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Abstract

We initiate the probabilistic analysis of linear programming (LP) decoding of low-density parity-check
(LDPC) codes. Specifically, we show that for a random LDPC code ensemble, the linear programming
decoder of Feldman et al. succeeds in correcting a constant fraction of errors with high probability. The
fraction of correctable errors guaranteed by our analysis surpasses all prior non-asymptotic results for LDPC
codes, and in particular exceeds the best previous finite-length result on LP decoding by a factor greater than
ten. This improvement stems in part from our analysis of probabilistic bit-flipping channels, as opposed to
adversarial channels. At the core of our analysis is a novel combinatorial characterization of LP decoding
success, based on the notion of a generalized matching. An interesting by-product of our analysis is to
establish the existence of “almost expansion” in random bipartite graphs, in which one requires only that
almost every (as opposed to every) set of a certain size expands, with expansion coefficients much larger
than the classical case.



1 Introduction

Low-density parity-check (LDPC) codes are a class of sparse binary linear codes, first introduced by Gal-
lager [13], and subsequently studied extensively by various researchers [19, 20, 18]. When decoded with effi-
cient iterative algorithms (e.g., the sum-product algorithm [17]), suitably designed classes of LDPC codes yield
error-correcting performance extremely close to the Shannon capacity of noisy channels for very large codes [4].
Most extant methods for analyzing the performance of iterative decoding algorithms for LDPC codes—notably
the method of density evolution [18, 20]—are asymptotic in nature, based on exploiting the high girth of very
large random graphs. Therefore, the thresholds computed using density evolution are only estimates of the true
algorithm behavior, since they assume a cycle-free message history. In fact, the predictions of such methods are
well-known to be inaccurate for specific codes of intermediate blocklength (e.g., codes with a few hundreds or
thousands of bits). For this reason, our current understanding of practical decoders for smaller codes, which are
required for applications with delay constraints (e.g., high throughput applications), is relatively limited.

The focus of this paper is the probabilistic analysis of linear programming (LP) decoding, a technique first
introduced by Feldman et al. [7, 12] as an alternative to iterative algorithms for decoding LDPC codes. The un-
derlying idea is a standard one in combinatorial optimization—namely, to solve a particular linear programming
(LP) relaxation of the integer program corresponding to maximum likelihood (optimal) decoding. Although the
practical performance of LP decoding is comparable to message passing decoding, a significant advantage is its
relative amenability to non-asymptotic analysis. Moreover, there turn out to a number of important theoretical
connections between the LP decoding and standard forms of iterative decoding [16, 24]. These connections
allow theoretical insight from the LP decoding perspective to be transferred to iterative decoding algorithms.

Previous work: The technique of LP decoding was introduced for turbo-like codes [7], extended to LDPC
codes [8, 12], and further studied by various researchers (e.g., [22, 9, 6, 11, 14]). For concatenated expander
codes, Feldman and Stein [11] showed that LP decoding can achieve capacity; see also Barg and Zemor [1]
for analysis of these generalized constructions. For the standard LDPC codes used in practice, the best positive
result from previous work [10, 9] is the existence of a constant β > 0, depending on the rate of the code, such
that LP decoding can correct any bit-flipping pattern consisting of at most βn bit flips. (In short, we say that
LP decoding can correct a β-fraction of errors.) As a concrete example, for suitable classes of rate 1/2 LDPC
codes, Feldman et al. [9] established that β = 0.000177 is achievable. However, this analysis [9] was worst-
case in nature, essentially assuming an adversarial channel model. Such analysis yields overly conservative
predictions for the probabilistic channel models (e.g., each bit flipped with some probability α) that are of more
practical interest. Consequently, an important direction—and the goal of this paper—is to develop methods for
finite-length and average-case analysis of the LP decoding method.

Our contributions: This paper initiates the average-case analysis of LP decoding for LDPC codes. In partic-
ular, we analyze the following question: what is the probability, given that a random subset of αn bits is flipped
by the channel, that LP decoding succeeds in recovering correctly the transmitted codeword? As one concrete
example, we prove that for bit-regular LDPC codes of rate 1/2 and a random error pattern with αn bit flips, LP
decoding will recover the correct codeword, with probability converging exponentially to one, for all α up at
least 0.002. This guarantee is roughly ten times higher than the best guarantee from prior work [9]. Our proof
is based on analyzing the dual of the decoding linear program, as was done in previous work [9, 10]. The key
innovation is a simple graph-theoretic condition for certifying a zero-valued solution the dual LP, which (by
strong duality) ensures that the LP decoder correctly recovers the transmitted codeword. The core of the proof
involves establishing that such a dual witness exists with high probability under the appropriate conditions. The
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argument itself entails a fairly delicate sequence of union bounds and concentration inequalities, exploiting ex-
pansion and matchings on random bipartite graphs. An interesting by-product of our analysis is the proof of the
existence of “almost-all expanders”—that is, bipartite graphs in which almost all sets of vertices of size up to αn
have large expansion. In any such graphs, large randomly selected subsets of vertices have high probability of
expanding. In effect, by relaxing the expansion requirement from every set to almost all sets of a given size, we
show that one can obtain much larger expansion factors, and hence stronger guarantees on error correction. The
remainder of the paper is organized as follows. We begin in Section 2 with background on error-control coding
and low-density parity-check codes, as well as the method of linear programming (LP) decoding. Section 3
describes our main result and Section 4 provides the proof in a series of lemmas, with more technical details
deferred to the appendices.

2 Background and Problem Formulation

We begin with some background on low-density parity-check codes. We then describe the LP decoding method,
and formulate the problem to be studied in this paper.

Low-density parity-check codes: The purpose of an error-correcting code is to introduce redundancy into a
data sequence so as to achieve error-free communication over a noisy channel. Given a binary vector of length
k (representing information to be conveyed), the encoder maps it onto a codeword, corresponding to a binary
vector of length n > k. The code rate is given by r̃ = k/n, corresponding to the ratio of information bits to
transmitted bits. In a binary linear code, the set of all possible codewords corresponds to a subspace of {0, 1}n,
with a total of 2k elements (one for each possible information sequence). The codeword is then transmitted over
a noisy channel. In this paper, we focus on the binary symmetric channel (BSC), in which each bit is flipped
independently with probability α. Given the received sequence from the channel, the goal of the decoder is to
correctly reconstruct the transmitted codeword (and hence the underlying information sequence).

Any binary linear code can be described as the null space of a parity check matrix H ∈ {0, 1}(n−k)×n;
more concretely, the code C is given by the set of all binary strings x ∈ {0, 1}n such that Hx = 0 in modulo
two arithmetic. A convenient graphical representation of such a binary linear code is in terms of its factor
graph [17]. The factor graph associated with a code C is a bipartite graph G = (V, C), with a n = |V | variable
nodes corresponding to the codeword bits, and m = n−k = |C| nodes corresponding to the parity checks (rows
of the matrix H). Edges in the factor graph connect each variable node to the parity checks which constrain it;
that is, the parity check matrix H specifies the adjacency matrix of the graph. See Figure 1 for an illustration of
a particular factor graph. A low-density parity-check code is a binary linear code that can be expressed with a
sparse factor graph with O(n) edges.

Although this paper focuses on the binary symmetric channel (BSC), our methods are extensible to the
more general family of binary-input memoryless symmetric channels. Given a received sequence y ∈ {0, 1}n

from the BSC, the optimal Maximum Likelihood (ML) decoding problem is to determine the closest codeword
(in Hamming distance). It is well known that the problem of optimal decoding for general binary linear codes
NP-hard [2]. This complexity motivates the study of sub-optimal but practical algorithms for decoding.

LP decoding: We now describe how the problem of optimal decoding can be reformulated as a linear program
over the codeword polytope, i.e. the convex hull of all codewords of the code C. For every bit ŷi of the received

codeword ŷ, define its log-likelihood as γi = log
(

Pr[ŷi|yi=0]
Pr[ŷi|yi=1]

)
. Using the memoryless property of the channel,

it can be seen that the maximum likelihood (ML) codeword is ŷML = argminy∈C

∑n
i=1 γiyi. Without changing
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the outcome of the maximization, we can change the set we are optimizing over to its convex hull conv(C) 1 and
express ML decoding as the linear program ŷML = argminy∈conv(C)

∑n
i=1 γiyi. Although the problem is now

just a linear program, it remains intractable because the codeword polytope does not have a simple description.
The natural approach is to relax the linear program by taking only a polynomial set of constraints that

provide an outer bound on the codeword polytope conv(C). The first-order LP decoding method [12] makes use
of a relaxation that follows by looking at each parity check (row of H) independently. For each check a ∈ C in
the code, denote by Ca the set of binary sequences that satisfy it—that is, Ca corresponds to the local parity check
subcode defined check a and its bit neighbors. Observe that the full code C is simply the intersection of all the
local codes, and the codeword polytope has the exact representation conv(C) = conv(

⋂m
a=1 Ca). The first-order

LP decoder simply ignores interactions between the various local codes, and performs the optimization over
the relaxed polytope given by P : =

⋂m
a=1 conv(Ca). Note that P is a convex set that contains the codeword

polytope conv(C), but also includes additional vertices with fractional coordinates (called pseudocodewords in
the coding literature). (It can be shown [24] that if the LDPC graph had no cycles, this relaxation would be exact,
hence it can be thought of as a tree-based relaxation.) In contrast to the codeword polytope, the relaxed polytope
P for LDPC codes consists of a linear number of constraints; see Appendix B for an exact description of the
inequality constraints defining P . Consequently, LP decoding consists of solving the relaxed linear program:

ŷLP = argminy∈P

n∑

i=1

γiyi, (1)

which can solved exactly in polynomial time, or even faster with iterative and/or approximate methods [3, 23,
24].

3 Description of Main Result

In this section, we describe our main result characterizing the performance of LP decoding for a random en-
semble of LDPC codes, before turning to its proof in Section 4.

Random code ensemble: We consider the random ensemble of codes constructed according to the following
procedure. Given a code rate r̃ ∈ (0, 1), form a bipartite factor graph G = (V, C) with a set of n = |V |
variable nodes, and m = |C| = b(1 − r̃)nc check nodes as follows: (i) Fix a variable degree dv ∈ N; and (ii)
For each variable j ∈ V , choose a random subset N(j) of size dv from C, and connect variable j to each check
in N(j). For obvious reasons, we refer to this as the bit-regular random ensemble, and use C(dv) to denote a
randomly-chosen LDPC code from this ensemble.

The analysis of this paper focuses primarily on the binary symmetric channel (BSC), in which each bit of
the transmitted codeword is flipped independently with some probability α. By concentration of measure for
the binomial distribution, it is equivalent (at least asymptotically) to assume that a constant fraction αn of bits
are flipped by the channel. Let P denote the joint measure, over both the space of bit-regular random codes, and
the space of αn bit flips. Our goal is to obtain upper bounds on the LP error probability P[LP fails].

Our analysis will be based on the expansion of the factor graph of the code. Specifically, the factor graph of
a code will be a (k, ∆)-expander if all sets S of variable nodes, which are small enough |S| ≤ k, are connected
to at least ∆|S| checks. Note that throughout this paper, we will be working with codes that have simple parity
check constraints (LDPC codes) which are different from the generalized expander codes [21],[11], that can
have large linear codes as constraints.

1Assume that there is a unique optimum; otherwise declare decoding failure.
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Before stating our main result, we note that, as can be easily verified (see e.g. [9]), the bit-regular random
construction yields a code with good expansion, with constant probability:

Lemma 1 (Good expansion [9]). For any fixed code rate r̃ ∈ (0, 1) and constant δ ∈ (0, 1) such that (1− δ)dv

is an integer greater than or equal to two, a code C(dv) from the bit-regular ensemble has probability larger
than 1/2 of being a (υn, δdv) expander, where

υ = (2eδdv+1 (δdv/(1 − r̃))(1−δ)dv)
− 1

(1−δ)dv−1 > 0. (2)

Statement of main result: Our main result is that, for the joint measure over expander bit-regular codes and
dαcne (or less) bit flips by the channel, LP Decoding will succeed in recovering the correct codeword with high
probability. The fraction of correctable errors αc we establish, is at least ten times higher than the previously
known (worst case) result [9]. More formally,

Theorem 1. There exist constants r̃, dv, c, υ, p > 0 such that, for all α ∈ (0, αc), the LP decoder succeeds
with high probability over the space of (υn, p)-expander bit-regular random codes and dαne bit flips; in other
words,

P[ LP succeeds | C(dv)is a (υn, p) expander ] ≥ 1 − e−cn. (3)

The fraction of correctable errors αc is a function of the code ensemble, specified by the code rate r̃, variable
degree dv, expansion parameters υ and p, and the error exponent c.

In the sequel, we provide specific parameters for rate r̃ = 1/2 that yield the fraction αc = 0.002. (For this
parameter setting, a random bit-regular code is a (υn, p)-expander with probability at least 1

2 .) We now state a
corollary associated with this particular result.

Corollary 1. For code rate r̃ = 1
2 , there exist constants dv, c > 0 such that, for all α ∈ (0, 0.002), the LP

decoder succeeds with probability at least 1
2 − o(1) over the space of bit-regular random codes and dαne bit

flips; in other words, P[ LP succeeds ] ≥ 1
2 − o(1).

Improved combinatorial witness – The (p, q)−matching The condition that we are going to use to prove
that the LP decoder succeeds will be a dual witness, i.e a dual feasible point, which will exhibit that the primal
linear program has an integral optimal solution. Using the symmetry of the relaxed polytope, it can be shown[9]
that the failure, or success, of the LP decoder only depends on which bits the channel flipped and not on the
transmitted codeword. Using this symmetry, Feldman et al. [10] demonstrated that a dual witness can be
graphically interpreted as a set of weights on the edges of the factor graph of the code as the following lemma
specifies.

Lemma 2 (Dual witness [9]). Suppose that the channel flipped the bits of set F and left the bits of set F c :=
V \ F unchanged. Set γi = −1, for all i ∈ F , and γi = 1, for all i ∈ F c. Linear Programming Decoding
will succeed for this error pattern if and only if there exist weights τi,a for all checks a ∈ C and adjacent bits
i ∈ N(a) such that the following conditions hold:

τi,a + τj,a ≥ 0 for all checks a ∈ C and adjacent bits i, j ∈ N(a). (4a)
∑

a∈N(i)

τi,a < γi for all i ∈ V with γi < 0. (4b)
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The key requirement now is a combinatorial characterization of when it is possible to assign such weights
and hence establish that LP Decoding succeeds. To provide some intuition, the flipped variables need to “push”
one unit of negative weight while the unflipped can absorb up to one unit. One way to achieve this is to match
each flipped bit with a number of checks, say p checks, to which it has the exclusive privilege to push flow,
suppose in a uniform fashion. Let us refer to the checks that are actually used in such a matching as dirty, and
to all the checks in N(F ) as potentially dirty. The challenge is that there might be unflipped variables that are
adjacent to multiple dirty checks, and hence fail to satisfy the condition (4b); roughly speaking, they receive
more weight than they can actually absorb. Thus, the goal is to construct the matching of the flipped bits with
p checks each in a careful way so that no unflipped bit has too many dirty neighbors. The δ-matching witness,
used by Feldman et al. [9, 10], avoids this difficulty in a brute force manner by matching all of the bits adjacent
to potentially dirty checks with δ = p checks each. Our approach circumvents this difficulty using the more
refined combinatorial object that we call a (p, q)-matching. For each bit j ∈ Fc, let Zj : = |N(j) ∩ N(F )| be
the number of its edges adjacent to checks in N(F ).

Definition 1. Given non-negative integers p and q, a (p, q)−matching is defined by the following conditions:

• each bit i ∈ F must be matched with p (distinct) checks.

• each bit j ∈ F c must be matched with rj : = max{q − dv + Zj , 0} checks from the set N(F ).

We will refer to the number of checks with which each variable node needs to be matched as its requests.
In this language, all flipped bits have p requests while each unflipped bit j has a variable number of requests rj

which depends on how many of its edges land on checks which have flipped neighbors. The following lemma
summarizes an important property of our construction:

Lemma 3. A (p, q)-matching guarantees that all the flipped bits are matched with p checks, and all the non-
flipped bits have q or more non-dirty check neighbors.

This fact follows by observing that any unflipped bit j with Zj edges in N(F ) has dv − Zj clean neigboring
checks, and requests q − (dv − Zj) extra checks from the potentially dirty ones.

The following lemma, whose proof we omit, establishes that a (p, q)-matching is a certificate of LP decoding
success:

Lemma 4. For any p and q such that 2p + q > 2dv, a (p, q)-generalized matching can be used to generate a
set of weights τi,a which satisfy the dual conditions (4).

In fact, it is easy to verify that our witness corresponds to a weaker condition for LP Decoding success than the
condition used in by Feldman et al. [9]. This strength of our witness along with the randomized analysis are the
two ingredients that allow us to establish a much larger fraction αc of correctable errors.

4 Proof of Theorem 1

The key step in our proof will be to establish that, with high probability over the selection of random expander
bit-regular codes and random subsets of dαne flipped bits, a (p, q)-matching exists, for suitable values of p, q
to be specified later. In order to analyze the existence of such a matching, we will make use of Hall’s theorem
(see also [9]), which, in our context, states that a matching exists if and only if every subset of the variable
nodes have (jointly) enough neighbors in N(F ) to cover the sum of their requests. Observe, however, this
inconvenient asymmetry in the definition of our generalized matching: the bits of set Fc need to be matched
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with checks from the neighborhood of the flipped bits F and not from the whole set of checks from which they
select their neighbors anyway. This correlation between N(F ) and the number of requests from set F c creates
severe complications in the analysis. Indeed, any attempt to use Hall’s condition through union bounds seems to
require independence among different edges in the creation of the code and crude upper-bounds on the number
of requests from set F c seem inadequate to decorrelate the requests of F c from the size of N(F ). Rather,
establishing our claim requires a somewhat involved sequence of union bounds, concentration inequalities and
partitions of our probability space in regions with different properties.

4.1 Partitioning the Probability Space

Under the described probabilistic model, an equivalent description of the neighborhood choices for each variable
j ∈ F c is as follows. Each node j ∈ F c picks a random number Zj ∈ {0, 1, . . . , dv} according to the binomial

distribution Bin(dv,
|N(F )|

m ), and picks a subset of N(F ) of size Zj . This subset corresponds to the intersection
of its check neighborhood N(j) with the check neighborhood N(F ) of the flipped bits. The remaining dv −Zj

edges from bit j connect to checks outside N(F ). With this set-up, we now define the following “bad event”
which corresponds to the existence of a pair (S1, S2) ∈ 2F × 2F c

of sets that contracts (i.e., has more requests
than neighbors):

A : =



∃S1 ⊆ F, S2 ⊆ F c

∣∣∣ |N(S1) ∪ [N(S2) ∩ N(F )]| ≤ p|S1| +
∑

j∈S2

max{0, q − (dv − Zj)}



 (5)

Notice that only the neighbors in N(F ) are counted, since a (p, q)-matching involves only checks in N(F ). By
Lemma 4, the event A must occur whenever LP decoding fails so that we have the inequality

P[LP decoding fails] ≤ P[A]. (6)

As was mentioned above, it seems to be useful to partition the space A := 2F ×2F c
into three subsets controlled

by the parameters ε2, υ > 0. Parameter ε2 > 0 is a small constant to be specified later in the proof, whereas
υ is the expansion coefficient specified by equation (2) for δ = p

dv
. The three subsets of interest are given by

A1 : = {(S1, S2) | (S1, S2) ∈ A, |S1| + |S2| < υn}, A2 : = {(S1, S2) | (S1, S2) ∈ A − A1, |S1| ≥ ε2n},
and A3 : = A−A1−A2. This partition, as illustrated in Figure 2 in Appendix C, decomposes A into sub-events

A(Ai) : =



∃(S1, S2) ∈ Ai

∣∣∣ |N(S1) ∪ [N(S2) ∩ N(F )]| ≤ p|S1| +
∑

j∈S2

max{0, q − (dv − Zj)}



 (7)

for i = 1, 2, 3. Now, a series of union bounds provides the following bound for the probability of failure

P[ LP fails | C(dv) is a (υn, p) expander ] ≤ P[ A | C(dv) is a (υn, p) expander ]

≤
3∑

i=1

P[ A(Ai) | C(dv) is a (υn, p) expander ].

However, all subsets (S1, S2) ∈ A1 of an expander have a p-matching and, because q < p, it follows that

P[ A(A1) | is a (υn, p) expander ] = 0
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and, therefore, we only have to deal with the remaining two terms of the summation. For i = 2, 3, we have

P[ A(Ai) | is a (υn, p) expander ] =
P[ A(Ai) ∧ C(dv) is a (υn, p) expander ]

P[C(dv) is a (υn, p) expander]

≤
P[ A(Ai) ]

P[C(dv) is a (υn, p) expander]
≤ 2P[ A(Ai) ] (By Lemma 1)

So, putting everything together, P[ LP fails | C(dv) is a (υn, p) expander ] ≤ 2
3∑

i=2

P[ A(Ai) ]. (8)

4.2 Simplifying the probability model

In an attempt to decorrelate the requests of F c from the size of N(F ), observe that the number of requests from
each bit in F c is a linear function of the number of edges that this bit has in N(F ). This observation through an
easy coupling argument shows that, if x, x′ ∈ {0, . . . , dv}

|F c| are two vectors of requests from the bits in F c,
where x ≤ x′ elementwise, then the probability that a (p, q)-matching exists is larger conditioned on x than on
x′.

This suggests the following alternative experiment. Suppose that each node j ∈ F c picks a random number

Zj ∈ {0, 1, . . . , dv} according to the modified binomial distribution Bin
(
dv,

dvdαne
m

)
and then chooses Zj

checks from N(F ) with replacement. The key distinction is that, since |N(F )| ≤ dvdαne, the bits of set F c

will tend to have more edges in N(F ) and, therefore, more requests in this new experiment than in the original
one, as suggested by the natural coupling between the two processes. Moreover, since checks are now chosen
with replacement, for each bit j ∈ F c, the size of the intersection N(j) ∩ N(F ) is less than or equal to Zj in
size, since the same check might be chosen more than once. Intuitively, the existence of matchings is less likely
in the new experiment than in the original one and this can be verified by combining these observations with the
coupling argument used in the previous paragraph. The benefit from switching from the original experiment to
this new experiment is in allowing us to decouple the process of deciding the number of requests made by each
bit in F c from the cardinality of the random variable N(F ).

Let us use Q to denote the probability distribution over random graphs in this new model. Setting F c(q) =
{i ∈ F | q > dv − Zj}, we can define the alternative “bad event”

B : =



∃S1 ⊆ F, S2 ⊆ F c(q)

∣∣∣ |N(S1) ∪ [N(S2) ∩ N(F )]| ≤ p|S1| +
∑

j∈S2

[q − (dv − Zj)]



 (9)

and the corresponding sub-events B(Ai), i = 1, 2, 3. As argued above it must hold that P[B(Ai)] ≤ Q[B(Ai)],
for all i, and, therefore, as inequality (8) suggests, in order to upper bound the probability of LP decoding
failure, it suffices to obtain upper bounds on the probabilities Q[B(Ai)] for i = 2, 3, 4. For future use, we define
for fixed subsets S1 ⊆ F and S2 ⊆ F c(q), the event

B(S1, S2) : =



|N(S1) ∪ [N(S2) ∩ N(F )] | ≤ p|S1| +

∑

v∈S2

[q − (dv − Zj)]



 . (10)

We now proceed, in a series of steps, to obtain suitable upper bounds on the probabilities Q[B(Ai)] and, hence,
on the probability of LP decoding failure.
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4.3 Conditioning on requests from F c

For each i ∈ {1, . . . , q}, we define the random variable Ri : =

∣∣∣∣{j ∈ F c | Zj = dv − q + i}

∣∣∣∣, corresponding to

the number of bits in F c with dv − q + i edges that lie inside the “contaminated” neighborhood N(F ). So if we

define, for each i, the probability qi : =
(

dv

dv−q+i

) (
dαnedv

m

)dv−q+i (
1 − dαnedv

m

)q−i
, then each Ri is binomial

with parameters qi and b(1 − α)nc. Since E[Ri] = qib(1 − α) nc, applying Hoeffding’s inequality [15] yields
the sharp concentration Q [|Ri − qib(1 − α) nc| ≥ ε1n] ≤ 2 exp

(
−2ε2

1n
)

for any ε1 > 0. Hence, if we define
the event

T (ε1) : =

q⋂

i=1

{|Ri − qib(1 − α)nc| ≤ ε1n} ,

then a simple union bound yields that Q[T (ε1)] ≤ 1 − 2q exp
(
−2ε2

1n
)
, so that it suffices to bound the

conditional probabilities Q[B(Ai) | T (ε1)], i = 2, 3. Note that conditioned on T (ε1), we are guaranteed that

Ri

n
≤ qi(1 − α) + ε1 = : R̄up

i . (11)

4.4 Bounding Q[B(A2) | T (ε1)]]

We now turn to bounding the probability of the bad event B. Since, by symmetry, the probability of the
event B(S1, S2) is the same for different sets S1 of the same size, a union bound gives Q[B(A2) | T (ε1)] ≤∑dα ne

s1=dε2ne D(s1), where

D(s1) : =

(
dαne

s1

)
Q[∃ S2 ⊆ F c(q) with (S1, S2) ∈ A2 s.t. B(S1, S2) | T (ε1), fixed set |S1| = s1].

Before bounding these terms, we first partition the values of s1 into two sets {dε2ne, . . . , ds̄critne} and {ds̄critne+
1, . . . , dαne} for some value of s̄crit to be specified formally in Lemma 5. To give some intuition, in the
conditional space T (ε1), the total number of matching-requests from the bits of set F c is at most V : =
n

∑q
i=1 iR̄up

i =: nV̄ . Therefore, if Q[B(A2) | T (ε1)]] is relatively small, we would expect that, if the set
S1 is large enough (say |S1| ≈ |F |), then with high probability, the size of its image N(S1) should be large
enough not only to cover its own requests but also V additional requests—viz. |N(S1)| ≥ p|S1| + V . If this
condition holds, then there cannot exists any set S2 such that the event B(S1, S2) occurs. We formalize this
intuition in the following:

Lemma 5 (Upper Regime). Define the constant V̄ : =
∑q

i=1 i R̄up
i , and the function f(s) : = αH

(
s
α

)
+ (1 −

r̃)H
(

ps+V̄
(1−r̃)

)
+ dvs log2

(
ps+V̄
(1−r̃)

)
, where H(·) is the binary entropy (see Appendix D), and set

s̄crit : =

{
inf {s ∈ [0, α]|f(s′) < 0, ∀s′ ∈ [s, α]} , if infimum exists

α, otherwise

Then for all s1 ∈ {ds̄critne + 1, . . . , dαne}, the quantity D(s1) decays exponentially fast in n.

It remains to bound D(s1) for s1 ∈ {dε2ne, . . . , ds̄critne} := LI . Consider a fixed set S1 of size s1 ∈ LI ,
and check neighborhood N(S1) of size γ1 : = |N(S1)|. By conditioning, we have the decomposition D(s1) =
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∑dvs1
γ1=1 E(γ1, s1), where

E(γ1, s1) : =

(
dαne

s1

)
Q′ [∃ S2 with (S1, S2) ∈ A2 s.t. B(S1, S2) | |N(S1)| = γ1, |S1| = s1]

× Q′ [|N(S1)| = γ1 ||S1| = s1] .

Here we have used Q′ to denote the conditional probability distribution of Q conditioned on the event T (ε1).
The following lemma allows us to restrict our attention to linearly-sized check neighborhoods N(S1) in analyz-
ing the individual terms E(γ1, s1) of the summation:

Lemma 6 (Linear Sized Neighborhood). Define

γ̄crit(s̄1) = sup

{
γ̄1 ∈ (0, dv s̄1] | 2 + dv s̄1 log2

(
γ̄1

(1 − r̃)

)
< 0

}
,

where note that the supremum always exists. Then, for set sizes s1 ≥ dε2ne and neighborhood sizes γ1 ≤
γ̄crit(ε2)n, the quantity E(γ1, s1) decays exponentially fast in n.

A summary and some intuition: To summarize our progress thus far, we first argued that in order to bound
the probability Q[B(A2) | T (ε1)]], it suffices to bound the quantities D(s1), for s1 ∈ {dε2ne, . . . , dαne}.
Next we partitioned the range of s1 into two sets: the lower set LI = {dε2ne, . . . , ds̄critne}, and the upper set
UI : = {ds̄critne+1, . . . , dαne}. The upper set has the property that for all sets S1 ⊆ F of size |S1| ∈ UI , then
with high probability, the neighborhood N(S1) is big enough to accommodate not only the matching requests
from set S1, but also all possible matching-requests from any set S2 ⊆ F c. Having established this property of
large S1 sets, it remains to focus on small S1. In this regime, the neighborhood N(S1) on its own is no longer
sufficient to cover the joint set of requests from S1 and from any possible set S2 ⊆ F c. Consequently, one has
to consider for every choice (S1, S2) ∈ A2, whether the joint neighborhood N(S1)∪ (N(S2)∩N(F )) is large
enough to cover the matching requests from S1 and S2.

At this point, one might imagine that a rough concentration argument applied to the sizes of N(S1) and
N(S2) ∩ N(F ) − N(S1) would suffice to complete the proof. Unfortunately, any concentration result must be
sufficiently strong to dominate the factor

(
dαne
s1

)
that leads the expression D(s1). Consequently, we study the

exact distribution of the size of N(S1), and bound the quantities E(γ1, s1) for s1 ∈ LI and γ1 ∈ {1, . . . , dvs1}.
Of course, since s1 is linear in size, the bulk of the probability mass is concentrated on linear values for γ1.
Therefore, by Lemma 6, we need only bound E(γ1, s1) for s1 ∈ LI and γ1 ≥ γ̄crit(ε2)n. We complete these
steps in the following subsection.

Establishing the bound: Let us fix sizes s1 ∈ LI and γ1 ≥ γ̄crit(ε2)n. For a set S1 of size s1 with neighbor-
hood N(S1) of size γ1, define its residual neighborhood to be the set N(F )\N(S1) and use γ2 : = |N(F )\N(S1)|
to denote its size. Moreover, for a configuration of requests2 r ∈

∏q
i=1{0, .., dR̄

up
i ne}, let us denote by

β(s1, γ1, r) the number of checks missing from the neighborhood of S1 to cover the total number of requests
from S1 and a set S2 ⊆ F c with configuration of requests r. Also, let ν(r) be the number of edges that the
checks of set S2 have inside N(F ). More precisely, the quantities β(s1, γ1, r) and ν(r) are given by the follow-
ing formulas: β(s1, γ1, r) : = ps1−γ1 +

∑q
i=1 iri and ν(r) : =

∑q
i=1 (dv − q + i)ri. With these definitions,

we have the following exponential upper bound:

2Recall that we have conditioned on the event T (ε1), so that the number of bits in F c with i matching requests is concentrated, for
every i ∈ {1, . . . , q}.
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Lemma 7 (Exponential upper bound). If s̄crit < α
2 , αdv < (1−r̃)−dv s̄crit

2 and, moreover, αH
(

s̄crit
α

)
+ dv(α−

s̄crit) log2

(
dv s̄crit
(1−r̃)

)
< 0, then the probability Q[B(A2) | T (ε1)]] is upper bounded by 2nF (α) + o(1), where

the o(1) term is exponentially decreasing in n, and the function in the exponent is given by

F (α) : = sup
s̄1∈[0,s̄crit]

sup
γ̄1∈[0,dv s̄1]

sup
γ̄2∈[0, dv (α−s̄1)]

sup
r̄i∈[R̄up

i /2,R̄up
i ]

G(s̄1, γ̄1, γ̄2, r̄1, . . . , r̄q),

where the intermediate function G = G(s̄1, γ̄1, γ̄2, r̄1, . . . , r̄q) is

αH
( s̄1

α

)
+

q∑

i=1

R̄up
i H

(
r̄i

R̄up
i

)
+ min

{
0, (1 − r̃)H

(
γ̄1

(1 − r̃)

)
+ dv s̄1 log2

(
γ̄1

(1 − r̃)

)}
+

+ min

{
0, ((1 − r̃) − γ̄1)H

(
γ̄2

((1 − r̃) − γ̄1)

)
+ dv(α − s̄1) log2

(
γ̄1 + γ̄2

(1 − r̃)

)}

+ min

{
0, γ̄2H

(
min{γ̄2, β̄(s̄1, γ̄1, r̄)}

γ̄2

)
+ ν(r̄) log2

(
γ̄1 + min{γ̄2, β̄(s̄1, γ̄1, r̄)}

γ̄1 + γ̄2

)}

See Appendix G for a proof of this lemma.

4.5 Bounding Q[B(A3) | T (ε1)]] and combining the pieces

It remains to upper bound the probability of the bad-event B(A3) which is equivalent to the existence of a pair
of contracting sets (S1, S2), where the size of set S1 ⊆ F is at most ε2n and the size of set S2 ⊆ F c is at least
(ρ− ε2)n. Note that we haven’t yet specified the constant ε2. The following lemma establishes that there exists
a value of ε2 so that Q[B(A3) | T (ε1)]] is bounded by an exponentially decreasing function in n provided that
the function F (α) of the previous section is negative. The proof of this final lemma is provided in Appendix H.

Lemma 8. If F (α) < 0, where F (·) is the function defined in Lemma 7, then there exists ε2 so that the
probability Q[B(A3) | T (ε1)]] is decreasing exponentially in n.

Combining Inequality (8), Lemma 8 and the analysis of Section 4.4, we get

Lemma 9. Fix constants r̃, dv, p and q such that 2p + q > 2dv and define s̄crit as in the statement of Lemma 5.

Then, if s̄crit < α
2 , αdv < (1−r̃)−dv s̄crit

2 , αH
(

s̄crit
α

)
+ dv(α − s̄crit) log2

(
dv s̄crit
(1−r̃)

)
< 0 and, moreover, the

function F (a), defined in the statement of Lemma 7, is strictly negative, then

P[ LP decoding fails | C(dv) is a (υn, p) expander ]

decays exponentially in n, where P is the uniform measure over the set of bit-regular codes and selections of
dαne bit flips, and υ is given by Equation (2).

Using Lemma 9, we can investigate fractions of correctable errors on specific code ensembles. As a concrete
example, for code rate r̃ = 1/2, if we choose variable degrees dv = 8 and generalized matching parameters
(p, q) = (6, 5), one can numerically verify that the conditions of Lemma 9 are satisfied for all α ≤ αcrit =
0.002. Therefore, for that rate, we establish that the correctable fraction or error that is more than ten times
higher than previously known results, as claimed. More generally, it remains to further explore the consequences
of our analysis technique for other rates and code ensembles.
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A Illustration of factor graph

PSfrag replacements

F F c

N(F )
Figure 1. Illustration of the structure of a generalized matching. The subset F ⊆ V corresponds to the set of
bits i ∈ V with negative log-likelihoods (γi < 0), and F c denotes its complement. The set N(F ) corresponds to
checks that are connected to flipped bits; a generalized matching requires that this set has sufficient connectivity
to the unflipped set F c.

B Inequality description of relaxed polytope

Here we give a precise description of the inequalities that characterize the relaxed polytope P . For every check
a connected to variables N(a) and for all subsets S ⊆ N(a), |S| odd, we introduce the following constraints

∑

i∈N(a)\S

yi +
∑

i∈S

(1 − yi) ≥ 1. (12)
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It can be shown that by constraining the `1 distance to be one, we are not excluding any legal codewords from
our relaxed polytope. We will call these inequalities forbidding inequalities.

We also need to add 2n inequalities 0 ≤ yi ≤ 1 to ensure that we remain inside the unit hypercube. The set
of forbidding inequalities along with these [0, 1]-box inequalities define the relaxed polytope, Given a check of
degree dc, there are 2dc−1 local forbidden sequences; for a constant check degree code then, the total number of
forbidden sequences would be 2dc−1m. Fortunately, in the case of low-density parity-check codes, dc is either
a fixed constant (for regular) or small with high probability (for irregular) so the number of local forbidden
sequences remains small. Therefore, in the cases of practical interest, the relaxed polytope can be described
by a linear number of inequalities. Finally, it can be shown that if the LDPC graph had no cycles, the local
forbidden sequences would identify all the possible non-codewords and the relaxation would be exact [24, 12].
However if the graph has cycles, there exist vertices of the relaxed polytope (called pseudocodewords) with
non-integral coordinates that satisfy all the local constraints individually and yet are not codewords nor linear
combinations of codewords.

C Partitioning the space

A1

A2

|S2|

n − dαne

ρn

ε2n ρn |S1|dαne

A3

Figure 2: Partitioning the space 2F × 2F
c

.

D Elementary bounds on binomial coefficients

For each β ∈ (0, 1), define the binomial entropy H(β) : = −β log2 β − (1 − β) log2(1 − β) (and H(0) =
H(1) = 0 by continuity). We make use of the following standard bounds [5] on the binomial coefficients

n

[
H

(
k

n

)
−

log2(n + 1)

n

]
≤ log2

(
n

k

)
≤ n

[
H

(
k

n

)
+

log2(n + 1)

n

]
. (13)
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E Proof of Lemma 5

Note that conditioned on the event T (ε1), we are guaranteed that
∑q

i=1 iRi ≤ V̄ n. Now by union bound, we
have

Y (s1) : =

(
dαne

s1

)
Q

[
some fixed S1 of size s1 satisfies |N(S1)| < ps1 + V̄ n

]

≤

(
dαne

s1

)(
b(1 − r̃)nc

bps1 + V̄ nc

) (
bps1 + V̄ nc

b(1 − r̃)nc

)dvs1

.

Setting s̄1 = s1
n and using standard bounds on binomial coefficients (see Appendix D), the log of Y (s1) is upper

bounded by

n

[
αH

( s̄1

α

)
+ (1 − r̃)H

(
ps̄1 + V̄

1 − r̃

)
+ dv s̄1 log2

(ps̄1 + V̄ )

(1 − r̃)
+ o(1)

]
.

Defining the function f and value s̄crit as in the lemma statement, we are guaranteed that Y (s1) decays ex-
ponentially in n for all s1 ∈ {ds̄critne + 1, . . . , dαne}. To complete the proof of the claim, we write for
s1 ∈ {ds̄critne + 1, . . . , dαne}

D(s1) : =

(
dαne

s1

)
Q[∃ S2 ⊆ F c(q) with (S1, S2) ∈ A2 s.t. B(S1, S2) | T (ε1), S1 some fixed set of size s1]

≤

(
dαne

s1

)
Q[∃ S2 ⊆ F c(q) with (S1, S2) ∈ A2 s.t. B(S1, S2) | T (ε1), |N(S1)| > ps1 + V̄ n] + Y (s1)

= Y (s1),

because, as argued in Section 4.3, in the conditional space |N(S1)| > p|S1|+ V̄ n, there can be no S2 such that
the event B(S1, S2) holds.

F Proof of Lemma 6

We have the bound E(γ1, s1) ≤
(
dαne
s1

)
Q [ |N(S1)| = γ1 | |S1| = s1], where we have used the fact that the

event {|N(S1)| = γ1} is independent of T (ε1) under the probability measure Q. An exact computation yields

log2 {Q [|N(S1)| = γ1 | |S1| = s1]} ≤ log2

{(
b(1 − r̃)nc

γ1

) (
γ1

b(1 − r̃)nc

)dvs1
}

≤ n

{
log2(n + 1)

n
+ (1 − r̃)H

(
γ1

b(1 − r̃)nc

)
+ dv

s1

n
log2

(
γ1

b(1 − r̃)nc

)}
,

where we have used standard bounds on binomial coefficients (see Appendix D). Overall, we have

log2 E(γ1, s1) ≤ n

{
2
log2(n + 1)

n
+ H

(
s1

dαne

)
+ H

(
γ1

b(1 − r̃)nc

)
+ dv

s1

n
log2

(
γ1

b(1 − r̃)nc

)}

≤ n

{
2
log2(n + 1)

n
+ 2 + dv

s1

n
log2

(
γ1

b(1 − r̃)nc

)}
,

since α < 1, r̃ < 1 (first line) and each entropy term remains bounded within [0, 1] (second line).
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Finally, setting s̄1 = s1/n, γ̄1 = γ1/n, consider the function

g(γ̄1) : = 2 + dv s̄1 log2

(
γ̄1

(1 − r̃)

)
.

We have limγ̄1→0+ g(γ̄1) = −∞, implying that E(γ1, s1) decays exponentially fast in n for all s1 ≥ dε2ne and
neighborhood sizes γ1 ≤ γ̄crit(ε2)n, where γ̄crit(·) is defined as in the statement of the lemma.

G Proof of Lemma 7

We begin by proving the following lemma, which provides an upper bound on the quantity E(γ1, s1).

Lemma 10 (Lower Regime). If s̄crit < α
2 , αdv < (1−r̃)−dv s̄crit

2 and, moreover,

αH
( s̄crit

α

)
+ dv(α − s̄crit) log2

(
dv s̄crit

(1 − r̃)

)
< 0,

then, for all s1 ∈ {dε2ne, . . . , ds̄critne} and γ1 ≥ γ̄crit(ε2)n, there exists some γ∗
2 = γ∗

2(s̄crit, ε2) > 0 such that
E(s1, γ1) is upper bounded by

poly(n)

(
αn

s1

)
· min

{
1,

(
(1 − r̃)n

γ1

) (
γ1

(1 − r̃)n

)dvs1
}
·

max
γ2∈{dγ∗

2ne,...,dv (αn−s1)}
max
ri∈Ri

[(
dR̄up

1 ne

r1

)
. . .

(
dR̄up

q ne

rq

)
·

· min

{
1,

(
(1 − r̃)n − γ1

γ2

) (
γ2 + γ1

(1 − r̃)n

)(αn−s1)dv

}
·

· min

{
1,

(
γ2

min{β(s1, γ1, r), γ2}

) (
γ1 + min{γ2, β(s1, γ1, r)}

γ1 + γ2

)ν(r)
}]

+ o(1), (14)

where Ri :=
{⌊

R̄up
i n
2

⌋
, . . . , dR̄up

i ne
}

, for all i, and the o(1) is an exponentially in n decreasing function.

Proof. We begin with the decomposition

E(s1, γ1) =

(
dαne

s1

) dv dαne−s1∑

γ2=1

U1(γ1, γ2)U2(γ1, γ2) (15)

where

U1(γ1, γ2) : = Q′ [∃ S2 with (S1, S2) ∈ A2 s.t. B(S1, S2) | |N(S1)| = γ1, |N(F )\N(S1)| = γ2, |S1| = s1]

U2(γ1, γ2) : = Q′ [|N(S1)| = γ1, |N(F )\N(S1)| = γ2 | |S1| = s1] ,

and recall that Q′ is the measure Q conditioned on the event T (ε1). We now require a lemma that allows us to
restrict appropriately the range of summation over linear in n values of γ2.
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Lemma 11. The conditions of Lemma 10 imply that there exists some value γ∗
2 = γ∗

2(s̄crit) > 0 for which the
quantity

G(s1, γ1) :=

(
dαne

s1

) bγ∗

2nc∑

γ2=1

U1(γ1, γ2)U2(γ1, γ2)

decays exponentially in n for any s1 , γ1 that satisfy dε2ne ≤ s1 ≤ ds̄critne and γ1 ≥ γ̄crit(ε2)n.

Proof. The proof is similar in spirit to the proof of Lemma 6. Take a term of summation (15). We can bound it
as follows:

B(s1, γ1, γ2) : =

(
dαne

s1

)
U1(γ1, γ2)U2(γ1, γ2)

≤

(
dαne

s1

)
U2(γ1, γ2)

≤

(
dαne

s1

)
Q′ [|N(F )\N(S1)| = γ2 | |N(S1)| = γ1, |S1| = s1]

Note that

Q′ [|N(F )\N(S1)| = γ2 | |N(S1)| = γ1, |S1| = s1] ≤

(
b(1 − r̃)nc − γ1

γ2

) (
γ2 + γ1

b(1 − r̃)nc

)(dαne−s1)dv

Therefore,

log2 B(s1, γ1, γ2) ≤

≤ n

{
αH

(
s1/n

α

)
+ H

(
γ2/n

(1 − r̃) − γ1/n

)
+ dv

(
α −

s1

n

)
log2

(
γ2/n + γ1/n

(1 − r̃)

)
+ o(1)

}

≤ n

{
αH

( s̄crit

α

)
+ H

(
γ2/n

(1 − r̃) − dv s̄crit

)
+ dv(α − s̄crit) log2

(
γ2/n + dv s̄crit

(1 − r̃)

)
+ o(1)

}
.

where we have used that s̄crit < α
2

3 and αdv < (1−r̃)−dv s̄crit

2
4. So, if we define, the function

b(γ) := αH
( s̄crit

α

)
+ H

(
γ

(1 − r̃) − dv s̄crit

)
+ dv(α − s̄crit) log2

(
γ + dv s̄crit

(1 − r̃)

)
,

it follows that limγ→0 b(γ) < 0 from the assumption that

αH
( s̄crit

α

)
+ dv(α − s̄crit) log2

(
dv s̄crit

(1 − r̃)

)
< 0

We finish the claim as we did in the proof of Lemma 6.

By Lemma 11, it suffices to provide upper bounds for the terms B(s1, γ1, γ2) for s1 ∈ {dε2ne, . . . , ds̄critne},
γ1 ≥ γ̄crit(ε2)n and γ2 ≥ γ∗

2n. In the proof of Lemma 11 we established that

Q′ [|N(F )\N(S1)| = γ2 | |N(S1)| = γ1, |S1| = s1] ≤

(
b(1 − r̃)nc − γ1

γ2

) (
γ2 + γ1

b(1 − r̃)nc

)(dαne−s1)dv

3so that the first entropy term in the first line is increasing in s1/n
4so that the second entropy term is increasing in γ1 and the third term is increasing in s1/n and in γ1/n
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In Appendix F we established that

Q′ [|N(S1)| = γ1|S1| = s1] ≤

(
b(1 − r̃)nc

γ1

) (
γ1

b(1 − r̃)nc

)dvs1

The only missing piece is an upper bound on

Q′ [∃ S2 ⊆ F c(q) with (S1, S2) ∈ A2 s.t. B(S1, S2) | |N(S1)| = γ1, |N(F )\N(S1)| = γ2, |S1| = s1]

But, in the conditional space T (ε1), every set S2 ∈ F c(q) corresponds to a request vector r ∈
∏q

i=1{0, .., dR̄
up
i ne}.

Moreover, for a set S2 ∈ F c(q) and its corresponding request vector r, the event B(S1, S2) is equivalent to the
following condition being satisfied:

B(S1, S2) ⇔ |(N(S2) ∩ N(F )) − N(S1)| ≤ β(s1, γ1, r)

Therefore, a union bound over all the possible choices of sets S2 gives the following upper bound for the
probability of interest:

dR̄up
1 ne∑

r1=0

. . .

dR̄up
q ne∑

rq=0

(
dR̄up

1 ne

r1

)
. . .

(
dR̄up

q ne

rq

)
λ(r1, . . . , rq, γ1, γ2)

︸ ︷︷ ︸
Λ(r1, r2, . . . , rq, γ1, γ2)

Where λ(r1, . . . , rq, γ1, γ2) is the probability

Q′

[
|(N(S2) ∩ N(F )) \ N(S1)| ≤ β(s1, γ1, r)

∣∣ |S1| = s1, |N(S1)| = γ1, |N(F ) \ N(S1)| = γ2

S2 corresponds to request vector r

]

Before completing the proof we need a final observation.

Lemma 12. ∀i, if {rj}j 6=i, γ1, γ2 are fixed then Λ(r1, r2, . . . , rq, γ1, γ2) is increasing for ri ∈
{

1, . . . , b
R̄up

1 n
2 c

}
.

Proof. Clearly
(
dR̄up

i ne
ri

)
is increasing for ri ∈

{
1, . . . , b

R̄up
1 n
2 c

}
. Therefore, it is enough to establish that

λ(r1, . . . , rq, γ1, γ2) is increasing for ri ∈
{

1, . . . , b
R̄up

1 n
2 c

}
. But to show this we can just use the coupling

argument that we used in Section 4.2. The coupling which we omit here is built upon the intuition is that, since
the number of matching requests and the number of edges that a bit in F c has in N(F ) are linearly related, by
increasing the number of edges–requests the probability that event B(S1, S2) happens becomes larger.

Having established the above we can now conclude the claim. If we denote by Ri :=
{⌊

R̄up
1 n
2

⌋
, . . . , dR̄up

1 ne
}

we have that

dR̄up
1 ne∑

r1=0

. . .

dR̄up
q ne∑

rq=0

(
dR̄up

1 ne

r1

)
. . .

(
dR̄up

q ne

rq

)
λ(r1, . . . , rq, γ1, γ2) ≤

poly(n) max
ri∈Ri

(
dR̄up

1 ne

r1

)
. . .

(
dR̄up

q ne

rq

)
λ(r1, . . . , rq, γ1, γ2),
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where the poly(n) factor accounts for the fact that there are polynomially many terms in the summation. Now,
by a union bound we get

λ(r1, . . . , rq, γ1, γ2) ≤

(
γ2

min{β(s1, γ1, r), γ2}

) (
γ1 + min{β(s1, γ1, r), γ2}

γ1 + γ2

)ν(r)

and putting everything together we get the claim.

Based on the preceding analysis, we can now complete our proof of Lemma 7. Indeed, using Lem-
mas 5, 6, 10 we can upper bound Q[B(A2) | T (ε1)]] by the quantity (14), with the addition of further polyno-
mial pre-factors. Since in the upper bound all relevant quantities, i.e. s1, γ1, γ2, r1, . . . , rq, scale linearly with
n, standard bounds on binomial coefficients (see Appendix D) lead to the claimed form of F .

H Proof of Lemma 8

First we have

Q[B(A3) | T (ε1)] ≤

bε2nc∑

s1=1

(
dαne

s1

)
Q[∃ S2 ⊆ F c(q) with (S1, S2) ∈ A3 s.t. B(S1, S2) | T (ε1), S1 some fixed set of size s1]

︸ ︷︷ ︸
D′(s1) (17)

Note that for ε2 sufficiently small, we have that, for all s1 ∈ {1, . . . , bε2nc},
(
dαne

s1

)
≤

(
dαne

bε2nc

)
≤ n

(
αH

(ε2
α

)
+ o(1)

)

The rest of the analysis is based on the intuition that, for ε2 sufficiently small and any set S2 of size at least ρn,
if r is the vector of requests from S2, then, with high probability,

|N(S2) ∩ (N(F ) − N(S1))| ≥

q∑

i=1

iri + pε2n := β′(ε2, r).

in other words the neighborhood of set S2 inside N(F ) \ N(S1) is sufficiently large not only to cover the
requests from set S2 but also from S1. Indeed,

Q′[∃ S2 ⊆ F c(q) with (S1, S2) ∈ A3 s.t. B(S1, S2) | S1 some fixed set of size s1] ≤

Q′[∃ S2 ⊆ F c(q) with |S2| ≥ ρn s.t.|N(S2) ∩ (N(F ) − N(S1))| ≥

q∑

i=1

iri + pε2n | S1 fixed, |N(S1)| ≤ dvε2n]

By similar analysis as in the proof of Lemma 10, we get that

D′(S1) ≤ 2nF ′(α,ε2) + o(1)
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where

F ′(α, ε2) : = sup
γ̄2∈[0, dv α]

sup
r̄i∈[R̄up

i /2,R̄up
i ]

G′(γ̄2, r̄1, . . . , r̄q, ε2),

and the intermediate function G′ = G′(γ̄2, r̄1, . . . , r̄q, ε2) is

αH
(ε2

α

)
+

q∑

i=1

R̄up
i H

(
r̄i

R̄up
i

)

+ min

{
0, ((1 − r̃) − dvε2)H

(
γ̄2

((1 − r̃) − dvε2

)
+ dv(α − ε2) log2

(
dvε2 + γ̄2

(1 − r̃)

)}

+ min

{
0, γ̄2H

(
min{γ̄2, β̄

′(ε2, r̄)}

γ̄2

)
+ ν(r̄) log2

(
dvε2 + min{γ̄2, β̄

′(ε2, r̄)}

dvε2 + γ̄2

)}

Note that limε2→0 G′(γ̄2, r̄1, . . . , r̄q, ε2) = lims̄→0,γ̄1→0 G(s̄, γ̄1, γ̄2, r̄1, . . . , r̄q, ε2). Therefore,

lim
ε2→0

F ′(α, ε2) ≤ F (α).

So, if F (α) < 0 it follows limε2→0 F ′(α, ε2) < 0 and by continuity there exists some value ε2 > 0 such that
F ′(α, ε2) < 0 and, therefore, for this value of ε2 the probability Q[B(A3) | T (ε1)] is decreasing exponentially
in n.
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