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Abstract

Recently much attention has been devoted to model selection through regularization methods in

regression and classification where features are selected by use of a penalty function (e.g. Lasso in

Tibshirani, 1996). While the resulting sparsity leads to more interpretable models, one may want to

further incorporate natural groupings or hierarchical structures present within the features.

Natural grouping arises in many situations. For gene expression data analysis, genes belonging

to the same pathway might be viewed as a group. In ANOVA factor analysis, the dummy variables

corresponding to the same factor form a natural group. For both cases, we want the features to be

excluded and included in the estimated model together as a group. Furthermore, if interaction terms are

to be considered in ANOVA, a natural hierarchy exists as the interaction term between two factors should

only be included after the corresponding main effects. In other cases, as in the fitting of multi-resolution

models such as wavelet regression, the hierarchy between bases on different resolution levels should be

enforced, that is, the lower resolution base should be included before any higher resolution base in the

same region.

Our goal is to obtain model estimates that approximate the true model while preserving such group

or hierarchical structures. Assuming data is given in the form (Yi, Xi); i = 1, ..., n, where Xi ∈ X ⊂ R
d

are explanatory variables and Yi ∈ Y a response variable, also assuming the estimate for Y is of the

form f(X) · β, where β ∈ R
p are the model coefficients and f : X → X ∗ ⊂ R

p the features, we obtain

our model estimates by jointly minimizing a goodness of fitness criterion represented by a convex loss

function L(β, Y, X) and a suitably crafted CAP (Composite Absolute Penalty) penalty function. Such a

framework fits within that of penalized regressions.

The CAP penalty function is constructed by first defining groups Gi, i = 1, ..., k that reflect the

natural structure among the features. A new vector is then formed by collecting the Lγi (i = 1, . . . , k)

norm of the coefficients βGi associated with the features within each of the groups. These are the group-

norms and they are allowed to differ from group to group. The CAP penalty is then defined to be the

Lγ0
norm (the overall norm) of this new vector. By properly selecting the group-norms and the overall

norm, selection of variables can be done in a grouped fashion (Grouped Lasso by Yuan and Lin (2006)

and Blockwise Sparse Regression by Kim et al. (2006) are special cases of this penalty class). In addition,

when the groups are defined to overlap, this construction of penalty provides a mechanism for expressing

hierarchical relationships between the features.
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When constructed with γi ≥ 1, for i = 0, . . . , k, the CAP penalty functions closely resemble proper

norms and are proven to be convex which renders CAP computationally feasible. In this case, the

BLASSO algorithm (Zhao and Yu, 2004) can be used to trace the regularization path. Particularly, in

Least Squares Regressions, when the norms are restricted to combinations of L1 and L∞ norms, the

regularization paths are piecewise linear. Therefore we provide LARS-fashioned (Efron et al., 2004)

algorithms, which jump between the turning points of the piecewuse linear path, to compute the entire

regularization path efficiently.

1 Introduction

Regularization has recently gained enormous attention in statistics and the field of machine learning due to

the high dimensional nature of many current datasets. The high dimensionality could lead us to models that

are very complex. This poses challenges in two most fundamental aspects of statistical modeling – prediction

and interpretation. On one hand, it is inherently unstable to fit a model with a large number of parameters

which leads to poor prediction performance. On the other hand, the estimated models are often too complex

to reveal interesting aspects of data. Both of these challenges force us to regularize the estimation procedure

to obtain more stable and interpretable model estimates.

Problems where the data dimension p is large in comparison to sample size n have become common over

the recent years. Two examples are the analysis of micro-array data in Biology (Dudoit et al., 2003, e.g.) and

cloud detection through analysis of satellite images composed of many sensory channels (Shi et al., 2004). In

such cases, structural information within the data can be incorporated into the model estimation procedure

to significantly reduce the actual complexity involved in the estimation procedure. Regularization methods

provide a powerful yet versatile technique for doing so. They are utilized by many successful modern methods

like Boosting (Freund and Schapire, 1997), Support Vector Machine (Vapnik, 1995) and Lasso (Tibshirani,

1996; Chen and Donoho, 1994; Chen et al., 2001). The regularization is, in some cases, imposed implicitly

as in early stopping of Boosting (Bühlmann and Yu, 2003) or, in other cases, imposed explicitly through the

use of a penalty function as in Lasso. Our approach falls into the latter category.

The main contribution of this paper is the introduction of the Composite Absolute Penalties (CAP)

family of penalties that are convex, highly customizable and enable users to build their subjective knowledge

o the data structure into the regularization procedure. It goes beyond the Lasso and encompasses group

selecting penalties like GLasso in (Yuan and Lin, 2006) and similarly in (Kim et al., 2006) as a special case

and extends it to hierarchical modeling. This inclusion of structural regularization significantly improves

prediction as shown in our extensive simulations and in an application to arctic cloud detection based on

multi-angle satellite images Shi et al. (2004).

In what follows, we let Z = (Y, X) with Y ∈ R
n a response variable and X ∈ R

n×p, denote the observed

data. The estimates defined by these penalized methods can be expressed by:

β̂ = arg minβ L(Z, β) + λ · T (β)

where L is a loss function representing the goodness of fit of the model. Typical examples include log-

likelihood functions, such as the squared error loss for ordinary least squares regression and logistic loss

function, and the hinge loss in Support Vector Machines. T is a penalty function that enforces complexity

(size of the parameters) and structural constraints (e.g. sparsity and group structure) on the estimates.
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It can also be used as a way of incorporating side or prior information into estimation. The sources of

side information are diverse and range from function smoothness in Smoothing Splines to distributional

information on the predictor variables in the popular field of semi-supervised learning. The regularization

parameter λ adjusts the trade off between fidelity to the observed data and reduction of the penalty. As

the regularization parameter increases, the estimates become more constrained, therefore the variance of

the estimates tend to decrease whereas the bias in the estimates tend to increase as the estimates become

less faithful to the observed data. Except for special cases, choosing the regularization parameter is not

trivial and usually requires computation of the entire regularization path – the set of regularized estimates

corresponding to different values of λ’s. We will present efficient algorithms that give the entire regularization

path. For a subset of the CAP penalties, we also derive an unbiased estimate of the degrees of freedom to

facilitate choosing the amount of regularization.

One of the early examples of the use of penalties within the estimation framework is the ridge regression

(Hoerl and Kennard, 1970). In this work, a penalty on the squared norm of the coefficients of a linear

regression is added to the Least Squares problem. As the penalty is smaller for estimates closer to the origin,

the ridged estimates are “shrunken” from the Ordinary Least Squares (OLS) solutions. The authors show

that an infinitesimal increase in the penalization parameter from the unpenalized estimates results in an

improvement on the mean squared prediction error.

In more recent years, new penalties have been proposed to the ordinary least squares problem. The bridge

regression (Frank and Friedman, 1993) generalizes the ridge in that the squared norm of the coefficients is

substituted by a penalty T given by the Lγ-norm of the model coefficients, that is:

T (β) =





p
∑

j=1

|βj |γ




1
γ

= ‖β‖γ

The regularization path for the bridge estimate can vary a lot according to the value of γ. Intuitively, the

behavior of regularization path can be understood in terms of the penalty contour plot. For γ ≤ 1, the

penalty function causes some of the regressors are set to zero due to the presence of acute corners along

the axes in these penalties contour plots. For 1 < γ < ∞, the estimates tend to fall on regions of high

“curvature” of the penalty function. Hence, for 1 < γ < 2, the sizes of the coefficients tend to be very

different, while for 2 < γ ≤ ∞ the sizes of the coefficients tend to be more similar. In the particular case

γ = ∞, some of the coefficients tend to be exactly the same along the regularization path as a result of the

acute corners on the contour plot along diagonal directions. Figure 1 shows the regularization path for the

bridge regressions for different values of γ using the diabetes data presented in Efron et al. (2004).

When γ ↓ 0 in the bridge regression, the penalty function becomes the “L0-norm” of the coefficients: that

is, the count of the number of parameters in the regression model. This case is of interest as model selection

criteria defined in an information theoretical framework such as the AIC (Akaike, 1973), BIC (Schwartz,

1978), AICC (Sugiura, 1978) and gMDL (Hansen and Yu, 2001) can be thought of as particular points along

the bridge regularization path. In this context, AIC and BIC have λ = 2,λ = and λ = log(n) respectively,

while gMDL chooses λ based on the data trying to strike a balance between the two and AICC tunes λ to

adjust AIC to take the sample size into account. One inconvenient of the L0-penalty is the combinatorial
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γ = 1 γ = 1.1 γ = 2 γ = 4 γ = ∞

Figure 1: Regularization Paths of Bridge Regressions.

Upper Panel: Solution paths for different bridge parameters. From left to right: Lasso (γ = 1), near-Lasso

(γ = 1.1), Ridge (γ = 2), over-Ridge (γ = 4), max(γ = ∞). The Y-axis has the range [−800, 800]. The

X-axis for the left 4 plots is
∑

i |βi|, the one for the 5th plot is max(|βi|) because
∑

i |βi| is unsuitable. Lower

Panel: The corresponding penalty equal contours of β1 versus β2 for ‖(β1, β2)‖γ = 1.

nature of the optimization problem, which causes the computational complexity of getting the estimates to

grow exponentially on the number of regressors.

In that respect, the case of γ = 1 is of particular interest: while it still has the variable selection property,

the optimization problem involved is convex. This represents a huge advantage in the computational point

of view as it allows for the tools of convex optimization to be used in calculating the estimates (Boyd and

Vandenberghe, 2004). This particularly case of bridge regression has deserved a lot of attention within the

Statistics community, where it is popularly referred to as the Lasso (Tibshirani, 1996) as well as within the

Signal Processing field, where it is more commonly referred to as basis pursuit (Chen and Donoho, 1994;

Chen et al., 2001). Computationally efficient algorithms for tracing the regularization path for the γ = 1

case have been developed in recent years by Osborne et al. (2000) and Efron et al. (2004). One key property

of the regularization path in this case is its piecewise linearity.

Even though the ability of the L1 penalty to select variables in a model is a major advancement, some

situations require additional structure on the selection procedure, especially when p is large. One such

situation occurs in ANOVA regression models where some of the regressors are categorical. here, a factor is

typically represented by a series of dummy variables. It is most desirable that the dummies corresponding

to a factor be included into or excluded from the model simultaneously. The Blockwise Sparse Regression

(Kim et al., 2006) and the GLasso (Yuan and Lin, 2006) and extensions (Meier et al., 2006)) provide ways

of defining penalties that do grouped selection.

In other cases, the need exists for the variables to be added to the model in a particular ordering. For

instance, in ANOVA models involving interaction among the factors, the statistician usually want to include

higher order interaction between some terms once all lower order interactions involving those terms have

been included to the model. In multi-resolution methods such as wavelet regression, it is desirable to only

include a higher resolution term for a given region once the coarser terms involved in it have been added to
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the model. The authors are not aware of any previous convex penalization method that has this ability.

The key idea in the construction of the CAP penalties is having different norms operating on the coeffi-

cients of different groups of variables – the group norms – and an overall norm that performs the selections

across the different groups – the overall norm. Within each group of variables, the properties of the Lγ-norm

regularizations paths presented above can be used to enforce different kinds of within-group relationship.

Such relationships can also be understood to a certain extent through a Bayesian interpretation of the CAP

penalties provided in Section 2.

To allow hierarchical selection, the groups can be constructed to overlap which, in conjunction with the

properties of the use of Lγ-norms as penalties, cause the coefficients to become non-zero in specific orders.

In what concerns algorithms for tracing or approximating the regularization path, an important condition

to be observed is convexity. We present sufficient conditions for convexity within the CAP family. For

the convex members of the family, we propose the use of the BLasso (Zhao and Yu, 2004) as a means of

approximating the regularization path for a CAP penalty in general. For some particular cases, very efficient

algorithms are developed for tracing the regularization path exactly.

Even though cross-validation can be used for the selection of the regularization parameter, it suffers from

some drawbacks. Firstly, it can be quite expensive from a computational standpoint. In addition, it is well

suited for prediction problems but are not the tool of choice when data interpretation is the goal (Leng et al.,

2004; Yang, 2003). We present an unbiased estimate for the number of degrees of freedom of the estimates

along the regularization path for some particular cases of the CAP penalty. These results rely on a duality

between the L1 and L∞ regularization and are based on the results by Zou et al. (2004).

The remainder of this paper is organized as follows. Section 2 present the CAP family of penalties. In

addition to defining the CAP penalties, it includes a Bayesian interpretation for this penalties and results

that guide the design of penalties for specific purposes. Section 3 provide a discussion on computational

issues. It proves conditions for convexity and describes some of the algorithms involved in tracing the CAP

regularization path. Section 4 presents unbiased estimates for the number of degrees of freedom for a subset

of the CAP penalties. Simulation results are presented in section 5 and an application to a real data set is

described in section 6. Section 7 concludes with a summary and a discussion on themes for future research.

2 The Composite Absolute Penalty (CAP) Family

In this section, we define the Composite Absolute Penalty (CAP) Family and explain the roles of the

parameters involved in its construction. Specifically, we discuss how the group norms and the overall norm

influence the CAP regularization path and how the overlapping of groups can lead to a hierarchical structure.

After defining the CAP family of penalty functions, an interpretation of the Bayesian interpretation for the

CAP penalties is provided. We then discuss some properties of bridge estimates that cause the grouping

effects to take place. We end this section by describing the construction of CAP penalties for grouped and

hierarchical variable selection.

2.1 Composite Absolute Penalties Definition

As the Composite Absolute Penalties (CAP) provide a framework to incorporate grouping or hierarchical

information within the regression procedure, it assumes that information about the grouping and or order
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of selection of the regressors is available a priori. Based on this prior information, K groups (denoted by

Gk, k = 1, . . . , K) of regressors are formed and their respective coefficients are collected into K vectors. We

shall refer to the vectors thus formed and their respective norms as:

βGk
= (βj)j∈Gk

, k = 1, . . . , K

Nk = ‖βGk
‖γk

Once Nk, k = 1, . . . , K are computed, they are collected in a new K-dimensional vector N = (N1, . . . , Nk)

and using a pre-defined γ0, the CAP penalty is computed by:

T (β) = ‖N‖γ0

γ0
=

∑

k

|Nk|γ0 (1)

Once the CAP penalty is defined, its corresponding estimate is given as a function of the regularization

parameter λ as:

β̂(λ) = arg min
β

∑

i

L(Yi, Xi, β) + λ · T (β) (2)

where L is a loss function as used described in the introduction above and T is a CAP penalty.

We now consider an interpretation for this family of functions.

2.2 A Bayesian Interpretation to CAP Penalties

When the loss function L corresponds to a log-likelihood function, a connection exists between penalized

estimation and the use of Maximum a Posteriori (MAP) estimates. Letting L represent the log-likelihood of

the data given the set of parameters β, T can be seen as the log of an a priori probability function and the

penalized estimates can be thought of as the MAP estimates of the coefficients. This interpretation is helpful

in understanding the role of the penalty function in the estimation procedure: it tends to favor solutions

that are more likely under the prior. Within this idea, the ridge regression estimates can be thought of as

assuming the error terms in the regression to have a Gaussian distribution given the coefficients in β and a

Gaussian prior on β. The bridge estimates keep the Gaussian assumption on the data but use different priors

according to the different γs. Figure 2 shows examples of different bridge priors. For γ ≤ 1, the variable

selection property may be thought of as arising from the kink at the origin for the corresponding densities.

(a) γ = 1 (b) γ = 1.1 (c) γ = 2 (d) γ = 4

Figure 2: Marginal prior densities on the coefficients for different values of γ

For the CAP penalties, this Bayesian interpretation corresponds to using the following a priori distribution

assumption with density g(β) given by:

g(β) = C1
γ0,γ exp {−

K∑

k=1

(‖βGk
‖γk

)γ0} (3)
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where C1
γ0,γ is a constant that causes g(β) in (3) to integrate to 1. Even though (3) results in a well defined

joint distribution for β, it does not provide much insight into what kind of structure CAP is promoting on

the estimates at a first glance. A closer look, however, proves insightful.

The high-level view is that CAP priors operate on two levels. At the across-groups level, the components

of the N vector of coefficients are independently identically distributed according to a density function f

with fγ0
(x) ∝ exp(xγ0). The intuitive role γ0 plays operates on a group level in the same fashion as the

bridge parameter: for γ0 ≤ 1 group sparsity is promoted in that some of the group norms Nk are set to zero;

for 1 < γ0 < 2, dissimilarity across the group norms is encouraged, while 2 < γ0 ≤ ∞ promotes similarity

across group norms.

Once N = (‖βG1
‖γ1

, . . . , ‖βGK
‖γK

) has been sampled from fγ0
, define the scaled coefficients

β̃Gk

‖β̃Gk
‖γk

.

Under the assumption that the groups do not overlap, these scaled coefficients can be proven to be indepen-

dently and uniformly distributed on the unit sphere defined by the Lγk
norm. As a result, within the each

group k, the smaller γk the more the coefficients of that group tend to concentrate closer to the coordinate

axis, while the larger γk the more the coefficients concentrate along the diagonals.

This intuition about the CAP penalties for non-overlapping groups is made rigorous in lemma 1 and

proposition 1 below:

Lemma 1 Assuming β̃ follows the joint distribution (3) and that Gk∩Gk′ = ∅ whenever k 6= k′, the following

holds:

• groups β̃Gk
are independent w.r.t. each other;

• for any k the normalized group norm
β̃Gk

‖β̃Gk
‖γk

is conditionally independent of ‖β̃Gk
‖γk

;

• the distribution of ‖β̃Gk
‖γk

does not depend on γk;

• the distribution of
β̃Gk

‖β̃Gk
‖γk

does not depend on γ0.

Lemma 1 indicates each group’s norm and its normalized members can be regularized separately and

independently using different γ0 and γk. Formally, we have the followng theorem:

Theorem 1 Suppose β∗ and β∗∗ are independent r.v. in R
k, where

β∗
j

i.i.d.∼ C2
γ0

exp {−xγ0} and

β∗∗
k

i.i.d.∼ C2
γk

exp {−xγk} for j ∈ Gi independently across groups

Then the following two relations hold:

‖β̃Gi
‖γi

d
= ‖β∗‖γ0

, (4)

β̃Gi

‖β̃Gi
‖γi

d
=

β∗∗
Gi

‖β̃∗∗
Gi
‖γi

. (5)
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The relationship in (4) tells us that the distributions of the components of the vector N have are inde-

pendent and identically distributed. Furthermore, it tells us how the size of the each component behaves

given γ0. Hence, for γ0 ≤ 1, the spike in the density of β∗ at zero promotes group selection.

The right hand side in (5) defines an uniform distribution over unit sphere for the Lγk
-norm. Thus, the

normalized coefficients of the k-th group are uniformly distributed over the Lγk
unit sphere. This provides

a formal justification for the fact that the higher γk the more the coefficients in group k tend to be similar.

2.3 Designing CAP penalties

The Bayesian interpretation to the CAP estimates provide justification to the notion that the CAP esti-

mates operate on two different levels: an across-group level and a within-group level. Still, it does not

provide conditions that ensure that the variables within a group are selected to or dropped from the model

simultaneously. To get such conditions, recall the definition of bridge estimates for a fixed γ:

β̂ = arg min
β

[L(Z, β) + λ · ‖β‖γ ]

For convex cases (i.e., γ ≥ 1), the solution to the optimization problem is fully characterized by the Karush-

Kuhn-Tucker (KKT) conditions:

∂L

∂βj

= −λ
∂‖β‖γ

∂βj

= −λ · sign(βj)
|βj |γ−1

‖β‖γ−1
γ

, for j such that βj 6= 0 (6)

| ∂L

∂βj

| ≤ λ|∂‖β‖γ

∂βj

| = λ
|βj |γ−1

‖β‖γ−1
γ

, for j such that βj = 0 (7)

From these conditions, it is clear that, for 1 < γ ≤ ∞, the estimate β̂j equals zero if and only if the

condition ∂L(Yi,Xi,β̂)
∂βj

|βj=0
= 0 is satisfied. The loss function and its gradient are data dependent. When the

distribution of Zi = (Xi, Yi) is continuous, the probability that ∂L(Yi,Xi,β̂)
∂βj

|βj=0
= 0 is satisfied is zero. Thus,

the solution is sparse with probability 0 when 1 < γ < ∞.

When γ = 1, however, the right side of (7) becomes a constant dependent on λ. As a result, the

coefficients that contribute less than a certain threshold to the loss reduction are set to zero.

From these two situations, we conclude that, setting γ > 1 will cause all variables to be kept our or

included in the model simultaneously while, setting γ = 1, results in just a subset of the variables being

selected to the model.

In the remainder of this subsection, we describe how to exploit these properties at the within-group and

the across-groups levels to get grouped and hierarchical model selection. The designs below are meant to

perform group selection and, thus, γ0 is kept at one for the remainder of the paper.

2.3.1 CAP penalties for grouped selection

The goal in grouped model selection consists of letting the variables within a group in or out of the model

simultaneously. From the Bayesian interpretation provided above, γ0 should then be set to be 1. That will

cause some of the terms of the norm vector of norms N to be set to zero and these groups are kept out of the

model. Now, by setting γk > 1 for every group, the conditions for bridge estimates above ensure that with

probability one, all variables within each group are included or excluded from the model simultaneously.
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This definition of the CAP penalty provides not only for group selection: it allows the behavior of the

coefficients within different groups to differ. In that sense, it is possible to have the coefficients in a group to

encourage a restriction that all coefficients within a group are equal (by setting γk = ∞ in cases in group k

if the effects of all variables in it are roughly of the same size) while not encouraging any particular direction

for another group (by setting γk̃ = 2 when no particular information on the relative effect sizes for variables

in group k̃ is available). Following this principle, the Grouped Lasso penalty used by Yuan and Lin (2006)

setting γk = 2 for all groups corresponds to the case where only the grouping information is used. As we

will see in the simulation studies (section 5, grouping experiment 3), embedding extra information on the

relative sizes of the groups may pay off in terms of the model error.

As in the bridge case, intuition about how the penalty operates can be derived from its contour plots.

Figure 3 shows the contour plots for a simple case where the problem consists of choosing among three

regressors with coefficients β1, β2 and β3. We assume the variables 1 and 2 (with coefficients β1 and β2)

form a group and variable 3 (coefficient β3) forms a group of its own. The plots show how different levels of

similarities are promoted by the use of different group-norms.

(a) γ0 = 1, γ = 1 (Lasso) (b) γ0 = 1, γ = 1.1 (c) γ0 = 1, γ = 2 (d) γ0 = 1, γ = 4 (e) γ0 = 1, γ = ∞

Figure 3: Equal contour surfaces for different CAP penalties.

The X, Y and Z axes are β1, β2 and β3 respectively. The solid lines indicate “sharp edges” of the surfaces,

i.e. points where the CAP penalties are not continuously differentiable.

The solid lines in figure 3 plots correspond to points where the penalty is not differentiable. As in the

Lasso, CAP estimates tend to concentrate on these points. When γ = 1, the CAP penalty reduces to the L1

penalty case. In panel (a) we see the contour plot for this case. The grouping effect in this case is lost as

variables within a group can come into the model on their own. This effect presents itself in panel (a) as a

symmetry in the penalty contour plot. In panels (b) through (d), we see that setting γ0 to 1 and 1 < γ ≤ ∞
causes the estimates to concentrate either on the “north” or “south” poles of the contours (group 2 composed

of variable 3 is selected on its own) or on a Lγ unit sphere in the xy plane (in which case group 1 containing

variables 1 and 2 is selected). As was the case in bridge, the higher γ, the more the coefficients in a group are

similar. In panel (e) the limiting case where γ = ∞ is shown: the estimates within a group are encouraged

to be exactly the same. In that case, even after the two groups are added to the model (low enough λ),

the restriction β1 = β2 is still encouraged by the penalty function as shown by the solid lines along the xy

diagonals.
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2.3.2 CAP penalties for hierarchical inclusion

In addition to grouping information, it is often the case that the analysis benefits from having variables

entering the model is some prespecified order. Two such examples are: first, in the fitting of ANOVA models,

it is usually the case that interactions between variables should only be included after its corresponding main

effects are already in the model and; second, in the fitting of multiresolution models, one usually wants to

prevent higher resolutions within a region to be added to the model before the coarser resolutions within the

same area are added.

CAP penalties as defined above can be used to enforce the inclusion if variables in a model to take place

in a given order by letting the groups overlap, that is, two different groups are allowed to contain the same

variable. We start by considering a simple case and then extend the principle involved in the building of

these penalties to tackle more interesting cases.

Consider a case where two variables X1 and X2 are to be selected in a specific order: variable 1 is to

be included in the model before variable 2. To obtain this hierarchy, we define two groups G1 = {1, 2} and

G2 = {2} and set γ0 = 1, γm > 1 for m = 1, 2. That results in the penalty:

T (β) = ‖(β1, β2)‖γ1
+ ‖(β2)‖γ2

(8)

(a) γ0 = 1, γ = 1 (b) γ0 = 1, γ = 2 (c) γ0 = 1, γ = 4 (d) γ0 = 1, γ = ∞

Figure 4: Contour plots for the penalty shown in (9).

It can be seen that for γ > 1 the coefficient β2 tends to always be nonzero once feature 1 is added to the

model.

The contour plots of this penalty function are shown in figure 4 for different values of γ = γ1. As

G2 contains only one variable, these contours are the same regardless of the value chosen for γ2, since

‖β2‖γ2
= |β2|. The singularity points along the β2 = 0 axis in panels (b) through (d) show that solutions

with β1 6= 0 and β2 = 0 tend to be encouraged by this penalty when γ1 > 1. When γ1 = 1, it is possible to

have either β1 6= 0 and β2 = 0 or β1 = 0 and β2 6= 0 as the singularity points align along both axis. In this

case, however, X2 is less likely to be added to the model as it is more heavily penalized.

Algebraically, that fact follows from noticing that for γ > 1:

∂

∂β1
T (β) =

∂

∂β1
‖β‖γ = sign (β1)

( |β1|
‖β‖γ

)(γ−1)

As a result, if β2 > 0 and γ > 1, β1 is locally not penalized at 0 and it will only stay at this point if the

gradient of the loss function L is exactly zero for β1 = 0. Unless the distribution of the gradient of the loss

function has an atom at zero for β1, β1 6= 0 with probability one.

The above steps can be used to prove a result that extends this simple setting to more interesting cases:
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Theorem 2 Suppose γ0 = 1 and γk > 1, ∀k = 1, . . . , K and :

• {2} ⊂ Gk ⇒ {1} ⊂ Gk for all k and

• ∃k∗ such that {2} ⊂ Gk∗ and {1} 6⊂ Gk∗

Then, ∂
∂β1

T (β) = 0 whenever β2 6= 0 and β1 = 0.

As a consequence, once β2 enters the model, there is no increase in the penalty for moving β1 away from

zero locally. It follows that Theorem 2 provides a general recipe for defining groups resulting in variable selec-

tion following a specific ordering. One important case is when the hierarchical structure can be represented

in the form of a graph. In the experimental section, two such examples are provided: wavelet regression and

ANOVA with interaction terms. Figures 5 and 6 show the graphs for their respective hierarchical structures.

For these graphs, each group in the penalty is formed by a variable and all its descendants. As a result,

there exists a group for each variable in the model. Nodes with no offsprings are penalized on their own. As

before, the penalty for the m-th group is given by the Lγm
-norm of the vector of coefficients corresponding

to that group. The overall penalty is then formed by computing the Lγ0
-norm of the vector of group-norms.

Setting γ0 = 1, that leads to the following penalty function:

T (β) =
nodes∑

m=1

‖
(
βm, βdescendants of m

)
‖γm

(9)

3 Computation of the CAP Regularization Path

Once the CAP penalty is defined, computational methods are needed to get the CAP estimate for a data

set. As a suitable value for the penalty parameter λ is not known beforehand, there is the need to be able to

compute CAP estimates for various different values of λ efficiently. In this section, we consider the problem

of tracing the entire regularization path for CAP estimates, while in the next we discuss the selection of a

suitable λ. We point out, however, that these problems should ideally be tackled simultaneously: computing

a criterion for evaluating λ as the path is traced allows some computational savings as it avoids the entire

path to be calculated. That is the idea behind early stopping in boosting (e.g. Zhang and Yu, 2005).

Before describing the algorithms used to trace the CAP path, we tackle a common concern when dealing

with optimization problems: ensuring the convexity of the objective function. Subsection 3.1 presents

conditions ensuring that the CAP Lagrangian to be convex. Once that is done, section 3.2 discusses the

use of the BLasso algorithm (Zhao and Yu, 2004) for approximating the CAP regularization path for a

general convex CAP penalty. We notice that alternative algorithms may be used (e.g. Rosset, 2004). For

some particular cases of grouped and hierarchical selection, the CAP regularization path can be proven

to be piecewise linear (Rosset and Zhu, 2006). For some of these cases, algorithms that trace the CAP

regularization path exact and efficiently are presented in 3.3.

3.1 Convexity of the CAP program

Convexity is an important property when dealing with optimization procedures as it ensures computational

tractability to the problem (Boyd and Vandenberghe, 2004). It has enjoyed an increasing importance in
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statistics as various statistical procedures are defined in terms of optimization problems (e.g. Bartlett et al.,

2006, and references therein). The CAP estimates are no exception. In this subsection, we present a simple

result that justifies the use of the algorithms for tracing the regularization path of the CAP estimates in

what follows.

The key point for establishing the convexity for the CAP estimates consists of noticing that its properties

closely parallel that of norms. The properties that causes proper norms to be convex are the scaling and the

triangular inequality properties. Those properties are inherited from the norms used to define the CAP as

stated in

Lemma 2 If γi ≥ 1, ∀i = 0, ..., K, then T (β) as defined in (2) satisfies:

1. (Scaling): Let α ∈ R and β ∈ R
p. Then T (α · β) = |α|T (β);

2. (Triangular inequality): Let β1, β2 ∈ R
p. Then T (β1 + β2) ≤ T (β1) + T (β2).

Once these properties are proved, the following result follows easily:

Theorem 3 If L is convex in β and γi ≥ 1, ∀i = 0, ..., K, then the CAP objective function is convex in β.

For cases where the the CAP objective function is known to be convex, the KKT conditions are known

to be necessary and sufficient for optimality. Thus, algorithms that work by using the KKT conditions can

be used for tracing the CAP regularization path. We describe some of them in the remainder of this section.

3.2 Using the BLasso

When both the penalty and the loss functions are convex, the BLasso algorithm (Zhao and Yu, 2004) provides

an approximation for the regularization path of a regularization method. It operates similarly to boosting

in that estimates are formed by taking steps in the model parameter space. Given its stepwise nature, it

is similar to Forward Stagewise Fitting (FSF Efron et al., 2004). However, instead of solely relying on the

gradients of the loss function to trace the path, this algorithm also takes the penalty function into account:

before moving forward in any direction, a check is made on whether it is worth trading a little increase in the

loss function for a reduction in the penalty. By introducing these backward steps, the BLasso can approximate

the L1-penalty regularization path arbitrarily close provided the step size is allowed to be reduced.

One great advantage of the BLasso algorithm is that, at each step, no computational effort on the

inversion of matrices or the calculation of Hessian and gradients for the objective function. The price to

pay for the computational simplicity is that the results are approximate. However, under convexity and

differentiability of the objective function, the approximation can be made arbitrarily precise by reducing the

size of the step taken at each iteration as shown in the original paper.

Another benefit of the BLasso algorithm is the ease of implementation of the algorithm. Similarly to

boosting, once the loss and the penalty functions have been implemented, the BLasso can be adapted to

solve the new problem with little effort.

In the experimental section below, the BLasso algorithm is used to approximate the regularization paths

for different set ups of the CAP penalties. In certain cases, however, the regularization is known to be

piecewise linear and more efficient algorithms can be used. That is where we turn our attention now.
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3.3 L1 and L
∞

-norms and Piecewise Linearity

Even though the BLasso is versatile enough to handle a broad range of loss and penalty functions, in some

particular cases, algorithms that compute the regularization path exactly and very fast can be developed. In

this subsection, algorithms for tracing the CAP regularization path for the squared error loss for two specific

penalties are proposed. In both cases, the property behind the possibility of constructing these algorithms

is the piecewise linearity of the regularization path (Rosset and Zhu, 2006).

The two particular cases for which we develop specific algorithms have γ0 = 1 and γk = ∞, ∀k = 1, . . . , K.

The first case we consider is that of nonoverlapping groups. In that case, the algorithm operates as the Lasso

on the group level and as a L∞-regularized regression within the group level. The second one deals with

the particular case where the hierarchical structure can be represented as a graph (see figures 5 and 6). In

this case, the algorithm can be interpreted as operating similarly to the nonoverlapping groups case, but

the groups are defined dynamically along the path. The way in which the L∞-regularization operates is a

common thread in both cases so it is briefly described first.

The regularization path for L∞: We now describe how to trace the regularization path for the L∞-

penalized squared error loss regression, as it will constitute a building block for the algorithms for grouped

and hierarchical selection described below. The Lagrangian for this optimization problem defining the L∞-

regularized least squares estimate is given by:

L(b, λ) = Y ′Y +

(

λ · signs(b) · I(‖b‖∞) − 2Y ′X

)

b + b′X ′Xb

where I(‖b‖∞) is a vector whose j − th component equals sign(bj) if |bj | = ‖b‖∞ and 0 otherwise. Defining:

Uλ = {j : |bj | < ‖b‖∞} (10)

Rλ = {j : |bj | = ‖b‖∞} (11)

For simplicity, we define pr and pu to be the number of indices in Rλ and Uλ respectively and rearrange

the columns in X so that Rλ and Uλ are such that X =
[

(XRλ
)n×pr

(XUλ
)n×pu

]

. We then define:

(Sλ)pr×1 = signs
(

X ′
Rλ

(Y − Xβ̂λ)
)

(12)

(X )n×(pu+1) = X ·
[

Sλ 0pr×pu

0pu×1 Ipu

]

(13)

a necessary and sufficient condition for β̂λ to be the L∞ penalized estimate for λ is that the following

conditions hold:

β̂λ =

[

Sλ 0pr×pu

0pu×1 Ipu

]′

· α̂λ (14)

X ′X α̂λ = X ′Y − λ · sign (Y −X α̂λ) (15)

We notice that Xβ̂λ = X α̂λ so the L∞ penalized fit for λ is given equivalently by Xβ̂λ and X α̂λ.

From these conditions, it is possible to interpret the estimates at a given λ as follows. There are two

groups of coefficients. The first group (Rλ) is that whose coefficients equal ‖β̂λ‖∞ in absolute value. The
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coefficients in the second group (Uλ) away from the ‖β̂λ‖∞ boundary and must be orthogonal to the current

residuals, that is, must satisfy X ′
j(Y − Xβ̂λ) = 0.

Using this interpretation of of the optimality conditions, it is possible to construct a path tracing algo-

rithm. Starting from zero, all coefficients are moved by the same amount and with signs according to those

of their correlations to the response. Once one of the correlation of one of the variables reaches zero, the

corresponding coefficient is moved to the Uλ group. The direction of movement is then updated such that

the variables in Uλ keep their zero correlation to the residuals. The remaining variables should move by

the same amount according to the sign of their correlation with the residuals. The other condition to be

observed is that, once a coefficient in the Uλ group touches the ‖β̂λ‖∞ boundary, it should be let into the

Rλ group.

It is interesting to point out that a duality exists between the Lasso problem and the L∞-regularization

problem. The correlations along the Lasso path behave similarly to the coefficients along the L∞-regularized

path and vice-versa. The correlations and the coefficients can be shown to be dual variables by expressing

the L∞-regularization problem (alt. the Lasso) as a quadratic programming problem and getting its dual to

be the Lasso (alt. the L∞-regularization problem). In Appendix A, the duality between these two problems

is made precise.

Having dealt with the L∞ penalized regression, we now move on to consider how to use it in the grouped

selection case.

The algorithm for nonoverlapping groups, γ0 = 1 and γk = ∞, ∀k = 1, . . . , K. As was the case

with the L∞ regularization path, the path when γ0 = 1 and γk = ∞, for all k is known to be piecewise

linear (Rosset and Zhu, 2006). As mentioned before, this case can be interpreted as having a Lasso type of

selection on the group level and an L∞ penalization on the within group level.

We first define group correlation to a set of residuals as ck(β) = ‖X ′
Gk

(Y −Xβ)‖1. This group correlation

plays the role of the variable correlation in the Lasso . We also define Aλ to be the set of active groups

and Rλ,k to be the correspondent within each group of Rλ in the previous section. We define Sk,λ =

sign(XRk,λ
(Y − Xβ̂λ)).

As in the Lasso, for λ > maxk ‖X ′
Gk

Y ‖1, β̂λ = 0. Hence the algorithm starts by setting β̂λ = 0 for

λ = maxk ‖X ′
Gk

Y ‖1. At this point, the most correlated groups are added to Aλ. The estimates then move

in a direction ∆β̂ such that:

• if k 6∈ Aλ, then ∆β̂Gk
(λ) = 0;

• for k ∈ Aλ, ∆β̂Rk,λ
= αk · Sλ and X ′

Uk,λ

(

Y − X(β̂(λ) + ∆β̂)
)

= 0, where αk is chosen so that:

ck(β̂(λ) + δ · ∆β̂) = ck∗(β̂(λ) + δ · ∆β̂) for all k, k∗ ∈ Aλ

The sets Aλ, Rk,λ and Uk,λ are kept constant between breakpoints. Once the direction of movement is

determined, it is necessary to determine for how long to move. We choose δ to be the least positive number

such that one of the following conditions holds:

• ck∗(β̂λ + δ · ∆β̂) = ck(β̂λ + δ · ∆β̂) for some k∗ 6∈ Aλ and k ∈ Aλ, in this case any k∗ 6∈ Aλ for which

the condition holds is added to Aλ;
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• ‖β̂Gk
(λ) + δ · ∆β̂‖∞ = 0 for some k ∈ Aλ, in this case, any k satisfying the condition is removed from

Aλ;

• For some m ∈ Gk with k ∈ Aλ, X ′
m

(

Y − X(β̂(λ) + δ · ∆β̂)
)

= 0, in which case any m satisfying the

condition is moved from Rk,λ to Uk,λ of its group;

• For some m ∈ Gk ∩Uk,λ with k ∈ Aλ, |β̂m(λ) + δ ·∆β̂m| = ‖β̂Gk
(λ) + δ ·∆β̂Gk

‖∞, in which case any m

satisfying the condition is moved from Uk,λ to Rk,λ;

Having defined how to move from one breakpoint to another and identified the conditions that characterize

the breakpoints and what actions need to be taken once they are reached, the algorithm for grouped selection

with γ0 = 1 and γk = ∞ for all k is fully described.

The algorithm presented here is only adequate for the squared error loss function. However, they can

be extended for loss functions corresponding to members of the GLM family by adapting the contributions

from (Park and Hastie, 2006). In these situations, the regularization path is no longer piecewise linear, but

piecewise smooth. The algorithm is in general terms similar to the one for the squared error loss in which a

quadratic approximation for the loss function is used. In this approximation, the gradient and the Hessian

play the role of the correlations and the matrix (X ′X) respectively. The λ corresponding to the next “event”

can then be approximated and its corresponding solution computed. If indeed an event takes place at this

new λ, the active and orthogonal sets are updated accordingly. If no event takes place at the current point,

the Hessian and gradient are updated and the approximation recomputed.

The algorithm for nested groups, γ0 = 1 and γk = ∞, ∀k = 1, . . . , K. In this section, we consider

an algorithm for tracing the exact regularization path for hierarchical selection for the squared error loss

function, γ0 = 1, γk = ∞ for all k. The KKT conditions in this case reveal that optimality in this case

is somewhat similar to proceeding as in the nonoverlapping groups case. The difference is that the groups

now change dynamically along the path. The algorithm is complicated to be described in detail, here we

give a high level description, readers who are interested in implementing the algorithm can refer to the code

available at http://www.stat.berkeley.edu/~pengzhao/CAP/.

The algorithm is started by forming groups so that the following conditions hold:

• Each group consists of a sub-tree

• Interpreting each of the subtrees formed as a supernode, the tree formed by these supernodes must

satisfy the condition that the average correlation between Y −Xβ̂(λ) and X ’s within the supernode is

higher than that of all its supernode descendants.

Once these groups are formed, the optimality conditions are preserved by moving the coefficients in the

root group as this is the group with the highest average correlation. The algorithms proceeds moving these

coefficients until a breakpoint is reached. The breakpoints are characterized by:

• If the average correlation between Y − Xβ̂(λ) and a subtree Ga matches that of the supernode that

contains the subtree, then Ga splits into a new supernode.

• If is a is a subtree whose corresponding supernode is a descendent of the supernode corresponding

to subtree Gb and ‖β̂Ga,λ‖∞ becomes equal to ‖β̂Gb,λ‖∞, then combine groups Ga and Gb into a new

supenode.
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• If the coefficients for a supernode are zero and the average correlation of its elements to Y − Xβ̂(λ)

becomes as large as its parent in the tree of supernodes, then the two supernodes should be merged.

As we now have means of tracing the regularization path for the CAP family, we now turn our attention

to the problem of selecting the regularization parameter.

4 Choosing the regularization parameter for CAP penalties

Once the CAP penalty has been defined and its regularization path computed, one must make a decision on

which estimate along the path to choose. At this point, the goal of the analysis must be taken into account

as it is rarely possible that the same choice is optimal for prediction and structural inference purposes

simultaneously (Yang, 2003).

If prediction is the goal of the model, cross-validation provides one way of selecting the regularization

parameter. In this context, M -fold cross-validation works by splitting the available sample into M different

groups. In each fold, the regularization path is traced by keeping the data points of one group out. The

prediction errors are then computed on this out-of-sample data. The procedure is repeated for each group

and the mean squared prediction error (MSPE) is computed over the M paths aligned according to the

value of the penalty function T . Once an optimal T̃ is chosen, the path for the entire data is traced and

the estimate with T (β̂(λ)) = T̃ is chosen. We refer the reader to Efron and Tibshirani (1994) for more on

cross-validation.

One drawback in using cross-validation is the computational effort involved in it: we now need to trace

the regularization path for M different data sets. As a result, even when prediction is the goal of the analysis,

it may be desirable to use an information criterion suitable for this purpose such as the AIC (Akaike, 1973)

and AICC (Sugiura, 1978).

Another problem with cross-validation arises when the goal of the analysis is to unveil the structure

among the variables in the model . In that situation, cross-validation is known not to be consistent in model

selection (e.g. Leng et al., 2004). In this situation, other information criteria such as the BIC (Schwartz,

1978) provide a more suitable procedure for selecting a model from the path.

These two drawbacks with cross validation – namely: its computational intensiveness and its inability

to choose structural models consistently – motivate the search for an unbiased estimate of the number of

degrees of freedom of each estimate. Once these are available, different information criteria can be used to

select a model according to the its intended use.

In this section, unbiased estimates for the number of degrees of freedom for some members of the CAP

family are provided: namely the case of nonoverlapping groups with γ0 = 1 and γk = ∞, ∀k = 1, . . . , K

and squared error loss. These estimates are born from an adaptation of the results of Zou et al. (2004) on

the degrees of freedom of the Lasso. We start off by considering the case of L∞ regularized regression as it

provides some insight into the more general case. The result is then extended to the case of nonoverlapping

groups with γ0 = 1 and γk = ∞, ∀k = 1, . . . , K. Results for the general CAP penalty will be the theme of

future research.

Number of degrees of freedom for the L∞-penalized regression: As is the case with the L1-norm,

the L∞-norm has some kinks on its contour plots. That leads to similarities between the two procedures.
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The two procedures cause some restrictions to be enforced in higher penalized regions. While the L1-penalty

tends to set some of the coefficients to zero, the L∞-penalty tend to restricted the coefficients to be the

same. That provides the intuition for the estimates of the number of degrees of freedom in this setting.

An interpretation for the results from Zou et al. (2004) is that an unbiased estimate for the number of

degrees of freedom is given by the number of regressors minus the number of enforced restrictions on a point

along the path. The same is true for the L∞-penalized regression, yielding the following estimate for the

number of degrees of freedom along the L∞-regularization path:

d̂f(λ) = |Uλ| + 1

where Uλ is as defined in section 3 above.

The proof of this fact follows the same steps as the one in Zou et al. (2004). It first restricts attention on

a set Kλ ⊂ R
n such that y ∈ Kλ ensures that λ is not a breakpoint. Within this set, conditions that ensure

the conditions on the fit for Stein’s lemma to hold are proven. The results are then extended for all y ∈ R
n.

A more detailed proof is shown in Appendix A.

Number of degrees of freedom for nonoverlapping groups with γ0 = 1 and γk = ∞, ∀k = 1, . . . , K:

In this case, the penalty function can be thought of as promoting restrictions on two levels: on the higher

level each group tends to have its coefficients set to zero and; within the group level, the coefficients tend

to be set to the same value exactly. As a result, the number of degrees of freedom can again be estimated

by subtracting the number of enforced restrictions from the total number of regressors. An alternative

interpretation is that groups that are kept out at a given λ do not contribute any degrees of freedom for that

estimate and selected groups only contribute their number of free parameters as in the L∞ regularization

case. That leads to the following expression for the number of degrees of freedom for the CAP:

d̂f(λ) =
∑

k∈Aλ

(|Uk,λ| + 1) = |Aλ| +
∑

k∈Aλ

|Uk,λ|

A formal proof for this estimate is provided in Appendix A. The proof follows roughly the same steps as

the ones used in the proof for the L1 and L∞ case are present.

As all elements involved in getting a CAP estimate have been considered, we now move on to reviewing

how the method perform in a series of experiments.

5 Simulation results

In the previous sections we have defined the CAP estimates, provided algorithms for computing its regular-

ization path and discussed how to select the regularization parameter. Here we examine CAP’s performance

on a series of simulated examples. The section is divided into two parts: in the first, the performance of the

CAP estimates for grouped selection is evaluated, while the second part is devoted to assessing the CAP

performance for hierarchical variable selection.

The estimates will be evaluated according to two criteria: the model error defined by

ME = (β̂λ − β)′E (X ′X) (β̂λ − β)
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and the sparsity of the model as measured by the number of nonzero variables selected. For the grouping

examples an estimate of the number of degrees of freedom is also presented when available, that is, whenever

γk = γ, . . . , K. For the grouping examples, the number of degrees of freedom in the case where γ = ∞ are

also reported and used to select CAP estimates based on different information criteria: BIC and AICC. We

choose to report the BIC due to its goodness in selecting model consistently and the AICC due to its ability

to pick good models for prediction in samples of reduced size.

Within the grouped selection subsection, two types of group information are considered: in the first, the

group structure arises from a clear cut relationship among the variables (they are dummies representing the

same categorical variable); in the second, the grouping information originates from some side information

about the predicting variables. While in the first case there is no uncertainty about what grouping structure

to use, in the second case we also consider what happens when the group structure is misspecified.

The hierarchical selection subsection also consider two cases: we first review the performance for CAP

estimates when fitting wavelets to a signal and then consider the fitting of an ANOVA model with interactions

between the factors. The main difference between these two cases refer to the graph structure of the hierarchy

involved: in the first case, the groups are nested and, as a result, the efficient algorithm presented in Section

3 can be used when γk = ∞, ∀k = 1, . . . , K; in the second case, the loopy nature of the hierarchy graph

precludes the use of such algorithm.

For each of the simulated examples, we consider two different estimates: the oracle and the validated

estimate. The oracle estimate is the one estimate along the path that minimizes the model error. It is not

achievable in practice, but it serves as a lower bound on the performance for a given procedure. The validated

estimate is obtained by hold-out validation. Both choices are made by considering the regularization path

in 1,000 points equally spaced according to T (β). If the estimates at this points are not on the path, they

are computed by linearly interpolating the available points on the path. When an estimate for the degrees

of freedom is available, the information criteria based selection only uses the training set which gives some

advantage to the validated estimates when a comparison between the two is made.

In the cases presented next, we use the penalties presented in section 2 and hence keep γ0 = 1 throughout.

We leave the properties of penalties with γ0 6= 1 for future investigation. For each simulated example, we

look at the cases γk = γ for all k = 1, . . . , K and γ ∈ {2, 4,∞}. In all cases, we consider the comparison to

the Lasso. For the grouped cases, the Lasso estimate coincides with setting γ = 1.

In all examples that follow, the true process generating the data is of the form:

Y = Xβ + σε

with ε ∼ N (0, I). According to the case, X will have some structure of which the CAP estimates try to take

advantage.

We now provide an overview of the results from the different experiments. The experimental setup is

explained in detail in the two subsections that follows. The detailed results are listed in Tables 3 to 10.

Grouping experiments results: In the grouping experiments, the inclusion of the group structure proves

beneficial in terms of model error as for all simulated cases where γ > 1 there is a significant reduction in

the model error both in terms of the oracle and the hold-out validated estimates. In cases where all the

coefficients in a group are the same, the higher the coefficient γ the better the results in terms of model
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error. In the example where the coefficients are not exactly equal but still of similar sizes, the use of γ = 4

has resulted in a reduced model error. We notice that even the extreme case γ = ∞ has a slight edge in

terms of model error over the γ = 2 case (GLasso, Yuan and Lin, 2006).

In what concerns the number of variables added, what we see is that more variables are included in the

CAP estimates with γ > 1 than when γ = 1 for both the oracle and the hold-out validated estimates. That

is due to the grouping effect of the penalty: once a group is added to the model all its variables are picked.

The average number of degrees of freedom for γ = ∞ suggests that, even though the number of included

variables is larger than that for the Lasso, the within group regularization prevents the number of effective

parameters from increasing rapidly.

Still regarding the grouping experiments, when the groups are correctly specified, the estimates obtained

by using BIC have a number of variables which are on average close to the true number of variables in

the model. This is not the case under the group misspecification considered: noisy variables are added to

significant groups. Under these circumstances, the average size of the model selected is close to true number

of variables in the model plus the number of noisy variables mistakingly added to the significant groups.

The number of degrees of freedom for the model selected by BIC is also higher for the case where the groups

are misspecified than for the correct group specification. That can be explained by the fact that the noisy

variables are added to the Uk,λ sets of their respective groups early on the regularization path. We also

notice that the BIC estimates result in higher model errors than the oracle, the hold-out validated and the

AICC estimates especially in the cases where the sample size was severely limited.

The use of AICC has yielded estimates with model errors comparable to the ones resulting from using

the oracle selection and cross-validation. In what concerns the selection of a correct specification for the

model, it seems to have a worse performance than that of the BIC as the number of variables selected is on

average much higher than the number of variables in the true model. That holds true both when the groups

are correctly specified and when they are not.

Finally, for the specific form of misspecification considered, the use of the misspecified group information

still resulted in advantages in terms of model error over the Lasso. However, misspeciying the groups causes

some of these gains to be lost in the comparison to the Lasso (γ = 1 case). Additionally, if the model is not

aimed at prediction, the group misspecification may prove more harmful as suggested by its influence on the

number of variables selected by BIC.

Hierarchical wavelet fitting results: The results for the wavelet tree example are shown in Table 9.

In terms of model error, the use of the hierarchical structure has results in a reduction in terms of model

whenever γ > 1 in the comparison to the Lasso. The number of terms selected by the oracle and holdout

validated estimates is larger than that selected by their corresponding estimates using the Lasso. However,

as was the case with the group selection, this larger number of terms added to the model does not necessarily

imply a larger number of degrees of freedom for the estimates as the CAP estimates are constrained to obey

the hierarchical structure coded in the penalty function. Further research aiming at defining an estimate

for the degrees of freedom in this case is desired to confirm this point. That would also open the way for

procedures consistent in terms of model selection.
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Hierarchical fitting for ANOVA: We evaluate the performance of hierarchical CAP penalties in the

ANOVA case in a regression involving ten independently distributed standard normal variables and their

respective interactions. Out of the ten variables, only four are present in the true model. Five cases are

considered and they differ mainly in the relative size between the main and interaction effects. The coefficients

of the four relevant variables and respective interactions are shown in table 1: in the first case, there are

no interaction terms at all; for the second and third cases, the interaction terms are of moderate size as

compared to the main effects; and in the last two cases, the main and interaction effects are about the same

size.

The results for the ANOVA case suggest that the hierarchical procedure performs better when the

interaction effects are of moderate size when compared to the main effects. In these situations (cases 1,

2 and 3), the resulting model error is significantly better than that of the Lasso. For larger interaction

effects, however, the use of this family of CAP penalties results in slightly larger model errors than using the

Lasso. In these situations, given the large effect of the interaction terms, it may not be optimal to keep the

interaction terms from entering the model before the main effects as in some of the cases considered (e.g. β3

and β13 in case 5) the interaction terms have larger coefficients than the main effects.

In what concerns the number of terms selected to the models, the hierarchical selection resulted again

in less sparse models. Again, we point out that this does not necessarily translates into estimates with a

higher number of degrees of freedom. As was the case with the estimates for the wavelet tree case, the CAP

estimates here are constrained to satisfy the hierarchy represented in the penalty function. Further research

towards an estimate of the number of degrees of freedom of the CAP estimates is called for as it may help

clarify this point and allow for the use of criteria resulting in consistent model selection.

5.1 Grouping experiments

In this subsection we describe the experimental setup for evaluating the performance of CAP estimates in

problems where a natural grouping exist. In the first example, the grouping arises from the fact that the

different regressors are actually dummy variables used to represent categorical variables. In this situation,

there is no uncertainty about the grouping to be used. In the last two examples, the grouping arises

from some side information about the regressors: the fact that some of them correspond to different noisy

measurements of the same underlying variable. In such a situation, there may be uncertainty about the

right group structure to use. Thus, we simulate the CAP estimates for a correct and an incorrect grouping

specification.

First grouping experiment: This first grouping case is taken from Yuan and Lin (2006). Define

Z1, . . . , Z15 to be normally distributed each with mean zero, variance one and cov(Zi, Zj) = σij = 0.5|i−j|.

The categorical factors Z̃i are then defined by:

Z̃i =







0, if Zi < Φ−1(1
3 )

1, if Zi > Φ−1(2
3 )

2, if Φ−1(1
3 ) ≤ Zi ≤ Φ−1(2

3 ))
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And X is defined to be a set of dummy variables with
(
X2·(j−1)+1, X2j

)
=

(

I(Z̃j = 1), I(Z̃j = 2)
)

. The true

set of coefficients is:

β =



1.8,−1.2, 0, 0, 1, 0.5, 0, 0, 1, 1, 0, . . . , 0
︸ ︷︷ ︸

20





The noise level is set to σ = 1.476 resulting in a signal-to-noise ratio (SNR) of 1.8. The train and validation

sample sizes are respectively 50 and 25. There is no uncertainty about the grouping and it is set to be

Gk = {2k − 1, 2k}, for k = 1, . . . , 15.

Second grouping experiment: This example is taken from Zou and Hastie (2005). Here the group

structure arises as some of the regressors corresponds to repeated measurements of some hidden variable Z:

Xi = Z1 + εx
i , Z1 ∼ N (0, 1), i = 1, . . . , 5

Xi = Z2 + εx
i , Z2 ∼ N (0, 1), i = 6, . . . , 10

Xi = Z3 + εx
i , Z3 ∼ N (0, 1), i = 11, . . . , 15

Xi ∼ N (0, 1), Xii.i.d, i = 16, . . . , 40

The true model is characterized by the coefficients:

β =



3, . . . , 3
︸ ︷︷ ︸

15

, 0, . . . , 0
︸ ︷︷ ︸
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and the noise level is set to σ = 15, yielding SNR = 3.00). The results are reported for two difference

training sample sizes: 50 and 500. In both situations, the validation sample size is kept at 50. As in this sort

of situation there can be uncertainty about the right grouping to use, we consider two alternative groupings:

Correct grouping Incorrect grouping

G1 = {1, . . . , 5}

G2 = {6, . . . , 10}

G3 = {11, . . . , 15}

Gk = {k}, for k = 16, . . . , 40

G1 = {1, . . . , 5, 16}

G2 = {6, . . . , 10, 17}

G3 = {11, . . . , 15}

Gk = {k}, for k = 18, . . . , 40

Third grouping experiment: This example is similar to the second one but the number of replicates

is larger and the groups are less similar to each other. Letting w = 0.05 and εx ∼ N (0, 1) and cov(εx
i , εx

j ) =

0.5|i−j|, X is given by:

Xi = w · Z1 +
√

1 − w2 · εx
i , Z1 ∼ N (0, 1), i = 1, . . . , 10

Xi = w · Z2 +
√

1 − w2 · εx
i , Z2 ∼ N (0, 1), i = 11, . . . , 20

Xi = w · Z3 +
√

1 − w2 · εx
i , Z3 ∼ N (0, 1), i = 21, . . . , 30

Xi = w · Z4 +
√

1 − w2 · εx
i , Z4 ∼ N (0, 1), i = 31, . . . , 40

Xi = w · Z5 +
√

1 − w2 · εx
i , Z5 ∼ N (0, 1), i = 41, . . . , 50

The true coefficients are given by:

β =



7, . . . , 7
︸ ︷︷ ︸

10

, 2, . . . , 2
︸ ︷︷ ︸

10

, 1, . . . , 1
︸ ︷︷ ︸

10

, 0, . . . , 0
︸ ︷︷ ︸

20





21



The noise level is set at σ = 19.22 corresponding to a SNR=4.0. The training and validation sets contains

450 and 50 observations respectively. As above, it is interesting to look at the effect of group misspecification

on the results:

Correct grouping Incorrect grouping

G1 = {1, . . . , 10}

G2 = {11, . . . , 20}

G3 = {21, . . . , 30}

G4 = {31, . . . , 40}

G5 = {41, . . . , 50}

G1 = {1, . . . , 10, 31}

G2 = {11, . . . , 20, 41}

G3 = {21, . . . , 30}

G4 = {32, . . . , 40}

G5 = {42, . . . , 50}

5.2 Hierarchical selection of variables

In this subsection, we describe two situations under which hierarchical CAP penalties described in Section

2 will be evaluated. Two different cases are considered: the selection of variables in a multiresolution model

(wavelet regression) and in an ANOVA model with interaction terms.

Hierarchical selection in Wavelet Regression: In this example, the true signal is given by a linear

combination of Haar wavelets at different resolution levels. Letting Zij denote the Haar wavelet at the j-th

position of level i, we have:

Zij(t) =







−1, if t ∈ ( j
2i+1 , j+1

2i+1 )

1, if t ∈ ( j+1
2i+1 , j+2

2i+1 )

0, otherwise

The design matrix X is formed by sequentially adding the wavelets on a given level to the right of the

current X starting from the coarsest level and an empty design. The true coefficients are given by:

β =




 15

︸︷︷︸

level 0

, 7, 8
︸︷︷︸

level 1

,−4, 6, 0, 0
︸ ︷︷ ︸

level 2

, 0, 0, 1, 2, 0, 0, 0, 0
︸ ︷︷ ︸

level 3






Figure 5 shows a graphical representation of the hierarchy to be enforced. The shaded nodes correspond to

components that are present in the observed signal this example.

We set σ = 17.18 so the signal to noise ratio is 1. The training and test set contain 4 and 1 observations

for each of the 16 positions in which the signal is observed. Following the recipe laid out by (9) in section 2,

we define the grouping by:

Group 1: All nodes

Group 2: β10, β20, β21, β30, β31, β32, β33 Group 3: β11, β22, β23, β34, β35, β36, β37

Group 4: β20, β30, β31 Group 5: β21, β32, β33 Group 6: β22, β34, β35 Group 7: β23, β36, β37

Group 8 + k: β3k, for k = 0, . . . , 15

Hierarchical selection in ANOVA models: We now consider another example where it is desirable

that the inclusion of variables in a model happen according to a prespecified hierarchy. We consider an

ANOVA regression where ten candidate regressors and respective interactions are included in a regression.
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Figure 5: Hierarchy tree for the wavelet example (shaded nodes are the ones in the true model)

Each of the ten candidate variable is independently normally distributed with mean zero and variance 1.

The true model only include four of these variables and some of its interactions. We consider five different

cases with coefficients as shown below:

x1 x2 x3 x4 x1x2 x1x3 x1x4 x2x3 x2x4 x3x4 σ SNR

Case 1 7 2 1 1 0 0 0 0 0 0 3.7081 4.0

Case 2 7 2 1 1 0.5 0 0 0.1 0.1 0 3,7353 4.0

Case 3 7 2 1 1 1.0 0 0 0.5 0.4 0.1 3.8490 4.0

Case 4 7 2 1 1 5 0 0 4 2 0 6.8920 4.0

Case 5 7 2 1 1 7 7 7 2 2 1 11.4346 4.0

Table 1: Coefficients for the ANOVA experiment

These cases are intended to study the performance of the hierarchical penalties in cases where the relative

size of the main effects and interaction effects vary over a broad range. All terms not shown in the table

have no effect on the response variable. In all cases, the training and validation sets had respectively 200

and 100 observations.

Figure 6 depicts the hierarchy imagined in this case in a reduced problem with only four variables and

respective interactions. The groups are defined following the recipe prescribed by (9) in section 2 resulting

in 55 groups. The first ten groups each contains one of the regressors and all interaction terms where they

appear. The remaining forty five groups are composed each by one of the interaction terms.

Contrary to happens in the tree example, the hierarchy graph now have loops which precludes the use

of the efficient algorithm used for the γ = ∞ in the wavelet regression example. As a result, the BLasso

algorithm was used throughout to trace the regularization paths except for the Lasso case.

6 CAP for Cloud Detection in Arctic Areas

In this section, we present the use of CAP in the problem of detecting clouds on arctic regions based on

radiance measurements provided by the Multi-angle Imaging SpectroRadiometer (MISR) onboard NASA’s

Terra satellite. Clouds play a major role in Earth’s climate. They can help cool down Earth’s climate
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Figure 6: Hierarchy for the ANOVA example

by reflecting part of the incoming solar radiation back to the space, but can also contribute to a warmer

climate by reflecting the some of the radiation emitted by the planet surface. The prediction of the future

climate depends on a better understanding of these interactions which in turn require efficient algorithms

for detecting clouds over polar regions (Shi et al., 2004).

Our goal here will be to classify into cloud or clear each 4× 4 cluster of pixels in a satellite picture taken

by the MISR. The data used is part of the data considered in Shi et al. (2004). The reader is referred to

this reference for further details on the data and on this classification problem. Before we describe the use

of CAP in this situation and the penalties used, details on the data are provided.

The data corresponds to two images collected by the MISR sensor over a region in the arctic cap. Each

data point corresponds to a 4 × 4 cluster of pixels on each of these images. Two groups of variables are

considered. The variables that can be used in the classification can be divided into two groups:

• raw MISR radiance measurements: these are radiance measurements collected by cameras pointed in

five different angles in the forward direction: 70.5o, 60o 45.6o 26.1o and 0.0o, referred to as DF, CF,

Bf, AF and AN respectively;

• Three features developed by Shi et al. (2004) that factors in expert knowledge:

– SD – the standard deviation of the radiance measured on the AN camera (based on a 8×8 cluster

of pixels centered on the cluster to be classified);

– CORR – the mean of the correlation between the radiance measured in the AN and BF cameras

and those measured on the AN and AF angle;and

– NDAI – the the Normalized Differential, which measures the forward scattering property of the

scene,

The data consist of two pictures from a region in the arctic cap at two different instants. In the data used

here, an expert label is available for each data point to be classified. The number of observations available

for images 1 and 2 are respectively 68, 306 and 82, 148. For each picture we consider 4 replications of the

following procedure: 300 data points are randomly selected to be the training set; the CAP path is traced

for each of the cases described below; ten fold cross-validation is then used for selecting one CAP estimate

and; the remaining points are used to compute the out-of-sample error rate. The sample size for each fitting

is kept small to mimic the effects of high-dimensionality.

We define two groups in this case:

• group 1: a group of five variables containing the radiance measurements reported by MISR;

24



• group 2: a group with the three handcrafted variables developed by Shi et. al (2004).

Five different CAP penalties are considered. In all of them, γ0 = 1 . The five different penalties are:

• Penalty 1: γk = γ = 1 for all groups (Lasso);

• Penalty 2: γk = γ = 2 for all groups;

• Penalty 3: γk = γ = 4 for all groups;

• Penalty 4: γk = γ = ∞ for all groups;

• Penalty 5: γ1 = ∞, γ2 = 2;

The first penalty corresponds to variable selection as performed by the lasso in the context of logistic

regression (Park and Hastie, 2006). Penalties 2, 3 and 4 consider the group information and encourage

similarity among the coefficients of a group equally. Penalty 5 corresponds to a prior idea that the values of

the radiance at the different angles are expected to influence the predicted probability by the same amount

while not encouraging any particular level of similarity on the effects of the three handcrafted variables.

As the number of variables in each group is different, we make an adjustment during the normalization

phase. First, each column is normalized to have mean zero and the same variance. Then, the variables in

group 1 and 2 are multiplied by
√

5 and
√

3 respectively. That would make the total group correlation to

be equal in the two groups in the case in which all variables have the same correlation to the response.

The mean error rate was used within cross-validation as the criterion to select a regularization parameter.

As was the case in the simulations, each path in the cross-validation sample was computed (using interpolation

when necessary) at 1,000 equally spaced points according to T (β). The threshold for classifying a cluster as

a cloud was set to 0.5.

The results are evaluated in terms of the out of sample error rate and are presented in table 2. We can

see that different penalties perform better for the two different images considered. For the first image, it is

advantageous to encourage different levels of similarities for the different groups. For the second image, the

Lasso and penalty 5 perform similarly and better than the other penalties.

These results suggest that it is desirable to have a flexibility on how much the coefficients are encouraged

to be similar.

Image 1 Image 2

Penalty 1 0.1153± 0.0098 0.0278± 0.0020

Penalty 2 0.1081± 0.0041 0.0928± 0.0099

Penalty 3 0.1191± 0.0137 0.0801± 0.0032

Penalty 4 0.0963± 0.0037 0.0401± 0.0092

Penalty 5 0.0950± 0.0038 0.0300± 0.0032

Table 2: Results for using CAP on the cloud data set
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7 Discussion

Based on the results from both the simulations and the experiment on real data , we conclude that using CAP

penalties to incorporate structure among the covariates into the estimation procedure result in significant

gains in prediction performance. This proves CAP to be both conceptually interesting and a practically

useful regularization tool. In addition, the flexibility that CAP provided for adjusting the penalties to

further regularize the relative sizes of the variables in a group is proved to be useful in the experiments.

From a computational standpoint, the CAP penalties that yielded piecewise linear regularization paths

have clear advantages, as the algorithms in these cases run in speeds comparable to those of the LARS

algorithm for the Lasso path. The algorithms developed here are also interesting from the methodological

point of view as they provide further understanding of how the CAP penalties operate.

It is also of particular interests that even though the CAP estimates tended to be less sparse than those

resulting from the Lasso, they make use of less degrees of freedom as the parameters corresponding to

variables in an added group are still subject to the regularization imposed by the group norms. In that

respect, the L1 and L∞-penalized regularization path may be used as starting points for methods that

dynamically decide restrictions to impose on the estimates along the regularization path.

Finally, since Lasso suffer from instability under strong colinearity (Zou and Hastie, 2005; Zhao and Yu,

2006), the practice of grouping highly correlated variables together may prove beneficial in term of both

prediction and model selection.

To formalize and theoretically study these ideas point towards our future work.

A Appendix: DFs for the L∞-regularized regression

In this appendix, we provide a more detailed proof of the extension of the results on the number of degrees

of freedom for the Lasso for the L∞-norm regularized regression.

We first prove that the L∞-penalized regression optimization problem is dual to the Lasso problem. We

start by rewriting the optimization problem in the standard form of a quadratic program:

β̂(t) = arg minb
1
2 (Y − Xβ)′(Y − Xβ)

st bi ≤ t, ∀i = 1, . . . , p

−bi ≤ t, ∀i = 1, . . . , p

Following Boyd and Vandenberghe (2004), define:

P (c) = X ′X

q(c) = −X ′Y +

p
∑

i=1

ciei −
p

∑

j=1

cj+pej

= −X ′Y + c1 − c2

r(c) = Y ′Y +

p
∑

i=1

cit −
p

∑

j=1

cj+pt

= Y ′Y + t
[

c1 c2

]
[

1p

−1p

]
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so the dual problem is given by:

minc
1
2

[
(−X ′Y + c1 − c2) (X ′X−1) (−X ′Y + c1 − c2)

]
+ Y ′Y + t

[

c1 c2

]
[

1p

−1p

]

st ci ≥ 0, ∀i = 1, . . . , 2p

Using some algebra, it can be shown that for each t ≥ 0 there exists K ≥ 0 that makes this problem

equivalent to:

minc
1
2c′(X ′X)−1c − c′(X ′X)−1 (X ′Y )

st ‖c‖1 ≤ K

which establishes the duality between the Lasso problem and the L∞-regularized least squares regression.

A little further analysis reveals that the dual parameters in c correspond to the correlations along the L∞

path. It follows that the results that hold for the coefficients in the L1 path must hold for the correlations

along the L∞ path and vice-versa.

Thus, letting the CAP fit be denoted by:

µ̂(λ, y) = Xβ̂(λ, y).

the following three facts follow from the results of Efron et al. (2004) and Zou et al. (2004) to the Lasso.

Fact 1 For each λ, there exists a set Kλ such that:

• Kλ is a the union of a finite collection of hyperplanes;

• if Y ∈ Cλ = R
n −Kλ, then there is no break point at the regularization path at λ.

Fact 2 β̂(λ, y) is a continuous function of y for all λ.

Fact 3 If y ∈ Cλ, then the sets Rλ and Uλ are locally invariant.

From these three facts, we can prove:

Lemma 3 For a fixed λ ≥ 0, the fit µ̂(λ, y) = Xβ̂(λ, y) is uniformly Lipschitz on the set Cλ with:

‖Xβ̂(λ, y + ∆y) − Xβ̂(λ, y)‖ ≤ ‖∆y‖, for sufficiently small ∆y

and:

∇ · µ̂(λ, y) = |Uλ| + 1

Proof Lemma 3: We first recall that, in terms of the definitions in (10) through (15), µ̂(λ, y) =

X α̂(λ, Y ). Furthermore, from the optimality conditions for the L∞ penalty we have that:

(X ′X ) α̂(λ, Y ) = X ′Y − λ · sign (Y −X α̂(λ, Y ))

and

(X ′X ) α̂(λ, Y + ∆Y ) = X ′(Y + ∆Y ) − λ · sign (Y + ∆Y −X α̂(λ, Y + ∆Y ))
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As Y ∈ Cλ, ∆Y can be chosen small enough so that the signs of the correlation of each index k ∈ Rλ is

preserved. Thus subtracting the two equations above:

(X ′X ) (α̂(λ, Y + ∆Y ) − α̂(λ, Y )) = X ′∆Y

It follows that:

µ̂(λ, Y + ∆Y ) − µ̂(λ, Y ) = X (X ′X )
−1 X ′∆Y

Hence, the fit µ̂(λ, Y ) for a Y 6∈ Cλ behaves locally as a projection on a fixed subspace characterized by

Rλ and Uλ. As projections have eigenvalues bounded by 1, it follows that:

‖Xβ̂(λ, y + ∆y) − Xβ̂(λ, y)‖ ≤ ‖∆y‖, for sufficiently small ∆y

Furthermore, we have that ∇·µ̂(λ, Y ) = tr(X (X ′X )−1 X ′) = |Uλ|+1 from standard results for projection

matrices.

�

As in Zou et al. (2004), the results from Lemma 3 yield that the fit µ̂(λ, y) is uniformly Lipschitz in R
n

as the closure of Cλ is the entire R
n space.

Theorem 4 The L∞ fit µ̂λ(y) is uniformly Lipschitz for all λ. The degrees of freedom of µ̂λ(y) equal the

expectation of the number of elements in the unrestricted set plus 1, that is:

df(λ) = E [|Uλ|] + 1

Proof of Theorem 4: From propositon 3 above and subsequent comment, we have that µ̂λ(y) is uniformly

Lipschitz in R
n. The expression for the number of degrees of freedom then follows from Stein’s lemma and

the expression for the formula for the divergent shown above. �

The proof for the case of nonoverlapping groups follow the same steps. It is not presented in details as a

detailed proof is lengthy and not very insightful. We present a summary of the steps involved.

The first part of the proof consists of establishing facts 1 through 3 for the nonoverlapping case. Similarly

to what happens to the Lasso, fact 1 is proven by noticing that for each of the four possible events character-

izing a breakpoint Y ∈ R
n belongs to a hyperplane. As before, y must belong to a union of these hyperplanes

so that λ is a breakpoint. Fact 3 is established by noticing that the sets Aλ and Rk,λ, ∀k = 1, . . . , K are

invariant in between breakpoints. Fact 2 follows from the fact that the CAP objective function is continuous

in both λ and Y and convex.

Once these three facts are established, all is needed is noticing that, except for the amount of shrinkage

imposed to the coefficients which does not depend on Y , the CAP fit behaves as a projection onto a subspace

whose dimension is given by the number of “free” parameters at that point of the path. The result then

follows from arguments similar to the ones used for standard linear estimates.
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B Appendix: Proofs

Proof Lemma 1: Since (3) can be factorized into

C1
γ0,γ exp {−

m0∑

i=1

(‖β̃Gi
‖γi

)γ0} =

m0∏

i=1

C2
γ0,γi

exp {−‖β̃Gi
‖γ0

γi
} (16)

for some normalization constant C2
γ0,γi

from integrating exp {−‖βGi
‖γ0

γi
}. The independence between βGi

for

different i is obvious.

Turning to the independence between ‖β̃Gi
‖γi

and
β̃Gi

‖β̃Gi
‖γi

, without loss of generality we let i = 1 and

assume G1 = 1, ..., m1. We need to be a little careful since
β̃G1

‖β̃G1
‖γ1

is defined on the surface of the unit

Lγ1
ball Bγ1

= {x ∈ Rm1 ; ‖x‖γ1
= 1} rather than the whole Rm1 . Now consider substituding β̃ with the

spherical coordinates (r, θ):

β̃1 = r cos θ1

β̃2 = r sin θ1 cos θ2

...

β̃m1
= r sin θ1 sin θ2... sin θm1−1

where the Jacobian of the substitution is

Jβ̃(r, θ) = rm1−1 sinm1−2 θ1... sin θm1−2

Since only the separatability is needed for the proof, we simplify the notation by writting

β̃j = rfj(θ) , j = 1, ..., m1, (17)

Jβ̃(r, θ) = rm1−1g(θ) (18)

and f(θ) = (f1(θ), ..., fm1
(θ))

By (17), we get

‖β̃G1
‖γ1

= r‖f(θ)‖γ1
(19)

β̃j

‖β̃G1
‖γ1

=
fj(θ)

‖f(θ)‖γ1

(20)

Do another substitution of r by s = ‖β̃Gi
‖γi

. By (19), the Jacobian is simply ‖f(θ)‖−1
γ1

which leads to:

Jβ̃(s, θ) = sm1−1‖f(θ)‖−m1

γ1
g(θ) (21)

(20) also implies a bijection between
β̃j

‖β̃G1
‖γ1

and θ that does not involve r0 or s.

Combining these results, now take (lebesgue) measurable sets A ∈ [0, +∞) and B ∈ Bγ1
. The event

β̃G1

‖β̃G1
‖γ1

∈ B can also be defined by θ ∈ B′ almost surely for approporiate B′. Therefore we have

P (‖β̃G1
‖γ1

∈ A,
β̃G1

‖β̃G1
‖γ1

∈ B)
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∝
∫

‖β̃Gi
‖γ1

∈A,
β̃j

‖β̃G1
‖γ1

∈B

exp{−‖β̃Gi
‖γ0

γ1
}dβ̃

=

∫

s∈A,θ∈B′

exp{−sγ0}sm1−1‖f(θ)‖−m1

γ1
g(θ)dsdθ

= [

∫

A

sm1−1 exp{−sγ0}ds][

∫

B′

‖f(θ)‖−m1

γ1
g(θ)dθ] (22)

(22) implies both the independence between ‖β̃G1
‖γ1

and
β̃G1

‖β̃G1
‖γ1

and the fact that their distributions

do not depend on γ1 and γ0 respectively. �

Proof Theorem 1: Theorem 1 is a direct consequence of Lemma 1. Since the distribution of ‖β̃Gi
‖γi

does not depend on γi, setting γi = γ0 does not change the distribution. This leads to a joint distribution

β∗ ∝ exp {−
p

∑

i=1

(β∗
i )γ0}, (23)

which immediately implies (4).

Similarly, for the distribution of
β̃Gi

‖β̃Gi
‖γi

, set γ0 = γi then (5) follows immediately. �

Proof Lemma 2:

1. Let α be a scalar. For each group, we know from the properties of a norm that:

Nk(αβ) = αNk(β)

Hence N(αβ) = αN(β) and from the property of norms again, we have:

P (αβ) = ‖N(αβ)‖γ0
= |α|‖N(β)‖γ0

= |α|P (β)

2. Let β1 and β2 be two distinct values for the parameter β. From the triangular inequality applied to

each group-norm, we have that:

Nk(β1 + β2) ≤ Nk(β1) + Nk(β2), ∀k = 1, . . . , K

It follows that:

∑

k

(Nk(β1 + β2))
γ0 ≤

∑

k

(Nk(β1) + Nk(β2))
γ0

and hence:

T (β1 + β2) ≤ ‖N(β1) + N(β2)‖γ0
≤ ‖N(β1)‖γ0

+ ‖N(β2)‖γ0
= T (β1) + T (β2)

where the second inequality follows from the triangular inequality for general norms.

�
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Proof Theorem 3: Let θ ∈ [0, 1] and compute β∗ = θβ1 + (1 − θ)β2. It follows that:

P (β∗) = P (θβ1 + (1 − θ)β2)

≤ P (θβ1) + P ((1 − θ)β2)

= θP (β1) + (1 − θ)P (β2)

and hence T is convex. Since L and T are convex and λ ≥ 0, the result follows from the fact that the sum

of convex functions is itself convex. �
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Oracle CV

OLS Null model 1 2 4 ∞ 1 2 4 ∞

Model 3.83 2.09 0.596 0.474 0.437 0.441 0.765 0.628 0.608 0.614

Error (1.592) (0.088) (0.193) (0.160) (0.157) (0.182) (0.396) (0.343) (0.352) (0.390)

# coefs 30.00 0.00 8.680 10.440 9.520 14.080 10.080 11.520 12.920 15.920

(0.000) (0.000) (2.577) (3.709) (3.938) (4.949) (7.088) (7.827) (7.719) (8.031)

Table 3: Results for the first grouping experiment: oracle and CV

Oracle CV BIC AICC
OLS Null model 1 ∞ 1 ∞ 1 ∞ 1 ∞

Model 3.83 2.09 0.596 0.441 0.765 0.614 1.125 0.718 0.764 0.590

Error (1.592) (0.088) (0.193) (0.182) (0.396) (0.390) (0.574) (0.232) (0.428) (0.330)

# coefs 30.00 0.00 8.680 14.080 10.080 15.920 1.360 2.240 7.520 8.160

(0.000) (0.000) (2.577) (4.949) (7.088) (8.031) (0.907) (0.879) (4.389) (5.684)

# d̂fs 30.00 0.00 8.680 8.360 10.080 10.720 1.360 1.120 7.520 4.560

(0.000) (0.000) (2.577) (3.264) (7.088) (7.329) (0.907) (0.440) (4.389) (3.630)

Table 4: Results for the first grouping experiment: using the estimates of the number of degrees of freedom

for model selection

Oracle CV

OLS Null model 1 2 4 ∞ 1 2 4 ∞

Case 1 Model 1101.3 697.0 55.636 25.503 20.008 17.183 60.767 29.616 23.966 20.393

Error (591.99) (29.98) (30.352) (15.080) (11.776) (10.402) (32.353) (16.779) (14.191) (11.643)

# coefs 40.00 0.00 11.720 17.920 17.080 16.400 11.480 17.920 17.360 16.800

(0.000) (0.000) (2.923) (1.579) (1.382) (1.258) (3.405) (2.871) (2.396) (2.309)

Case 2 Model 1101.3 697.0 55.636 28.993 25.204 23.467 60.767 32.779 28.363 26.985

Errors (591.99) (29.98) (30.352) (16.122) (13.100) (12.557) (32.353) (16.361) (14.232) (15.451)

# coefs 40.00 0.00 11.720 19.120 18.440 18.080 11.480 19.320 18.840 18.760

(0.000) (0.000) (2.923) (1.301) (1.227) (0.997) (3.405) (2.249) (2.230) (2.587)

Case 3 Model 20.10 678.40 6.230 2.706 2.310 2.141 9.419 6.458 6.955 5.654

Error (4.88) (3.11) (2.538) (1.863) (1.572) (1.555) (4.772) (4.519) (5.365) (4.421)

# coefs 40.00 0.00 15.200 17.640 16.840 16.360 17.320 21.960 21.880 20.880

(0.000) (0.000) (3.055) (1.846) (1.344) (1.381) (7.347) (7.613) (7.496) (7.305)

Case 4 Model 20.10 678.40 6.230 3.342 3.155 3.046 9.419 6.770 7.073 6.477

Error (4.88) (3.11) (2.538) (1.941) (1.750) (1.668) (4.772) (4.609) (4.391) (4.440)

# coefs 40.00 0.00 15.200 19.120 18.520 18.360 17.320 23.160 23.120 22.600

(0.000) (0.000) (3.055) (1.943) (1.503) (1.469) (7.347) (6.421) (6.833) (6.795)

Table 5: Results for the second grouping experiment: oracle and CV

Case 1: Small Sample with Correct Grouping. Case 2: Small Sample with Incorrect Grouping. Case 3:

Large Sample with Correct Grouping. Case 4: Large Sample with Incorrect Grouping.
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Oracle CV BIC AICC
OLS Null model 1 ∞ 1 ∞ 1 ∞ 1 ∞

Case 1 Model Error 1101.3 697.0 55.636 17.183 60.767 20.393 144.733 20.273 71.078 26.880

(591.99) (29.98) (30.352) (10.402) (32.353) (11.643) (172.170) (13.110) (35.240) (17.661)

# coefs 40.00 0.00 11.720 16.400 11.480 16.800 4.200 15.040 8.880 16.760

(0.000) (0.000) (2.923) (1.258) (3.405) (2.309) (1.683) (0.200) (3.800) (2.260)

# d̂fs 40.00 0.00 11.720 4.400 11.480 4.800 4.200 3.040 8.880 4.760

(0.000) (0.000) (2.923) (1.258) (3.405) (2.309) (1.683) (0.200) (3.800) (2.260)

Case 2 Model Error 1101.3 697.0 55.636 23.467 60.767 26.985 144.733 32.494 71.078 38.126

(591.99) (29.98) (30.352) (12.557) (32.353) (15.451) (172.170) (27.601) (35.240) (21.576)

# coefs 40.00 0.00 11.720 18.080 11.480 18.760 4.200 17.040 8.880 19.160

(0.000) (0.000) (2.923) (0.997) (3.405) (2.587) (1.683) (0.200) (3.800) (2.882)

# d̂fs 40.00 0.00 11.720 5.680 11.480 6.360 4.200 4.320 8.880 6.680

(0.000) (0.000) (2.923) (1.145) (3.405) (2.481) (1.683) (0.900) (3.800) (3.092)

Case 3 Model Error 20.100 678.399 6.230 2.141 9.419 5.654 9.791 2.431 7.150 3.201

(4.880) (3.109) (2.538) (1.555) (4.772) (4.421) (4.711) (1.635) (3.286) (3.119)

# coefs 40.000 0.000 15.200 16.360 17.320 20.880 8.520 15.000 14.560 16.960

(0.000) (0.000) (3.055) (1.381) (7.347) (7.305) (1.475) (0.000) (4.243) (3.600)

# d̂f’s 40.000 0.000 15.200 4.360 17.320 9.760 8.520 3.000 14.560 5.000

(0.000) (0.000) (3.055) (1.381) (7.347) (8.791) (1.475) (0.000) (4.243) (3.686)

Case 4 Model Error 20.100 678.399 6.230 3.046 9.419 6.477 9.791 3.356 7.150 4.523

(4.880) (3.109) (2.538) (1.668) (4.772) (4.440) (4.711) (1.770) (3.286) (3.653)

# coefs 40.000 0.000 15.200 18.360 17.320 22.600 8.520 17.000 14.560 19.720

(0.000) (0.000) (3.055) (1.469) (7.347) (6.795) (1.475) (0.000) (4.243) (3.835)

# d̂f’s 40.000 0.000 15.200 6.360 17.320 11.520 8.520 5.000 14.560 7.800

(0.000) (0.000) (3.055) (1.469) (7.347) (8.317) (1.475) (0.000) (4.243) (3.990)

Table 6: Results for the second grouping experiment: using the estimates of the number of degrees of freedom

Case 1: Small Sample with Correct Grouping. Case 2: Small Sample with Incorrect Grouping. Case 3:

Large Sample with Correct Grouping. Case 4: Large Sample with Incorrect Grouping.

Oracle CV

OLS Null model 1 2 4 ∞ 1 2 4 ∞

Case 1 Model Error 50.9 1482.0 31.775 19.610 14.221 10.613 35.764 23.788 19.545 17.128

(11.20) (5.03) (5.706) (4.545) (4.285) (4.134) (7.508) (7.503) (8.663) (9.193)

# coefs 50.00 0.00 35.160 38.320 38.160 45.600 37.200 40.120 37.960 44.800

(0.00) (0.00) (2.968) (5.105) (4.384) (5.831) (7.528) (6.604) (6.024) (7.141)

Case 2 Model Errors 50.9 1482.0 31.775 20.426 15.993 12.234 35.764 24.979 20.760 19.214

(11.20) (5.03) (5.706) (4.648) (4.561) (4.460) (7.508) (7.214) (8.566) (9.288)

# coefs 50.00 0.00 35.160 37.600 38.080 43.520 37.200 41.160 38.680 44.240

(0.00) (0.00) (2.968) (3.926) (4.406) (6.104) (7.528) (6.176) (6.606) (8.166)

Table 7: Results for the third grouping experiment: oracle and CV

Case 1: Correct Grouping. Case 2: Incorrect Grouping.
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Oracle CV BIC AICC
OLS Null model 1 ∞ 1 ∞ 1 ∞ 1 ∞

Case 1 Model Error 50.9 1482.0 31.775 10.613 35.764 17.128 74.184 21.621 34.107 13.606

(11.20) (5.03) (5.706) (4.134) (7.508) (9.193) (32.452) (10.337) (6.100) (4.935)

# coefs 50.00 0.00 35.160 45.600 37.200 44.800 21.080 30.000 32.000 44.400

(0.000) (0.000) (2.968) (5.831) (7.528) (7.141) (3.390) (0.000) (4.416) (7.681)

# d̂fs 50.00 0.00 35.160 13.200 37.200 20.280 21.080 3.880 32.000 13.400

(0.000) (0.000) (2.968) (2.972) (7.528) (13.337) (3.390) (0.927) (4.416) (6.090)

Case 2 Model Error 50.9 1482.0 31.775 12.234 35.764 19.214 74.184 21.595 34.107 15.391

(11.20) (5.03) (5.706) (4.460) (7.508) (9.288) (32.452) (9.123) (6.100) (5.610)

# coefs 50.00 0.00 35.160 43.520 37.200 44.240 21.080 32.000 32.000 42.440

(0.000) (0.000) (2.968) (6.104) (7.528) (8.166) (3.390) (0.000) (4.416) (7.200)

# d̂fs 50.00 0.00 35.160 14.560 37.200 23.920 21.080 5.840 32.000 13.800

(0.000) (0.000) (2.968) (2.959) (7.528) (13.269) (3.390) (1.248) (4.416) (6.238)

Table 8: Results for the third grouping experiment: using the estimates of the number of degrees of freedom

Case 1: Correct Grouping. Case 2: Incorrect Grouping.

Oracle CV

OLS Null model 1 2 4 ∞ 1 2 4 ∞

Model Error 66.88 299.68 42.350 30.035 31.886 34.227 50.997 35.065 37.700 40.649

(27.08) (6.81) (25.008) (16.792) (17.575) (18.826) (30.426) (17.521) (19.839) (22.219)

$ coefs. 15.00 0.00 9.120 9.800 9.720 9.720 8.960 9.760 9.240 9.080

(0.00) (0.00) (2.147) (2.141) (2.112) (2.390) (3.541) (2.712) (2.833) (3.161)

Table 9: Results for the wavelet tree example

Oracle CV

OLS Null model 1 2 4 ∞ 1 2 4 ∞

Case 1 Model Error 18.32 55.25 1.600 1.001 1.142 1.171 2.104 1.251 1.317 1.447

(5.65) (0.30) (0.640) (0.471) (0.474) (0.494) (0.964) (0.639) (0.623) (0.827)

# coefs 55.00 0.00 9.920 15.520 16.600 17.440 14.600 17.120 16.640 19.400

(0.000) (0.000) (1.801) (5.554) (6.083) (5.938) (6.014) (7.656) (6.993) (8.495)

Case 2 Model Error 18.59 56.08 2.092 1.355 1.496 1.533 2.741 1.765 1.952 1.860

(5.73) (0.29) (0.730) (0.517) (0.547) (0.537) (1.561) (1.320) (1.468) (1.231)

# coefs 55.00 0.00 11.960 17.960 17.720 17.840 17.040 20.440 19.840 20.000

(0.000) (0.000) (2.574) (5.272) (5.601) (6.459) (8.023) (9.074) (8.459) (8.578)

Case 3 Model Error 19.73 59.54 3.112 2.157 2.193 2.126 3.943 2.627 2.664 2.544

(6.08) (0.29) (1.201) (0.868) (0.895) (0.874) (2.004) (1.576) (1.699) (1.541)

# coefs 55.00 0.00 14.840 20.600 20.680 22.200 20.440 24.040 23.360 23.320

(0.000) (0.000) (2.688) (6.252) (5.528) (5.723) (8.216) (7.231) (8.020) (8.285)

Case 4 Model Error 63.27 190.83 11.110 12.097 12.547 11.916 13.063 13.606 13.983 13.839

(19.50) (0.74) (5.594) (5.622) (5.648) (5.513) (6.903) (7.025) (7.125) (7.902)

# coefs 55.00 0.00 15.960 26.440 26.360 26.360 19.840 27.400 27.000 28.400

(0.000) (0.000) (3.221) (5.687) (6.632) (6.231) (6.780) (8.578) (8.185) (9.046)

Case 5 Model Error 174.17 524.52 37.354 40.799 43.658 39.574 39.304 45.770 48.576 42.454

(53.68) (1.67) (20.169) (21.249) (22.138) (20.562) (20.277) (24.460) (25.665) (21.179)

# coefs 55.00 0.00 19.080 31.200 28.720 28.360 20.320 28.720 26.240 27.280

(0.000) (0.000) (3.651) (4.655) (5.489) (5.122) (5.194) (8.101) (9.623) (7.662)

Table 10: Results for the ANOVA hierarchical example
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