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Abstract

This paper addresses the question of making inferences regarding Boolean
functions under conditions of (i) noise, or stochastic variation in observed
data, and (ii) sparsity, by which we mean that the number of inputs or predic-
tors far exceeds the arity of the underlying Boolean function. We put forward
a simple probability model for such observations, and discuss model selec-
tion, parameter estimation and prediction. We present results on synthetic
data and on a proteomic dataset from a study in cancer systems biology.

1 Introduction

In many applications it is natural to think of a binary output or response Y as a k-
ary Boolean function of binary arguments X1 . . . Xk. In this paper, we consider the
problem of making inferences regarding such functions in settings characterized
by (i) stochastic variation in observed data and (ii) a total number of inputs or
predictors which far exceeds the arity of the underlying Boolean function. We
focus on the case in which both arity k and the specific subset of predictors which
are arguments to the underlying Boolean function are unknown. Thus, we are
interested in inferences concerning sparse, noisy Boolean functions.

Examples of such problems are abundant in many application areas, including,
among others, genetic epidemiology, data mining and systems biology. In genetic
epidemiology the predictors are genetic features, such as haplotypes, while the
responses are indicators of disease status. In data mining, the predictors may be,
for example, a large number of observed indicators regarding customer behavior
(for example, whether or not a customer purchased, or showed an interest in, each
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of a large number of products), while the response of interest may be whether or
not the customer will buy some new product. In systems biology, predictors may
represent, for example, the activation states of proteins, while the response may be
an indicator of cellular state.

In many practical settings, when confronted with a large number of potential
predictors, it can be reasonable to assume that only a small number are relevant to
the response. For example, a small number of genetic features may jointly influ-
ence disease status; equally, a small number of indicators of customer behaviour
may be highly relevant to a future purchase decision. Moreover, since there are 2k

possible states of k binary arguments - and 22k
possible Boolean functions of those

arguments - parsimonious models can be statistically advantageous, especially un-
der conditions of small-to-moderate sample size.

Characterizing sparse Boolean functions from noisy data involves addressing
two related problems. First, we must determine which of a possibly very large
number of predictors are arguments to the underlying function; this involves select-
ing a subset (of unknown size) of available predictors. Second, for a putative set
of k arguments, we must say something about possible k-ary Boolean functions.
Statistically, we formulate these two problems as model selection and parameter
estimation respectively, using a probability model introduced below.

Our work is similar in spirit to logic regression (Ruczinski et al., 2003; Kooper-
berg and Ruczinski, 2005). However, in contrast to logic regression, we focus on
inferring Boolean functions rather than treating the truth value of various Boolean
functions as inputs to a linear model. Our modeling approach is also very dif-
ferent: we do not use decision trees, but rather develop a state-dependent Bino-
mial model. Moreover, our approach is fully Bayesian, and by making use of
sparsity-promoting priors, places a clear emphasis on learning parsimonious mod-
els. Other related work on noisy Boolean functions includes Benjamini et al. (1999)
and Shmulevich et al. (2002).

The remainder of this paper is organized as follows. We first introduce the key
elements of our model and associated notation, and then discuss, in turn, model
selection, parameter estimation and prediction. We present experimental results on
synthetic data and on a proteomic dataset from a study in cancer systems biology.
Finally, we discuss some of the finer points and shortcomings of our work and
directions for further research.
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2 Basic model and notation

2.1 Noisy Boolean functions

A k-ary Boolean function is a function f : {0, 1}k 7→ {0, 1} which maps each of
the 2k possible states of its binary arguments X = (X1 . . . Xk) to a binary state Y .
Such a function can be represented as a truth table:

X1 X2 Y

0 0 0
0 1 1
1 0 1
1 1 1

Since every distinct assignment to the right-most column of the truth table cor-
responds to a distinct function f , there are exactly 22k

Boolean functions of arity
k.

Now, consider a function fθ : {0, 1}k 7→ [0, 1], which maps each of the 2k pos-
sible states of its arguments to the (closed) unit interval. In particular, when inputs
X are in state x, fθ returns a value θx = fθ(x) which represents the probability
with which the output Y takes on value 1. For the moment, we do not place any re-
strictions on the θx’s, but we return to these parameters in the context of inference
below. We call the function fθ a noisy Boolean function. A noisy Boolean function
can be represented by a probabilistic truth table:

X1 X2 Y

0 0 θ00

0 1 θ01

1 0 θ10

1 1 θ11

A conventional truth table can then be regarded as a special, “noise free” case
of a probabilistic truth table, with parameters θx equal to 0 or 1. It is natural to
assume that if a Boolean function evaluates true for a given state x of its inputs, the
response for a “noisy version” of the function should be true more often than false.
Accordingly, if

∀x · I( 1
2
,1](fθ(x)) = f(x) (1)

where IA is the indicator function for set A, we say that fθ corresponds to Boolean
function f . We can then construct a Boolean function f from a noisy Boolean
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function fθ by the following rule:

f(x) =
{

1 if fθ(x) > 1
2

0 otherwise
(2)

This defines a (many-to-one) mapping between the space of noisy Boolean
functions and the space of Boolean functions; we call this mapping Ψ and write
f = Ψ(fθ).

2.2 Probability model

Let Y = (Y1 . . . Yn), Yi ∈ {0, 1} denote binary responses and X = (X1 . . .Xn),
Xi ∈ {0, 1}d corresponding d-dimensional predictors. We denote the ith observa-
tion of the jth predictor by Xij , the ith observation of predictors A ⊆ {1 . . . d} by
XiA and the full set of n observations of predictors A by X·A = (X1A . . .XnA).

Suppose Y is a noisy Boolean function of a subset M ⊆ {1 . . . d} of predictors.
The specification of this subset represents a model; for simplicity, we will use M to
denote both the subset and the model it implies. We assume that, under model M ,
an observation Yi is conditionally independent of all other predictors given XiM :

P (Yi | Xi,M) = P (Yi | XiM ) (3)

Suppose the relevant predictors XiM are in state x. Then, θx = fθ(x) is
the corresponding parameter in the probabilistic truth table, and represents the
probability of the event Yi = 1 given the state of the predictors. In other words,
Yi | XiM = x is a Bernoulli random variable with success parameter θx:

P (Yi = 1 | XiM = x, θ) = θx (4)

where θ is a parameter vector with components θx.
We assume that, given the state of predictors XiM , Y1 . . . Yn are independent

and identically-distributed. Then the joint probability of the Yi’s, given X·M , is a
product of Binomials:

P (Y | X·M , θ) =
∏

x∈{0,1}|M|
Binomial(νx | nx, θx) (5)

where, nx =
∑

i:XiM=x 1 is the number of observations in which predictors X·M
are in state x and νx =

∑
i:XiM=x Yi is the corresponding number of “successes”

of Yi when X·M = x.
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3 Inference

In this Section we discuss model selection, parameter estimation and prediction
using the model introduced above.

3.1 Model selection

Each model corresponds to a subset M ⊆ {1 . . . d} of predictors. As such, there
are, unconstrained, 2d distinct models. Even if we restrict attention to Boolean
functions with maximum arity kmax, the number of possible models is

kmax∑

k=1

(
d

k

)
≈ O(dkmax)

The sheer size of model space - even under conditions of sparsity - makes
model selection a central concern in inference regarding Boolean functions. Fur-
thermore, since noisy Boolean functions can give rise to responses which de-
pend on highly non-linear interactions between predictors, variable selection us-
ing marginal statistics will not, in general, be able to capture the joint explanatory
power of a subset of predictors. In contrast, the state-dependent model introduced
above allows us to consider all “Boolean” interactions between arguments. In this
section, we exploit our probability model to develop a Bayesian approach to model
selection in this setting.

3.1.1 Model posterior

From Bayes’ rule, the posterior probability of a model M can be written as:

P (M | Y,X) =
P (Y | X,M)P (M | X)

P (Y,X)

=
P (Y | X·M )P (M)∑

M∈M P (Y | X·M )P (M)
(6)

where M is the space of all possible models M .
The term P (Y | X·M ) represents the marginal likelihood of responses Y1 . . . Yn.

This can be obtained by integrating out parameters θ:

P (Y | X·M ) =
∫

θ∈Θ
P (Y | X·M , θ)p(θ) dθ (7)

where Θ represents the full parameter space. Now, for any Boolean function f ,
there exists some subset of Θ which maps to f under mapping (2). Integrating
out θ therefore corresponds to averaging over all possible Boolean functions with
arguments M .
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3.1.2 Parameter prior

We first assume prior independence of parameters θx, such that p(θ) =
∏

x p(θx).
Then, from (5) and (7), we get:

P (Y | X·M ) =
∏

x∈{0,1}|M|

∫ 1

0
Binomial(νx | nx, θx)p(θx) dθx (8)

In light of the relationship between parameters θx and underlying Boolean
functions, there are two properties we would like the parameter prior p(θx) to have.
Firstly, given a model M corresponding to a Boolean function of arity k = |M |,
we would like to assign equal probability to all Boolean functions possible under
the model. Secondly, since the parameters θx represent state-dependent success
parameters for a noisy Boolean function, we would like the prior to prefer val-
ues close to zero or one. Now, for any continuous prior density symmetric about
θx = 1

2 , P (θx > 1
2) = P (θx ≤ 1

2) = c (say). From mapping (2), the probability
of a k-ary Boolean function f , given 2k independent parameters θx is:

P (f | θ) = P (Ψ(fθ) = f | θ)

=
∏

x:f(x)=1

P (θx >
1
2
) ·

∏

x:f(x)=0

P (θx ≤ 1
2
)

=
∏

x∈{0,1}k

c

= c2k

which is constant over the space of k-ary Boolean functions. Thus, under prior
parameter independence, any continuous prior density symmetric about θx = 1

2
will display the first of our two desiderata. We therefore suggest a Beta prior with
identical parameters α, β (for symmetry) and α, β < 1 (to concentrate probability
mass around 0 and 1):

p(θx) = Beta(θx | α, β) (α = β, α, β < 1) (9)

This gives the marginal likelihood (8) in closed form:

P (Y | X·M ) =
∏

x∈{0,1}|M|

Γ(α + β)
Γ(α)Γ(β)

Γ(νx + α)Γ(nx − νx + β)
Γ(α + β + nx)

(10)
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3.1.3 Sparse model prior

We use the model prior P (M) to express an explicit preference for sparse models.
We suggest the following prior:

P (M) ∝ κmin(0,λ−|M |) (11)

where parameter λ is a threshold on the subset size |M |, above which the prior
begins to decay, and κ is a strength parameter. By default, we set κ = e.

An alternative to (11) would be a Poisson distribution with parameter corre-
sponding to the prior expected model size. (Assuming a Binomial distribution for
the arity of the underlying Boolean function, the Poisson arises naturally as the
limiting case for a large number of predictors.) We prefer (11), because in contrast
to the Poisson, it assigns equal probability to every model with |M | ≤ λ, but like
the Poisson decays rapidly for |M | > λ.

3.1.4 Markov chain Monte Carlo over model space

From (6), (10) and (11) we can evaluate the posterior probability of any given
model up to proportionality. In smaller domains, and with a bound kmax on the
arity of Boolean functions to be considered, we can explicitly enumerate all mod-
els M and thereby evaluate the full posterior. However, in general, the space M
of models is much too large for such an approach, motivating the need for ap-
proximate inference. Here, we propose a Markov chain Monte Carlo sampler over
model space.

Markov Chain Monte Carlo or MCMC represents a general class of stochastic
simulation methods which are widely used in computational statistics. The basic
idea of MCMC is to construct a Markov chain whose state space is the domain
of the desired random quantity, and whose stationary distribution is its posterior.
Then, simulating the Markov chain provides a means by which to make inferences
based on the posterior distribution of interest.

In a Metropolis-Hastings sampler (Hastings, 1970), draws are made from a
proposal distribution Q, which depends on current state, and then accepted or re-
jected in such a way as to guarantee that, asymptotically, they behave as draws
from the desired target distribution. Here, we develop a MCMC sampler of the
Metropolis-Hastings type for the purpose of inferring the posterior distribution (6)
over models M .

In our approach, a model is equivalent to a subset M of predictor indices
{1 . . . d}. Let I(M) be a set comprising all subsets which can be obtained by
either adding exactly one element to the set M , or by removing exactly one ele-
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ment from it. That is,

I(M) = {A · (|A \M | = 1 ∧M ⊂ A) ∨ (|M \A| = 1 ∧A ⊂ M)} (12)

Then, we suggest the following proposal distribution Q:

Q(M ′; M) =
{ 1

|I(M)| if M ′ ∈ I(M)
0 otherwise

(13)

where M and M ′ denote current and proposed models respectively.
Then, calculate the following Hastings ratio α:

α =
P (M ′ | Y,X)Q(M ; M ′)
P (M | Y,X)Q(M ′;M)

(14)

From (12) and (13) we can see that the proposal distribution is symmetric, such
that Q(M ′;M) = Q(M ;M ′). This means the Hastings ratio is simply:

α =
P (M ′ | Y,X)
P (M | Y,X)

(15)

A proposed model M ′, drawn from Q, is then accepted with probability min(1, α),
and otherwise rejected. If accepted, M ′ is added to the sequence of samples drawn,
and becomes the current model. Else, M is added to the sequence of samples, and
remains the current model.

Since any subset of {1 . . . d} can be reached from an arbitrary starting subset
by some sequence of addition and removal steps, the proposal distribution Q gives
rise to an irreducible Markov chain. Standard results (see, e.g., Robert and Casella,
2004) then guarantee convergence to the desired posterior P (M | Y,X). The
sampler described above is summarized in Algorithm 1.

Algorithm 1 Metropolis-Hastings sampler for model selection.

(1) Initialize model M (1), set t = 1, M ← M (1)

(2) Propose M ′ ∼ Q(M ′; M)

(3) Accept M ′ with probability min(1, α), α = P (M ′|Y,X)
P (M |Y,X) .

(4) Update If M ′ is accepted, M (t+1) ← M ′, M ← M (t+1) else M (t+1) ← M . Set

t ← t + 1
(5) While t < T , repeat (2)-(4).

Importantly, during sampling, the unnormalized quantities P (Y | X·M ′)P (M ′)
and P (Y | X·M )P (M), which can be obtained in closed-form from (10) and (11),
are sufficient for our purposes.
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As shown in Algorithm 1, iterating “propose”, “accept” and “update” steps
gives rise to T samples M (1) . . .M (T ). An important property of these samples is
that, provided the Markov chain has converged to its stationary distribution, they
provide a means by which to compute the expectation of essentially any model-
dependent quantity of interest. Specifically, if E[φ(M)]P (M |Y,X) is the expecta-
tion, under the posterior, of a function φ(M), then

Ê[φ(M)] =
1
T

T∑

t=1

φ(M (t)) (16)

is, by standard results, an asymptotically valid estimator of E[φ(M)]P (M |Y,X).
An important special case of (16), which we shall make use of below, concerns

the posterior probability that a variable j ∈ {1 . . . d} is part of the underlying
model M :

P (j ∈ M | Y,X) =
∑

M∈M
P (j ∈ M | M,Y,X)P (M | Y,X)

= E[IM (j)]P (M |Y,X) (17)

Using (16), we get an asymptotically valid estimate of E[IM (j)]:

Ê[IM (j)] =
1
T

T∑

t=1

IM(t)(j) (18)

Finally, we note that an alternative to sampling from the posterior over models
is to estimate a single, maximum a posteriori model M∗:

M∗ = argmax
M∈M

P (M | Y,X)

This can be done using, for example, a greedy local optimization scheme in
model space, with multiple, random initializations to guard against local maxima.
We do not use this optimization-based approach in this paper, but note that in some
settings it can be a useful and very simple approach to model selection for noisy
Boolean functions.

3.2 Parameter estimation

From standard results (Gelman et al., 2004), the posterior distribution of parameter
θx is a Beta density:

p(θx | Y,X,M) = Beta(θx | νx + α, nx − νx + β) (19)

9



3.3 Prediction

What is the posterior probability that a new, unseen response Y(n+1) will take on
the value 1, given that predictors X(n+1)M are observed in state x? Making use of
standard results (Gelman et al., 2004), it is easy to obtain the following closed-form
predictive probability:

P (Yn+1 = 1 | X(n+1)M = x,Y,X·M )) =
νx + α

α + β + nx
(20)

4 Results

4.1 Synthetic data

We first present an analysis of synthetic data, generated from a model in which
responses depended on 4 out of d =100 predictors. Data were generated in the
following manner:

(1) For i = 1 . . . n (n = 500) and j = 1 . . . d (d = 100), we set Xij = 1 with
probability 1

2 and 0 otherwise.

(2) We specified a data-generating model by choosing a subset

M = {A,B, C, D} ⊂ {1 . . . d}

of predictors, and generated responses by setting Yi = 1 with probability 0.9
when A∨B∨C∨D (and zero otherwise) and setting Yi = 1 with probability
0.1 when ¬(A ∨B ∨ C ∨D) (and zero otherwise).

In other words, the data-generating model was a noisy Boolean function with
underlying Boolean function f = A ∨ B ∨ C ∨ D and parameters θx = 0.9 and
θx = 0.1 for f(x) = 1 and f(x) = 0 respectively.

The model space with |M | ≤ 4 is of size ∼ 4 × 106. We therefore eschewed
exhaustive enumeration and performed model selection using MCMC, following
Algorithm 1, with T = 20, 000. To promote parsimonious models, we used spar-
sity prior (11), with λ = 3. Figure 1 shows average model size plotted against
number of MCMC iterations: the size of sampled models converged to 3.4.

Figure 2(a) shows the posterior probabilities of the 50 most probable models
encountered during sampling, ordered by probability. The model M = {A,B, C,D}
was the most probable model encountered, capturing 0.6 of the probability mass.
Figure 2(b) shows posterior probabilities, calculated following (18), that each of
the d = 100 inputs forms part of the underlying model. The four most probable
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Figure 1: Synthetic data, model sparsity.

inputs were the four variables A,B, C, D in the data-generating model. In con-
trast, under the absolute log odds ratios |ψj | between each input and the response,
3 out of the 4 correct inputs were ranked outside the top 10. (As shown in Edwards
(1963), the log odds ratio is a natural measure of pairwise association for binary
data.)
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Figure 2: Synthetic data, posterior distributions over (a) models and (b) individual
inputs.

Figure 3 shows inferred posterior distributions over parameters, using the sin-
gle best model encountered during sampling. The underlying Boolean function
f = A ∨ B ∨ C ∨ D is false only when all its arguments are false. The posteri-
ors over parameters clearly correspond to f : in every state except “all false”, the
posterior probability mass is concentrated well above 1

2 , but in the “all false” state
(top left panel in Figure 3) probability mass is concentrated well below 1

2 .
Finally, we used the distribution (20) for prediction and tested the approach

using leave-one-out cross-validation. This resulted in 446 correct calls out of 500,
giving a leave-one-out accuracy of 89 %. (Since the noisy Boolean function gives
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Figure 3: Synthetic data, posterior distributions over parameters.

the correct truth value with probability 0.9, expected prediction accuracy using the
data-generating distribution itself would be 90%.)

4.2 Proteomic data

Our second set of empirical results concerns an analysis of proteomic data obtained
from a systems-level study of breast cancer. Biological signaling systems play a
central role in the biology of breast and other cancers; the data analyzed here per-
tain to a number of proteins involved in a key signaling system called the Epidermal
Growth Factor Receptor or EGFR system. Such proteins are typically activated
by a post-translational modification called phosphorylation which enables highly
specific enzymatic behaviour on the part of the protein, with typically only small
quantities of phosphorylated proteins required to drive downstream biochemical
processes. Present/absent calls for 33 phosphorylated proteins were obtained using
the KinetWorksTMsystem (Kinexus Inc., Vancouver, Canada) for each of 34 breast
cancer cell lines. The proteins formed a set of potential predictors. The cell lines
have previously been shown (Neve et al., 2006) to reflect the diversity of primary
tumors and can be usefully thought of as a sample from the space of breast tumors.
The responses were a clinically important indicator called “HER2 status”, which
is widely used to categorize breast tumors for the purpose of targeted therapy. We
sought to discover whether HER2 status could be related to the phosphorylation
state of a small subset of EGFR system proteins via a Boolean function.

We first performed model selection using MCMC, following Algorithm 1, with
T = 10, 000 and sparsity prior (11) with λ = 2. (We chose a smaller value of λ in
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this case on account of the very small sample size of n = 34.) Standard MCMC
diagnostics showed good convergence, and the size of sampled models converged
to 4.46 in this case, as shown in Figure 4.
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Figure 4: Proteomic data, model sparsity.

Figure 5(a) shows the posterior probabilities of the 50 most probable models
encountered during sampling, ordered by probability. The single most probable
model encountered had just two predictors, namely Focal Adhesion Kinase (FAK),
phosphorylated on Tyrosine #576 and Insulin Receptor Substrate (IRS1), phos-
phorylated on Tyrosine #1179. However, this model M = {FAK, IRS1} had a
posterior probability of only 0.07. The small sample size of n = 34 makes the pos-
terior distribution over models quite diffuse, such that while M = {FAK, IRS1}
has the highest posterior probability, several other models have probability on the
same order of magnitude.
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Figure 5: Proteomic data, posterior distributions over (a) models and (b) individual
inputs.

Posterior probabilities over individual inputs offer a complementary perspec-
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Figure 6: Proteomic data, posterior distributions over parameters.

tive to the model posterior by showing which variables appear very often in sam-
pled models. Figure 5(b) shows posterior probabilities over individual inputs, cal-
culated following (18). The single most probable input was IRS1, with posterior
probability of 0.9. This gives us a degree of confidence in the relevance of IRS1,
since it appears in most of the sampled models. The second most probable input
was FAK, with posterior probability 0.33.

Figure 6 shows inferred posterior distributions over parameters, using model
M = {FAK, IRS1}. The posteriors over parameters suggest that the underlying
Boolean function is of the form: HER2 = IRS1 ∧ ¬FAK. However, two of the
posteriors are relatively diffuse, suggesting that the data are perhaps not sufficient
to infer this rule with very high confidence.

Finally, we performed prediction using (20) and model M = {FAK, IRS1}.
Leave-one-out cross-validation gave 32 out of 34 correct calls or a cross-validation
accuracy of 94%.

5 Discussion and conclusions

We have presented an approach to the statistical analysis of sparse, noisy Boolean
functions. We perform model selection, parameter estimation and prediction within
a fully Bayesian framework, with priors on parameters designed to reflect the log-
ical nature of underlying functions but remain agnostic otherwise, and priors on
models designed to promote sparsity. Our model is simple enough to allow most
quantities of interest to be computed in closed form, but general enough to describe
arbitrary Boolean functions.

The size of the space of Boolean functions, and the potential complexity of
such functions means that issues of over-fitting and over-confidence in inferred re-
sults are a key concern. Our use of MCMC on model space allowed us to obtain
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posterior distributions over models, as well as features of models, such as the in-
clusion of individual predictors. These distributions allowed us to not only rank
predictors and select a most probable model, but to assess our confidence in such
inferences, taking into account fit to data, model complexity and number of ob-
servations. For example, in experiments on synthetic data, posteriors over models,
individual predictors and parameters showed very clearly that we should have high
confidence in the most probable model and the inferred Boolean function. In con-
trast, in our analysis of small-sample proteomic data, we found that the probability
of the single best model {FAK, IRS1} was not overwhelming, such that despite
a cross-validation accuracy of 94%, there was a clear need to exercise caution in
drawing definitive conclusions. However, the high posterior probabilities associ-
ated with the predictors IRS1 and, to a lesser extent, FAK, meant that we could
have some confidence in their relevance. Interestingly, both proteins have been
shown experimentally to exhibit interplay, via “crosstalk”, with the wider EGFR
signaling system of which HER2 forms a part (Renshaw et al., 1999; Hemi et al.,
2002).

In the present paper, we specified a mapping between noisy Boolean functions
and Boolean functions, but treated the characterization of a Boolean function from
inferred parameters informally. In a follow-up paper, we aim to include this step in
our statistical framework, and explicitly infer distributions over Boolean functions
themselves.

Our results concerning HER2 status in breast cancer were largely illustrative.
A more promising line of biological enquiry using noisy Boolean functions con-
cerns the prediction of drug response from high-throughput biochemical data. We
hypothesize that present/absent calls on a small number of phospho-proteins may
be capable of predicting whether or not a given cancer cell line is responsive to a
therapeutic agent. Sparse, Boolean prediction rules based on either proteomic anal-
yses of this kind, or on gene expression data, could have substantive translational
implications, and might also shed light on mechanisms of action or resistance.

In conclusion, sparse Boolean functions are of relevance in many areas of sci-
ence and industry, and we anticipate that our work will find wide application. As
noted above, our current efforts are directed towards questions in cancer systems
biology, but we are also exploring applications in genetic epidemiology and data-
mining.
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