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Abstract

Current research in oncology aims at developing targeted therapies

to treat the heterogeneous patient population. Successful development
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of a targeted therapy requires a biomarker that identifies patients who

are most likely to benefit from the treatment. However, most biomark-

ers are inherently inaccurate. We present a simulation study to examine

how the sensitivity and specificity of a single, binary biomarker influ-

ences the Cox estimates of hazard ratios in phase II clinical trials. We

discuss how the bias introduced by marker inaccuracy impacts the de-

cision of whether to carry a drug forward to a phase III clinical trial.

Finally, we propose a bootstrap-based method for reducing the bias of

the Cox estimator, in the presence of an inaccurate marker.

KEY WORDS: predictive marker, sensitivity, specificity, misclassifi-

cation, bias reduction

1 Introduction

The heterogeneity of cancer pathology is well recognized among oncologists.

Many current efforts in drug development aim at treating subtypes of cancers

by interfering with specific molecular pathways. Biomarkers that are associ-

ated with cancer subtypes can be used to predict patient response to specific

treatments. A targeted anti-cancer treatment is often co-developed with its

companion diagnostic test which detects the presence of the biomarker(s).

The first time that a biomarker was linked to a specific therapy was when the

estrogen receptor (ER) expression status in breast tumors was used to predict

their responses to hormonal therapies such as tamoxifen. More recently, a suc-
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cessful companion diagnostic test (HercepTest, DAKO, Carpinteria, CA) was

developed to specifically direct Trastuzumab (Herceptin, Genentech, South

San Francisco, CA) for breast cancer patients whose tumors overexpress the

HER2/Neu gene. Targeted therapy is possible because the biomarker HER2

identifies a subgroup (25%-30%) of the patient population that is most likely

to benefit from the treatment (Therasse, Carbonelle, Bogaerts 2006).

Statistically, the biomarker serves the purpose of patient classification.

Most biomarkers are inaccurate classifiers, due to either technical limitations

of the assays or imperfect understanding about the drug’s mechanism of action.

Recently, it was shown that Pertuzumab (Omnitarg, Genentech, South San

Francisco, CA) may be active in ovarian cancer and that the phosphorylated

HER2 (pHER2) status from fresh tumor samples may be a biomarker for

tumor responsiveness to Pertuzumab. This finding established tumor pHER2

status as a surrogate endpoint for clinical efficacy. Obtaining fresh tumor

biopsies from all patients, however, is not feasible as a diagnostic tool for the

therapy. Therefore, an alternative biomarker, based on formalin-fixed, paraffin

embedded tissue (FFPET) samples of HER receptors and ligands, assayed

through qRT-PCR, was investigated in the drug-diagnostic co-development

process. Amler et.al. (2006) showed how this biomarker was found to be

less than a perfect measure of the surrogate endpoint (pHER2) for predicting

Pertuzumab response in Ovarian Cancer patients (Supplemental Figure 1).

In this paper, we explored the impact of a single, inaccurate biomarker on

clinical decision making in the development of targeted therapy, by simulating
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the settings in phase II clinical trials. We chose to focus on the phase II clinical

trials, because these trials play a pivotal role in the discovery and assessment

of a biomarker in the drug-diagnostic co-development process (Lee and Feng

2006). At this stage, a drug could be either determined promising for further

development, or discontinued for the lack of efficacy. The ultimate goal of a

phase II trial is to make the best decision regarding whether to move forward

with an expensive phase III trial, referred to as the GO/NO-GO decision. The

results of our simulation study demonstrate that an inaccurate biomarker has

a significant impact on the GO/NO-GO decision, because marker inacurracy

introduces bias to the Cox estimator of hazard ratios. We investigated the

impact of marker inaccuracy as a function of the sensitivity and specificity of

the biomarker. Firstly, we review this impact in terms of the bias and the

variance of the Cox estimator for the treatment effect. Secondly, we review

this impact in terms of the error rates in the resulting GO/NO-GO decisions.

Lastly, we propose a bootstrap-based method for reducing the bias induced by

marker inaccuracy, potentially improving the clinical decision making process

under certain circumstances.

2 Definitions and Simulation Setting

A variety of biomarkers exist in cancer research, and are used for different pur-

poses such as detecting the activation of a specific pathway or disease staging.

Diagnostic markers may serve as either prognostic or predictive indicators of
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disease subtypes or treatment outcomes, respectively. Sargent, Conley, Alle-

gra and Collette (2005) defined a prognostic marker as one that is associated

with a differential outcome in disease irrespective of therapy. They defined a

predictive marker as one that predicts the differential efficacy of a targeted

therapy based on marker status. When the clinical outcome of interest is

survival, the strength of a predictive biomarker is assessed by the log hazard

ratios among various subgroups of the patient population. Sometimes, the

same diagnostic marker exhibits both prognostic and predictive characteris-

tics. Our study is concerned with the type of biomarkers useful for predicting

patient response to a targeted therapy, regardless of the prognostic values.

Surrogate biomarkers are tissue, cellular, or molecular alterations that oc-

cur between the initiation of tumors and the progression into cancerous con-

ditions. There are two major sources of errors in classifying patients based on

their surrogate marker statuses. First, even though these molecular biomark-

ers are measured on a continuous scale, dichotomizing continuous measure-

ments provides both clinical and statistical benefits. Clinically it is convenient

to classify patents into high vs low risk categories and statistically the interpre-

tation is simpler for binary covariates. However, Altman, Lausen, Sauerbrei,

and Schumacher (1994) showed that data dependent methods of dichotomiz-

ing continuous covariates introduce bias, both in the inflation of Type-I errors

and in a tendency to overestimate effect sizes. Second, the observed surrogate

marker status differs from the unobserved true marker status. For example,

consider a biomarker that is based on the expression of a proto-oncogene, such
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as HER2/neu or the estrogen/progesterone receptors. If the tumors in a pa-

tient overexpress the proto-oncogene above a certain threshold, then the true

marker status of this patient is positive. Otherwise, the true marker status of

the patient is negative. However, the true expression levels in the tumors are

never known perfectly, either because the assay has imprecision or because

the tumors in a patient are heterogeneous. Instead, an indirect measurement

(surrogate) of the expression level is used to determine whether a patient is

positive or negative for the biomarker.

We refer to the observed biomarker as the surrogate marker, because it is

based on a limited understanding of the molecular mechanisms, an indirect

assay and an imperfect dichotomization of the measurements. The discrep-

ancy between the unobserved true marker status and the observed surrogate

marker status defines the inaccuracy of the diagnostic marker. Statistically,

we express marker inaccuracy in terms of two parameters: sensitivity and

specificity. We define sensitivity, denoted by pS, as the probability of observ-

ing a positive surrogate when a patient is truly positive for the biomarker. We

define specificity, denoted by pN , as the probability of observing a negative

surrogate when a patient is truly negative for the biomarker. Marker preva-

lence is a third parameter that plays an important role in the drug-diagnostic

co-development. In general, stratification by a biomarker does not produce an

even split among the patient population. The proportion of the population

with the true positive status is defined as the marker’s prevalence, denoted

by pDX. Pajak, Clark, Sargent, McShane and Hammond (2000) showed that
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statistical power is compromised whenever prevalence deviates from 50%.

Sargent et.al. (2005) described four clinical trial designs for assessing the

utility of a predictive marker. They showed via simulations that the Marker by

Treatment Interaction Design maximizes statistical efficiency. This is because

a smaller sample size is required to detect the interaction effect than the total

sample size required to test the treatment effect in each subgroup individually.

This design also allows for an evaluation of the prognostic value of the marker,

by comparing the outcomes of patients between the two marker groups within

each treatment group. When the decision of whether to treat by a targeted

therapy is based on a binary marker, the Marker by Treatment Interaction

Design is preferred. Thus we adopted this setting for our investigation of Phase

II clinical trials. We associated each patient with an unobserved covariate, the

true marker status, denoted by DX. Based on the sensitivity and specificity

of the marker, an observed surrogate marker status, denoted by MX, was

generated by perturbing DX (see section 3 for details). Within each surrogate

marker group, patients were randomized to receive either the targeted therapy

or the control regimen. For simplicity, the proportion of patients assigned to

treatment was kept at 50% in both strata. Thus each patient was associated

with a binary treatment variable, denoted by Y . The survival time of each

patient was generated according to a Cox proportional hazard model, shown

below.

λ(t) = λ0(t)e
β1Y +β2DX+β3DX×Y (1)

7



Here, β1 represents the treatment effect of the drug in the marker-negative

subgroup; β2 represents the prognostic effect of the biomarker; β3 represents

the predictive effect of the biomarker, which is the additional benefit of the

treatment to the marker-positive patients. The question of whether a diag-

nostic biomarker is clinically useful can be addressed by estimating β3, and

assessing its significance.

Since the ultimate goal of a phase II trial is to make a well-informed de-

cision regarding whether to carry the drug into phase III, it is worthwhile to

consider how an inaccurate marker might impact this GO/NO-GO decision.

There are two types of commonly used criteria for making the clinical decision:

the first type is based on the p-value of the Wald test for β3 < 0; the second

type is based on the point estimate of the hazard ratio. In both cases, the

chosen decision criterion may be applied to either the entire patient popula-

tion, or a subgroup of patients testing positive for the surrogate marker. We

examined the following pre-specified criteria for making the GO/NO-GO de-

cision. These thresholds were chosen by convention, and they exhibit similar

Type-I error rates for testing a placebo in the overall population.

1. p-value:

• overall population: GO if the hazard ratio of treatment vs control

is less than 1, and the p-value is less than 0.1; NO-GO otherwise.

• MX positive subgroup: GO if the hazard ratio of treatment vs

control is less than 1, and the p-value is less than 0.1; NO-GO
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otherwise.

2. HR:

• overall population: GO if the hazard ratio of treatment vs control

is less than or equal to 0.8; NO-GO otherwise.

• MX positive subgroup: GO if the hazard ratio of treatment vs

control is less than or equal to 0.7; NO-GO otherwise.

3 Methods

3.1 Generation of Patient Data

Since the true marker status (DX) is almost never observed, we introduce a

random variable (MX) to denote the surrogate marker status. Conditional

on DX, MX follows a Bernoulli distribution according to the sensitivity (pS)

and specificity (pN) parameters. If DX = 0, the probability of MX=1 is

1 − pN . If DX = 1, the probability of MX=1 is pS.

We considered two mechanisms of censoring in clinical trials: (i) the enroll-

ment of patients involves staggered entry, (ii) a small proportion of the enrolled

patients may drop out of the study before its completion. Let T denote the

total length of the trial, and let L denote the length of the enrollment period

(L ≤ T ). We used a uniform random variable U ∼ Uniform(0, L) to model

the time of entry, and an exponential random variable C ∼ Exponential(λc)

to model the time of drop-out. Let S denote the survival time generated ac-
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cording to equation 1. If (U + C) < S, then the patient is censored due to

early drop-out. If (U +S) > T , then the patient is right-censored due to trun-

cated follow-up. The censoring parameters T , L, λc were chosen to emulate

the setting of a typical phase II trial. At T = 2000, L = 200, λc = 0.1, the

censoring rate was roughly 25%.

3.2 Estimation of the Hazard Ratios

We calculated the hazard ratios for the treatment effect both in the overall

population and in the marker positive subpopulation. The HR in the en-

tire population is eβoverall, where βoverall is a function of all the coefficients in

equation 1, as well as marker prevalence. Similarly, the HR in the marker

positive population is eβpositive, where βpositive = β1 + β3. The overall effect of

the drug depends on the the proportion of the population benefiting from the

targeted therapy. Thus the true effect size in the overall population (βoverall)

was computed by an average of 10000 simulations, for each value of pDX.

If the diagnostic marker were a good predictor of treatment response, then

βpositive should be lower than βoverall. For each simulated trial, the hazard

ratios were estimated using an implementation of the conditional likelihood

method in the R package (survival). The p-values of the one-sided Wald tests

were obtained by comparing β̂

s.e.(β̂)
to the standard normal distribution.
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3.3 Bias Reduction Method

In order to estimate the predictive effect of a marker (β3 in equation 1), we

would like to know the true marker status DX of each patient. However, we

can only observe the surrogate marker status MX. Estimation based MX

leads to considerable bias in the Cox estimates β̂1, β̂2 and β̂3. We decided

to focus on β̂3 because: 1) it plays the most important role in making the

GO/NO-GO decision; 2) its bias is the largest in magnitude. For simplicity,

we will refer to β3 as β, and similarly refer to β̂3 as β̂, from hereon.

We propose a bootstrap-based method for reducing the bias in β̂. First,

generate B bootstrap samples from the clinical trial data, and obtain β̂b from

each bootstrap sample indexed by b = 1, . . .B. For each bootstrap sample,

pretend as if the observed surrogate marker MX were the true marker in the

hypothetical world created by the bootstrap. Then, generate P perturbed

versions of MX based on pS and pN , and obtain β̂ ′

bp from each perturbed

sample indexed by p = 1, . . . P . Assume that the bias introduced by perturb-

ing the bootstrap samples is an approximation to the bias introduced by an

inaccurate marker in the original data. For each bootstrap sample, the bias

in β̂b can be estimated by averaging the differences between β̂b and β̂ ′

bp, for

p = 1, . . . P . Thus the bias in β̂ can be estimated by averaging the bias in β̂b,

for b = 1, . . . B. To compute the variance of this estimator, we assume that

the covariance between β̂b and its bias in the bootstrap world approximates

the covariance between β̂ and its bias in the real world. The algorithm of this

bootstrap-based bias reduction method is outlined below.
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1. Generate a bootstrap sample, say Sb from the input clinical trial data.

Obtain β̂b : this is the Cox estimate of the interaction effect.

2. Perturb the marker covariates in each Sb, according to (pS, pN), to sim-

ulate the misclassification by an inaccurate marker.

3. Repeat step 2 for p = 1 . . . P times and obtain β̂ ′

b1 . . . β̂ ′

bP .

4. Estimate the bias from each bootstrap sample as follows:

b̂iasb =
1

P

P∑

p=1

β̂ ′

bp − β̂b (2)

5. Repeat the above steps for B times. Take an average of the B bootstrap

estimates for bias:

B̂ias =
1

B

B∑

b=1

b̂iasb (3)

6. Bias-Reduced Estimator:

β̂new = β̂ − B̂ias (4)

7. Variance of the Bias-Reduced Estimator:

Var(β̂new) = Var(β̂) + Var(B̂ias) − 2 Cov(β̂, B̂ias) (5)

≈ Var(β̂b) +
1

B
Var(b̂iasb) − 2 Cov(β̂b, b̂iasb) (6)

12



Cov(β̂b, b̂iasb) is computed from the B bootstrap samples, and used to

approximate Cov(β̂, B̂ias).

4 Simulation Results

4.1 Bias and Variance of the Cox Estimator

Table 1 shows the results of simulating phase II trials with β1 = −0.1, β2 = 0,

β3 = −0.6. This drug has a weak benefit for the marker negative patients

(HR = 0.9), and a strong benefit for the marker positive patients (HR = 0.5),

without any prognostic effects. The diagnostic marker has 30% prevalence

in the population, leading to an overall hazard ratio of roughly 0.75. Each

row was computed from 1000 clinical trials simulated at the specified marker

parameter values. For each trial, β3 was estimated according to the Cox

proportional hazard model (equation 1). The bias of the estimator was com-

puted according to E(β̂3) − β3, where E(β̂3) was approximated by the sample

mean. The variance of β̂3 was approximated by the sample variance of the

1000 estimates. We computed the percentages of times the Cox estimator

led to incorrect NO-GO decisions based on either the p-value criterion or the

hazard ratio criterion in the positive group. These are considered as Type-I

error rates, because the drug has a strong effect on the true positive patients.

Table 1 shows that when specificity is fixed, decreasing sensitivity results in

an increase in the variance. When sensitivity is fixed, decreasing specificity

results in a marked increase in the bias. In addition, sensitivity (variance) has
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Sensitivity Specificity Bias Variance NoGo% pval NoGo% HR

1 1 -0.008 0.592 23.4 16.4
0.9 1 0.007 0.563 26.2 17.5
0.8 1 0.038 0.652 29.2 17.4
0.7 1 0.049 0.679 32.9 20.8
0.6 1 0.053 0.655 37.5 22.1
0.5 1 0.070 0.738 42.1 25.0
1 1 -0.008 0.595 22.6 16.8
1 0.9 0.089 0.537 25.1 22.3
1 0.8 0.169 0.495 26.5 27.5
1 0.7 0.232 0.492 30.5 33.9
1 0.6 0.287 0.463 32.0 39.4
1 0.5 0.310 0.464 35.6 46.6

Table 1: Effects of Sensitivity and Specificity on the Cox Estimator for β3

a stronger impact on clinical decision making based on the p-value criterion.

Specificity (bias) has a stronger impact on clinical decision making based on

the HR criterion.

Figure 1 shows the 80% confidence intervals of the Cox estimates of hazard

ratios, with each C.I. computed empirically from 1000 clinical trials simulated

under the same settings as those used for Table 1. The median points of

ĤRoverall are represented by red circles, and the median points of ĤRpositive

are represented by green triangles. Panel (a) shows that the true hazard ra-

tio for the overall population depends on the marker’s prevalence. At low

prevalence, HRoverall is similar to HRpositive. As prevalence increases, the

hazard ratio for the overall population approaches the hazard ratio for the

marker-positive group. Prevalence has very little effect on the bias of β̂3,

as indicated by the the median points of ĤRpositive. Prevalence is inversely

14



related to the variance of β̂3, as indicated by the lengths of the confidence

intervals for ĤRpositive. Panel (b) shows that sensitivity has a stronger influ-

ence on the variance rather than on the bias of the Cox estimator, because it

is mainly a sample-size factor for the marker-positive group. Panel (c) shows

that specificity has a stronger influence on the bias of β̂3. At low specificity,

ĤRoverall and ĤRpositive appear very similar, because the observed positive

group includes essentially everybody. As specificity increases, the observed

marker-positive group contains fewer true negative patients, thus increasingly

higher proportions of true positive patients, leading to less biased estimates

of β3. In the cases of a weaker predictive effect, with or without a deleteri-

ous prognostic effect, the differences between true hazard ratios in the overall

and marker-positive groups are shrunken, but the same trends were preserved

(Supplemental Figure 2).

4.2 Bootstrap-based Bias Reduction

We outlined a bootstrap-based method for reducing the bias due to marker

inaccuracy in section 3.3. As a consequence of the general bias-variance trade-

off, the proposed estimator has increased variance. Figure 2 compares the

confidence intervals of ĤRpositive before and after bias reduction, when β1 =

−0.1, β2 = 0, β3 = −0.6. For each combination of the marker inaccuracy

parameters, the empirical 80% C.I.’s were generated from 200 clinical trials.

Each bias-reduced estimate was computed from B=200 bootstrap samples,

along with P=200 perturbations of the marker statuses. Panel (a) shows the
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Figure 1: Confidence intervals of HR estimates: (a) varying prevalence with
sensitivity fixed at 0.95 and specificity fixed at 0.95, (b) varying sensitivity
with specificity fixed at 0.95 and prevalence fixed at 0.3, (c) varying specificity
with sensitivity fixed at 0.95 and prevalence fixed at 0.3. Each interval was
computed from 1000 simulated trials.
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performance of bias reduction as a function of specificity, when sensitivity is

fixed at 0.95. At specificity 0.1, the observed marker-negative group tends

to be too small to yield stable estimates, thus the confidence intervals are

missing. Although this method is effective at reducing the bias (solid squares

represent the median points), the variance of this estimator could be quite

large when specificity is low. Panel (b) shows the performance of bias reduction

for selected combinations of sensitivity and specificity, denoted by (pS, pN).

When sensitivity is below 0.3, the variance of β̂3 is inherently so large that any

attempts at reducing the bias would be fruitless. In the cases of either (0.8,

0.6) or (0.6, 0.8), this method is effective at reducing the bias due to marker

inaccuracy. However, a comparison between (0.8, 0.4) and (0.4, 0.8) reveals

that a decent sensitivity (low variance) is required for successful bias reduction.

The case of (0.5, 0.5) warrants further discussion. At 50% sensitivity and

50% specificity, the observed positive group is merely a random sample of

the overall population at the specified marker prevalence. Perturbation of

the observed marker statuses by (0.5, 0.5) yields further randomization of

the bootstrapped samples. Thus this procedure results in a heavily inflated

variance, without any improvement to the bias. Our recommendation in this

situation is to make clinical decisions only based on the overall hazard ratio.

Finally, one should note the over-reduction of the proposed estimator in case of

(0.9, 0.9). Here, the conventional Cox estimator appears unbiased because the

under-estimation of β3 (due to imperfect specificity) is counter-balanced by the

over-estimation of β1 (due to the inclusion of some true positive patients in the
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observed negative group). Since this method does not account for the nominal

bias in β1, the median value of the bias-reduced estimates lies slightly below

the truth line. This observation suggests the obvious fact that bias reduction

is unwarranted when the marker is nearly perfect.

4.3 Clinical Decision Making

To compare the two types of criteria for clinical decision making, we simulated

thousands of clinical trials from two types of drugs with various combinations

of marker sensitivity and specificity. For each clinical trial, four decisions were

made according to the four criteria outlined in section 2. We computed the

percentage of GO decisions, according to each criterion, in each scenerio. The

p-value criterion and the hazard ratio criterion are compared side-by-side in

Figures 3 & 4. A diagnostic marker is critical to drug development when the

decisions based on the marker-positive group (green triangles) exhibit a lower

error rate than those based on the overall population (red circles). A GO

decision for a weak drug is considered a Type-I error. We ran the simulation

with a placebo (β1 = 0, β2 = 0, β3 = 0), and observed a 10% Type-I error

rate using both criteria for the overall population. (Supplemental Figure 3).

Conversely, a NO-GO decision for a strong or moderate drug is considered a

Type-II error.

Figure 3 shows the results of 1000 simulations from a strong drug: β1 =

−0.1, β2 = 0, β3 = −0.6 (HRoverall = 0.75, HRpositive = 0.50), for which

the probability of making a GO should be high. When the decisions were
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Figure 2: Confidence intervals of HR estimates before and after bias reduction:
(a) varying specificity with sensitivity fixed at 0.95 and prevalence fixed at
0.3, (b) selected pairs of sensitivity and specificity with prevalance fixed at
0.3. Each interval was generated from 200 simulated clinical trials, and each
bias-reduced estimate was computed with B = 200 and P = 200 iterations.
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made for the overall population, both the p-value and the HR criteria yielded

similar results, with a type II error rate in the range of 10-15%. Decision

making for the marker-positive group exhibited quite different characteristics

by the two criteria. The p-value criterion of the positive group was heavily

influenced by the sensitivity of the marker, when the specificity was fixed

at 0.95 (panel a). When sensitivity was fixed at 0.95, a low error rate was

achieved regardless of specificity (panel c). The hazard ratio criterion was

equally influenced by the sensitivity and specificity of the marker (panels b &

d), because the distribution of the Cox estimates is specified by both the bias

and the variance. When the marker had nearly perfect accuracy, the marker-

based strategy was advantageous over decision making based on the entire

population. When either the sensitivity or specificity of the marker was below

0.8, decision making based on the overall population generally had lower error

rates than based on the marker-positive group.

Figure 4 shows a particularly interesting scenario, in which the drug has

a moderate effect on the positive patients, while the marker is a strong risk

factor: β1 = −0.1, β2 = 0.6, β3 = −0.3 (HRoverall = 0.83, HRpositive = 0.62).

The curves representing decisions based on the overall population run along

the 50% line in all four panels, indicating ambiguous outcomes. Thus the

use of a diagnostic marker is critical in this case, and the marker needs to be

sufficiently accurate in order to make reliable decisions for the positive group.

To illustrate how the bias reduction method might improve decision mak-

ing, we obtained the bias-reduced HR estimate and p-value for the marker-
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Figure 3: Clinical decision making when β1 = −0.1, β2 = 0, β3 = −0.6 and
the marker has 30% prevalance: (a) & (c) specificity is fixed at 0.95, (b) &
(d): sensitivity is fixed at 0.95. Each point represents a percentage computed
from 1000 simulated clinical trials.
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positive group from each simulated clinical trial. The blue squares represent

the percentages of GO decisions made for the marker-positive group after bias

reduction. Each percentage was obtained from 200 simulations, and each bias-

reduced estimate was computed with B = 200, P = 200 iterations. When the

p-value criterion was used for decidion making, bias reduction lead to higher

Type-II error rates due to inflated variances, thus is not recommended. The

Cox estimator for the marker positive group should be used whenever: (i)

sensitivity ≥ 0.6 and specificity is high, (ii) sensitibity is high and specifity

≥ 0.7, as shown in panels (a & c). When the HR criterion was used for deci-

sion making, bias reduction generally improved decision making based-on the

marker-positive group. This observation is consistent with the fact that the

HR criterion is less influenced by the variance, in comparison to the p-value

criterion. Moreover, the bias-reduced HR estimates in the positive group led

to better decisions than the overall HR estimates when specificity was high

and sensitivity ≥ 0.7 (panel c). However, when specificity was below 0.8, the

bias of the Cox estimator was so high such that GO decisions were unlikely

even with bias reduction. (panel d).

5 Discussion

In this study, we assumed that the marker inaccuracy parameters are known

apriori to the investigator. When these parameters are unknown, further

complications arise from their estimation. We summarize below the effects
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Figure 4: clinical decision making when β1 = −0.1, β2 = 0.6, β3 = −0.3 and
the marker has 30% prevalance: (a) & (b) specificity is fixed at 0.95, (c) & (d):
sensitivity is fixed 0.95. Each point represents a percentage computed from
200 simulated clinical trials. Bias reduction was carried out with B = 200 and
P = 200 iterations.
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of sensitivity and specificity on the Cox estimator of treatment effects, and

decision making in the marker-drug co-development. First, sensitivity has

a stronger influence on the variance, and specificity has a stronger influence

on the bias of the Cox estimator, for the treatment effect in the marker-

positive group. This is because low sensitivity reduces the sample size of the

observed marker positive group; while low specificity dilutes the treatment

effect in the marker-positive group. Second, the p-value criterion for clinical

decision making is more heavily influenced by the variance than the bias of

the Cox estimator. Thus it is recommended only for making decisions about

the overall population. Third, the hazard ratio criterion for clincal decision

making is less influenced by the variance but more influenced by the bias of the

Cox estimator. Thus we recommend the hazard ratio criterion when making a

GO/NO-GO decision for the marker positive group. In order to make a reliable

decision about incorporating a diagnostic marker in a prospective phase III

trial, a certain level of marker accuracy is required. We proposed a bootstrap-

based method for reducing the bias due to marker inaccuracy. The cost of bias

reduction is variance inflation. For a strong drug as described in section 4.2,

we recommend the bias-reduced estimator when all of the following conditions

are met: 1) sensitivity is at or above 0.4, 2) specificity is at or above 0.2, 3)

either sensitivity or specificity is above 0.6. These conditions are dependent

on the underlying effect sizes: β1, β2, β3. Our simulation scheme may be used

to explore the working conditions of bias reduction for other effect sizes. R

code used for this study is available upon request.
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