δ(tn,ρ)/λ →∞
for n →∞, which completes the first part of the proof.

It remains to show that P (supt∈(0,tn,ρ] Dn,λ(t) > ελ) → 0 for n → ∞. It
holds that

P ( sup
t∈(0,tn,ρ]

Dn,λ(t) > ελ) ≤

P ( sup
t∈(0,tn,ρ]

(1− λ)
Un0(t)− t

1− t
− βn,αn

δ(t)
1− t

>
ε

3
λ) (34)

+ P ( sup
t∈(0,tn,ρ]

λ
Gn0(t)−G(t)

1− t
>

ε

3
λ) (35)

+ 1{ sup
t∈(0,tn,ρ]

λ
G(t)− t

1− t
>

ε

3
λ} (36)

As already argued above, the probability on the right hand side of (34) vanishes
for n →∞. The probability (35) vanishes clearly likewise and it remains to show
that (36) vanishes as well for n → ∞. As tn,ρ → 0, it holds that (1− t)−1 ≤ 2
for t ∈ (0, tn,ρ] and large enough value of n. The term (36) vanishes hence if
G(tn,ρ) < ε/6. This is equivalent to log G−1( ε

6 ) < −(τ + ρ) log n and the claim
follows from property (16).
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