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Abstract

Estimating covariance matrices is a problem of fundamental importance in multivariate statistics.
In practice it is increasingly frequent to work with data matrices X of dimension n × p, where p and
n are both large. Results from random matrix theory show very clearly that in this setting, standard
estimators like the sample covariance matrix perform in general very poorly.

In this “large n, large p” setting, it is sometime the case that practitioners are willing to assume
that many elements of the population covariance matrix are equal to 0, and hence this matrix is sparse.
We develop an estimator to handle this situation. The estimator is shown to be consistent in operator
norm, when p/n → l 6= 0, where l is generally finite, as p → ∞. In other words the largest eigenvalue
of the difference between the estimator and the population covariance matrix goes to zero. This implies
consistency of all the eigenvalues and consistency of eigenspaces associated to isolated eigenvalues.

We also propose a notion of sparsity for matrices that is “compatible” with spectral analysis and is
independent of the ordering of the variables.

1 Introduction

Estimating covariance matrices is the cornerstone of much of multivariate statistics. Theoretical con-
tributions (see James and Stein (1961), Haff (1980), Anderson (2003), Chap. 7) have been highlighting for
a long time the fact that for various loss functions, one could improve on the sample covariance matrix as
an estimator of the population covariance matrix, in a non-asymptotic setting.

The “large n, large p” context, i.e multivariate analysis of datasets for which both the number of
observations, n and the number of predictors p are large, is, in a somewhat different setting, highlighting
the deficiency of this estimator. To be more precise, when we refer to “large n, large p” problems, we
mean that p/n has a non-zero limit as n → ∞. Results from random matrix theory (Marčenko and
Pastur (1967)) make clear that in this asymptotic setting, even at just the level of eigenvalues, the sample
covariance matrix will not lead to a consistent estimator. We refer to El Karoui (2006) for a more thorough
introduction to these ideas and the consequences of the results for statistical practice.

This is naturally very problematic since this class of results suggest that the sample covariance matrix
contains little reliable information about the population covariance. This realization has helped generate
a significant amount of work in mathematics, probability and theoretical statistics and the behavior of
many hard to analyze quantities are now quite well understood. For instance, under strong distributional
assumptions, one can characterize the fluctuation behavior of the largest eigenvalue of sample covariance
matrices for quite a large class of population covariance (see e.g El Karoui (2007) for the latest results), or
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the fluctuation behavior of linear functionals of eigenvalues (see Jonsson (1982), Bai and Silverstein (2004),
and Anderson and Zeitouni (2006)). However, until very recently there has been less work in the direction
of using these powerful results for the sake of concrete data analysis.

Of course, since this inconsistency phenomenon is now fairly well-known, remedies have been proposed.
For instance the interesting paper Ledoit and Wolf (2004) proposes to shrink the sample covariance matrix
towards the identity matrix using a shrinkage parameter chosen from the data. In El Karoui (2006), a
non-parametric estimator of the spectrum is proposed and shown to be consistent in the sense of weak
convergence of distributions. The method in El Karoui (2006) uses convex optimization, random matrix
theory (the generalization of Marčenko and Pastur (1967) found in Silverstein (1995)) and ideas from non-
parametric function estimation. These estimation methods rely on asymptotic properties of eigenvalues,
and as a starting point for estimation of the full covariance matrix, they are essentially trying to get an
estimator that is equivariant under the action of the orthogonal (or unitary) group. In other words, the
“basis” in which the data is given is not taken advantage of, and the premise of such an analysis is that
we should be able to find good estimators in any “basis”. While ideally researchers will be able to come
up with strategies to solve the estimation problem at this level of generality, it is reasonable to expect
that taking advantage of the representation of the data we are given should or might help finding good
estimators.

In particular, it is often the case that data analysts are willing to assume that the basis in which the
data is given is somewhat nice. Often this translates by the assumption that the population covariance
matrix has a particular structure in this basis, which should naturally be taken advantage of. In this
situation, it becomes natural to perform certain forms regularization by working directly on the entries of
the sample covariance matrix. Various strategies have been proposed (see Huang et al. (2006), Bengtsson
and Furrer (2007)) that try to take advantage of the assumed structure. The very interesting paper Bickel
and Levina (2007) proposed the idea of “banding” covariance matrices when it is known that the population
covariance has small entries far away from the diagonal. The idea is to put to zero all coefficients that are
too far away from the diagonal and to keep the other ones unchanged. Remarkably, in Bickel and Levina
(2007), the authors show consistency of their estimator in spectral (a.k.a operator) norm, a very nice result.
In other words, they show that the largest singular value of the difference between their estimator and
the population covariance matrix goes to zero as both dimensions of the matrices go to infinity and for
instance when p/n has a finite limit. The requirement of estimating consistently in spectral norm is a very
interesting idea (which we adopt in this paper), since then one can deduce easily many results concerning
consistency of eigenvalues and eigenspaces. We make this remark more precise in Subsection 3.5, using
different arguments than those used by Bickel and Levina.

It might be argued that ideas such as banding essentially assume that one knows a “good” ordering
of the variables. As a matter of fact, if we start with a matrix with entries small or zero away from the
diagonal and reorder the variables, the new covariance matrix we obtain may not have only small entries
away from the diagonal. In some situations, for instance time series analysis, the order of the variables
has a statistical/scientific meaning and so using it makes sense. However, in many data analytic problems,
there is no canonical ordering of the variables.

Hence to tackle these situations, a natural requirement is to find an estimator which is equivariant under
permutations of the variables. We call such estimators permutation-equivariant. Such an estimator would
take advantage of the particular nature of the basis in which the data is given, while not requiring the user
to find a permutation of the order of the variables that makes the analysis particularly simple. Searching
for such a permutation would - in general - be practically infeasible. Note that regularizing the estimator by
applying the same function to each of the entries of the matrix leads to permutation-equivariant estimators.

A subject of particular practical interest is the estimation of sparse covariance matrices (see for instance
d’ Aspremont et al. (2006)) because they are appealing to practitioners for several reasons, including
interpretability, presumably ease of estimation and the practically often encountered situation where while
many variables are present in the problem, most of them are correlated to only “a few” others.

In this paper we propose to estimate sparse matrices by hard thresholding small entries of the sample
covariance matrix and putting them to zero. We propose a combinatorial view of the problem, inspired in
part by classical ideas in random matrix theory, going back to Wigner (1955). The notion of sparsity we
propose is flexible enough that it makes the proofs manageable and at the same time rich enough that it

2



captures many practically natural situations.
We show that our estimators are consistent in spectral norm, both in the case of the sample covariance

and the sample correlation matrix. No assumptions of normality of the data are required, only the existence
of certain moments. As is to be expected, the larger the number of moments available, the easier the task
and the larger the class of matrices we can estimate consistently.

2 Sparse matrices: concepts and definitions

One conceptual difficulty of this problem is to define a notion of sparsity for matrices that is compatible
with spectral analysis. Just as in the case of norms, extending straightforwardly the notions from vectors
to matrices can be somewhat unhelpful. In the norm case, the Frobenius norm - the extension of the `2

(vector) norm to matrices - is for instance known to not be as good as other matrix norms from a spectral
point of view. Similarly here, we will explain that just counting the number of 0’s in the matrix - the
canonical sparsity notion for vectors - does not yield a “good” notion of sparsity when one investigates the
spectral properties of matrices.

Let us illustrate our problem on a concrete example. Consider now two p× p symmetric matrices with
the same number of non-zero coefficients:

E1 =



1 1√
p

1√
p . . . 1√

p
1√
p 1 0 . . . 0
...

...
. . . . . . 0

1√
p 0 0 1 0

1√
p 0 0 . . . 1

 and E2 =



1 1√
p 0 . . . 0

1√
p 1 1√

p . . . 0
0 1√

p 1 1√
p . . .

...
. . . . . . . . . 1√

p

0 . . . 0 1√
p 1


.

Using the Schur decomposition of E1 to compute its characteristic polynomial (see also Subsection 3.3), we
see easily that its eigenvalues are (p− 2) 1’s and 1 +

√
p− 1/

√
p and 1−

√
p− 1/

√
p. On the other hand,

E2 is a well-known matrix, for instance in numerical analysis, and its eigenvalues are {1 + 2 cos(kπ/(p +
1))/

√
p}p

k=1. Hence, the extreme eigenvalues of these matrices are very different, but they have the same
number of non-zero coefficients and their non-zero coefficients have the same values. This raises the question
of trying to come up with an alternative notion of sparsity that while encompassing the canonical notion
of “having a large number of zeros” might be better suited for the study and the understanding of spectral
properties of matrices.

2.1 Matrix sparsity: proposed definition

To describe our proposal, we need to introduce several concepts from graph theory and combinatorics.
For the sake of readability we detail them here; they can also be found in for instance Stanley (1986),
Section 4.7. To each population covariance matrix, Σp, it is natural to associate an adjacency matrix
Ap(Σp), in the following fashion:

Ap(i, j) = 1σ(i,j) 6=0 .

This matrix Ap can in turn be viewed as the adjacency matrix of a graph Gp, with p vertices, corre-
sponding to the variables in our statistical problem. We call a path (or a walk) on this graph closed if
it starts and finishes at the same vertex. The length of a path is the number of edges it traverses. By
definition, we call

Cp(k) = {closed paths of length k on the graph with adjacency matrix Ap}

and
φp(k) = Card {Cp(k)} .

Note that we have
φp(k) = trace

(
Ak

p

)
.

The following two drawings show the graphs corresponding to the adjacency matrices of E1 and E2:
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Graph corresponding to E1: Graph corresponding to E2:
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Definition 1. We say that a sequence of covariance matrices {Σp}∞p=1 is β-sparse if the graphs associated
to them via Ap’s have the property that

∀k ∈ 2N , φp(k) ≤ f(k)pβ(k−1)+1

where f(k) ∈ R+ is independent of p and 0 ≤ β ≤ 1.
We say that a sequence of matrices is asymptotically β-sparse if it is β + ε sparse for any ε > 0.
We call β an index of sparsity of the sequence of matrices.

For short, we say that a matrix is β-sparse instead of saying that a sequence of matrices is β-sparse
when this shortcut does not cause any confusion.

Here are a few simple examples of matrices that are sparse according to our definition.

1. Diagonal matrices In the case of diagonal matrices, Ap = Idp, and Gp consists only of self-loops at
each vertex. Hence φ(k) = p, for all k. So a diagonal matrix is 0-sparse.

2. Matrices with at most M non-zero elements on each line For these matrices, the corresponding
Gp has at most M edges at each vertex. A simple enumeration shows that φ(k) ≤ pMk−1. So these
matrices are also 0-sparse.

3. Matrices with at most Mpα non-zero elements on each line The same argument shows that
φ(k) ≤ p(Mp)α(k−1). So these matrices are α sparse. In particular, full matrices are 1-sparse.

4. Matrices with at most M(log p)r non-zero elements on each line We have, by simple counting
arguments, φp(k) ≤ pMk−1(log p)r(k−1). These matrices are therefore β-sparse for any β > 0 and
asymptotically 0-sparse.

Given a matrix Sp, we can associate to the corresponding Gp a set of weights on the edges, by simply
setting the weight of the edge joining vertices i and j to Sp(i, j). Similarly, for a path, we have

Definition 2 (Weight of a path). Given γ, a closed path of length k: γ : i1 → i2 → i3 → . . . → ik →
ik+1 = i1, and a matrix Sp, we call wγ the weight of the path γ. By definition it is

wγ = Sp(i1, i2)Sp(i2, i3) . . . Sp(ik, i1) .

We conclude this section by the following simple but important remark:

trace
(
Sk

p

)
=

∑
γ∈Cp(k)

wγ

2.2 Remarks on the notion of sparsity proposed

It is clear that if we change the order of the variables in our statistical problem, we do not change
the “index of sparsity” of our matrices. This is essentially obvious from the graph representation of the
problem. From a more algebraic standpoint, if the permutation that is applied is encoded as a permutation
matrix P , the covariance in the permuted problem is simply P ′ΣpP and the new adjacency matrix is P ′ApP
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(this matrix is indeed an adjacency matrix). Since P ′P = Idp, we have trace
(
(P ′ApP )k

)
= trace

(
Ak

p

)
,

and hence the sparsity index is unchanged when we permute the variables.
We also note that we could replace the notion of β-sparsity we use by the requirement that

φp(k) ≤ f(k)p1+βk ,∀k ∈ 2N .

This would result in minor differences in the theorems that follow and might be slightly simpler to apply
when the only information available concerns the largest eigenvalue of A2

p. From a combinatorial point of
view, the notion we use in this paper is more natural and this is what directed our choice.

It is clear that the smaller β, the sparser the matrix. In particular, if β0 ≤ β1, a matrix which is
β0-sparse is also β1-sparse. As we will shortly show, the class of β-sparse matrices is stable by addition,
which implies that the sum of a β0-sparse and a β1-sparse matrix is (β0 ∨ β1)-sparse.

We conclude this discussion with the proof of the following fact:

Fact 1. The set of β-sparse matrices is stable by addition. In other words, the sum of two β-sparse matrices
is β-sparse.

Proof of Fact 1. We call B0 and B1 our “initial” β-sparse matrices, and B2 their sum. A2, the adjacency
matrix of B2 is not the sum of A0 + A1. In particular, edges that are present in both A0 and A1 may not
be present in A2. However, if we add edges to A2, we increase φ

(2)
p (k), the number of closed paths of length

k on A2. So in checking the sparsity index of B2, we can work with Ã2, which contains all edges in A0 and
A1, and contains the graph corresponding to A2 as a subgraph of its own graphical representation. More
algebraically, the definition of Ã2 is

Ã2(i, j) = min(A0(i, j) + A1(i, j), 1) = 1A1(i,j)=1 + 1A0(i,j)=11A1(i,j)=0 .

We can write Ã2 = Ã0 + A1, with Ã0(i, j) = 1A0(i,j)=11A1(i,j)=0. Note that Ã0 is a symmetric adjacency
matrix, may have zeros where A0 has ones, but does not have ones where A0 had zeros. So the graph corre-
sponding to Ã0 is a subgraph of the graph corresponding to A0. In particular, trace

(
Ã2k

0

)
≤ trace

(
A2k

0

)
.

The matrices Ã0, A1 and Ã2 are all symmetric, so when dealing with their eigenvalues we can apply
standard results for symmetric matrices. Using Lidskii’s theorem (see Bhatia (1997), Corollary III.4.2), we
know that

λ↓(Ã2) ≺ λ↓(Ã0) + λ↓(A1) ,

where λ↓(A1) is the vector of decreasing eigenvalues of A1 and the sign ≺ means that the left-hand side
is majorized by the right hand-side (see Bhatia (1997) p.28 for a definition, if needed). Now the functions
h(x) = x2k are convex and we therefore have, using standard results in the theory of majorization (Bhatia
(1997), Theorem II.3.1),

trace
(
Ã2k

2

)
≤
∑

[λj(Ã0) + λj(A1)]2k ≤ 22k−1
∑

λj(Ã0)2k + λj(A1)2k ≤ 22k−1trace
(
A2k

0 + A2k
1

)
.

Because A0 and A1 are β-sparse, we see that Ã2k
2 is. And because we have seen that

trace
(
A2k

2

)
≤ trace

(
Ã2k

2

)
,

we conclude that B2 is β-sparse.

3 Estimation by entry-wise thresholding

To avoid any confusion as to the meaning of the results to be proved, we remind the reader that the
spectral norm of a matrix A is defined (see Horn and Johnson (1990), p. 295) as |||A|||2 = max{

√
λ :

λ an eigenvalue of A∗A}; in other words, it is the largest singular value of A. When A is a symmetric
matrix, |||A|||2 coincides with the spectral radius of A: ρ(A) = max |λi(A)|. In what follows, we use
interchangeably the terms spectral norm and operator norm.
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When we say that we threshold a variable x at level t we mean that we keep (or replace x by) x1|x|≥t.
We also refer to this operation as hard thresholding. Our final remark concerns notation: in what follows,
C refers to a generic constant independent of n and p. Its value may change from display to display when
there is no risk of confusion about the meaning of the statements. If there are, we also use K or C ′ and
they play the same role as C.

3.1 Estimation of sparse covariance or correlation matrices

We first prove an intermediate result concerning the Gaussian MLE estimator when it is known that
the mean of the data is zero (Theorem 1). This is a stepping stone to the more practically relevant results
concerning the sample covariance matrix (Theorem 2) and the sample correlation matrix (Theorem 3).
The proofs of these later results are essentially the same as that of Theorem 1, but the proof of Theorem 1
is technically a bit less complicated and highlights the key ideas. We refer the reader to Subsection 3.5 for
detailed explanations of the consequences of Theorems 1, 2 and 3. Finally, we stress that all of our results
are obtained when p/n has a non-zero limit, i.e in the “large n, large p” setting.

Theorem 1. Suppose X is an n × p matrix, with p/n → l ∈ (0,∞). Suppose that the rows of X are
independent and identically distributed and denote them by {Xi}n

i=1. Call Σp the matrix of the vector X1.
Suppose Σp is β-sparse with β = 1/2 − η and η > 0. Suppose that the non-zero coefficients of Σ are all
greater in absolute value than Cn−α0, with 0 < α0 = 1/2 − δ0 < 1/2. Suppose further that for all (i, j),
Xi,j has mean 0 and finite moments of order 4k(η), with k(η) ≥ (1.5 + ε + η)/(2η) and k(η) ∈ N, for some
ε > 0. Assume that k(η) ≥ (2 + ε + β)/(2δ0). Call

Sp =
1
n

n∑
i=1

XiX
′
i

Call Tα(Sp) the matrix obtained from thresholding the entries of Sp at the level Kn−α with α = 1/2−δ > α0.
Then we have, if we call ∆p = Tα(Sp)− Σp,

|||∆p|||2 = |||Tα(Sp)− Σp|||2 → 0a.s ,

where |||M |||2 is the spectral norm of the matrix M .

We postpone a short discussion of the meaning of this theorem to after the statement of Theorem 2,
which is arguably more interesting practically.

Proof of Theorem 1. We divide the proof into two parts. The first part consist in showing the “oracle”
version of the theorem, i.e showing that operator norm consistency happens when one is given the pairs
(i, j) for which σp(i, j) = 0. The second part shows that the empirical thresholding does not affect this
result.

Let us first remind the reader of a variant of Hölder’s inequality. Let A1, . . . Am be random variables
with finite absolute m-th moment. Then we have∣∣∣∣∣E

(
m∏

i=1

Ai

)∣∣∣∣∣ ≤
m∏

i=1

E (|Ai|m)1/m .

Note that for the case m = 2, this is just the Cauchy-Schwarz inequality. So the result is true when m = 2.
We prove it by induction on m. Suppose therefore it is true for all integers less or equal to m − 1. Call
B1 =

∏m
i=2 Ai. By Hölder’s inequality, we have

|E (A1B1) | ≤ (E (|A1|m))1/m
[
E
(
|B1|

m
m−1

)]m−1
m

.

Now, by the induction hypothesis, applied to the random variables |Ai|m/(m−1),

E
(
|B1|

m
m−1

)
= E

(
m∏

i=2

|Ai|m/(m−1)

)
≤

m∏
i=2

[E (|Ai|m)]1/(m−1) .
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Therefore,
[
E
(
|B1|

m
m−1

)]m−1
m ≤

∏m
i=2 E (|Ai|m)1/m and the inequality is verified.

Now given γ(2k), a closed path of length 2k, and the associated matrix M we clearly have

|E
(
wγ(2k)

)
| ≤ E

(∣∣wγ(2k)

∣∣) ≤ 2k∏
j=1

[
E
(
|M(ij , ij+1)|2k

)]1/2k
, (1)

assuming, for a moment that the relevant moments exist.
• Oracle part of the proof

Let us first introduce some notations. We denote by σp(i, j) the (i, j)-th entry of Σp, the population
covariance. We call oracle (Sp) the matrix with entries Sp(i, j)1σp(i,j) 6=0 and

Ξp = oracle (Sp)− Σp .

Note that we have
Ξp(i, j) = (Sp(i, j)− σp(i, j))1σp(i,j) 6=0 .

In the oracle setting, where we assume we know the patterns of zeros in Σp, so we focus on the matrix Ξp.
Clearly Σp and Ξp have the same patterns of 0’s and non-zero, and so if Σp is β-sparse, so is Ξp. Equation
(1) shows that if we can control the moments (Ξp(i, j))2k, we will be able to bound the expected weight of
each path. Now we remark that we can write

Ξp(i, j) =
1
n

n∑
m=1

Zm

where Zm’s are independent, identically distributed and with mean 0, since Sp is unbiased for Σp. By
expanding the power, we get that

(Ξp(i, j))2k =
1

n2k

∑
i1,...,i2k

Zi1 . . . Zi2k
.

This last quantity can be rewritten

Zi1 . . . Zi2k
=

n∏
i=1

Zki
i , with

n∑
i=1

ki = 2k , and ki ≥ 0

We now remark that if there exists i0 such that ki0 = 1, then E (Zi1 . . . Zi2k
) = 0, by independence and

the fact that each of the Zi’s have mean 0. Therefore, in the expansion of (Ξp(i, j))2k, only the terms for
which all non-zero ki’s are greater or equal to 2 will contribute to the expectation. Counting the number
of distinct indices appearing in the product above allows us to get a first order estimate of E

(
Ξp(i, j)2k

)
.

As a matter of fact, the contribution of products with q distinct indices is of order n−2knq, by simply
counting how many such products there are. So we see that to first order, the only products that matter
are those for which all the Zi’s raised to a non-zero power are raised to the power 2. Denoting by n[k] the
k-th factorial moment n(n− 1) . . . (n− k + 1), we have, assuming that E

(
Z2k

i

)
< ∞,

E (Ξp(i, j))
2k ≤ n[k]

n2k

2k!
2kk!

[
E
(
Z2

i

)]k +
1

n2k
O(nk−1) = O(

1
nk

) , if k is fixed and n →∞ .

We therefore have [
E (Ξp(i, j))

2k
]1/2k

= O(
1√
n

) .

In particular, the weight of a closed path of length 2k on the graph with adjacency matrix Ap(Σp) (or
Ap(Ξp)) and weights Ξp(i, j) has the property that∣∣E (wγ(2k)

)∣∣ ≤ E
(
|wγ(2k)|

)
= O(n−k) .
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Since we have assumed that Σp and therefore Ξp are β-sparse, we have

E
(
trace

(
Ξ2k

p

))
= O(p1+β(2k−1)n−k) .

Since we assume that p � n, we see that E
(
trace

(
Ξ2k

p

))
= O(n1/2+η−2kη), where η = 1/2−β. In particular,

if k is chosen such that
k ≥ 1.5 + ε + η

2η
,

we see that
E
(
|||Ξp|||2k

2

)
≤ E

(
trace

(
Ξ2k

p

))
= O(n−(1+ε)) ,

because Ξp is a symmetric matrix, so its spectral norm squared is one of its eigenvalues squared. Using
Chebyshev’s inequality and the first Borel-Cantelli lemma, we conclude that

|||Ξp|||2 → 0 a.s

Note that 2k > 1 + 1/(2η) would have guaranteed convergence in probability. The above proof is correct
if Zm has a finite 2k-th moment. Since Zm = Xm,iXm,j , the assumption that the entries of the data
matrix X have a 4k-th moment guarantees the existence of a 2k-th moment for Zm, using for instance the
Cauchy-Schwarz inequality.

We have shown that |||oracle (Sp) − Σp|||2 → 0 almost surely, when the conditions of the theorem are
satisfied.

• Non-oracle part of the proof
We now turn to the non-oracle version of the procedure. It is clear that all we need to do at this point is
to show that the thresholding procedure will lead a.s to the right adjacency matrix. Recall the notation
∆p = Tα(Sp) − Σp, the difference between our estimator and the population covariance. Call Bp the
event Bp ={at least one mistake is made by thresholding}, i.e Ap(Tα(Sp)) 6= Ap(Σp). Call Ep the event
{|||∆p|||2 > ε} and Fp the event {|||Ξp|||2 > ε} (we do not index these events by ε to alleviate the notation).
Note that

Ep = (Ep ∩Bp)
⋃

(Ep ∩Bc
p) ⊆ Bp

⋃
(Ep ∩Bc

p) = Bp

⋃
(Fp ∩Bc

p) ⊆ Bp

⋃
Fp .

We have already seen that P (Fp infinitely often) = 0, so if we can show that P (Bp i.o) = 0, we will have
P (Ep i.o) = 0, as desired.

Call Op = oracle (Sp) and S−p = Sp−Op, where oracle (Sp) is defined above. Note that S−p has non-zero
entries only where Σp has entries equal to 0; when that is the case, S−p (i, j) = σ̂(i, j). We call Dp the set
of pairs (i, j) such that σ(i, j) = 0, i.e

Dp = {(i, j) : σp(i, j) = 0} .

We will first show that the maximal element of S−p stays below n−α a.s. Note that in general, for a
random matrix M and index sets I and J ,

P ( max
i∈I,j∈J

|mi,j | > ε) ≤
∑

i∈I,j∈J

P (|mi,j | > ε) .

The same moment computations as the ones we made for Ξp above show that for the elements of Sp

corresponding to σp(i, j) = 0, we have E
(
Sp(i, j)2k

)
= O(n−k). Therefore,

P (max
Dp

|Sp(i, j)| > Cn−α) ≤
∑

(i,j)∈Dp

E
(
Sp(i, j)2k

) n2kα

C2k
= O(p2n2kαn−k) .

Since we assumed that p � n, we see that if k(1− 2α)− 2 ≥ 1 + ε,

P (max
Dp

|Sp(i, j)| > Cn−α i.o) = 0 ,
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by the first Borel-Cantelli lemma. In other words, if we call (Tα(Sp))− the thresholded version of the part
of Sp that corresponds to indices in Dp, we have that P ((Tα(Sp))− 6= 0 i.o) = 0.

We now turn our attention to Dc
p, i.e the set of indices for which σp(i, j) 6= 0. Recall that we assumed

that these σp(i, j) satisfied |σp(i, j)| ≥ Cn−α0 and α0 < α. Now note for (i, j) in Dc
p, and σp(i, j) ≥ 0,

we have {|Sp(i, j)| < Cn−α} ⊆ {0 ≤ σp(i, j) − Cn−α ≤ σp(i, j) − Sp(i, j)}. So, in this case, by using the
moment computations made above, and using C to denote a generic constant, we have,

P (|Sp(i, j)| < Cn−α) ≤ E (σp(i, j)− Sp(i, j))
2k

(σp(i, j)− Cn−α)2k
= O(n−kn2kα0)

Similarly, when σp(i, j) < 0, we have

P (|Sp(i, j)| < Cn−α) ≤ E (σp(i, j)− Sp(i, j))
2k

(|σp(i, j)| − Cn−α)2k
= O(n−kn2kα0)

Now note that because Σp is β-sparse, there are at most O(p1+β) non zero coefficients in Σp: indeed φp(2)
counts the number of non-zero coefficients in Σp. From this we conclude that

P (∃(i0, j0) ∈ Dc
p : |Sp(i0, j0)| < Cn−α) ≤ O(nk(2α0−1)p1+β) .

So if
k ≥ 2 + ε + β

1− 2α0
=

2 + ε + β

2δ0

then, almost surely, no Sp(i, j) will be wrongly thresholded, if (i, j) ∈ Dc
p. Combining this result with the

one on the indices in Dp, we have
P (Bp i.o) = 0 ,

and we have the result announced in the theorem.

It is however more common practice to use as our estimator of the covariance matrix the sample
covariance matrix that differs slightly from the matrix Sp used above, which is the maximum likelihood
estimator in the (mean 0) Gaussian case. We now show that for the usual estimator the same strategy
works.

Theorem 2 (Sample covariance matrix). Suppose the assumptions of Theorem 1 are satisfied, but
allow now Xi to have a non-zero mean µ. Call

Sp =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)′ .

Then the result of Theorem 1 holds; namely the thresholded matrix T (Sp) − Σp converges a.s in spectral
norm to 0.

The previous theorem basically means that if the covariance matrix Σp is sparse enough, and if the
data come from a distribution with enough moments, then thresholding the sample covariance matrix by
keeping only terms that are a bit larger than 1/

√
n is a good idea and will lead to an estimator that

is consistent in operator norm. This is in stark contrast to simply using the sample covariance matrix,
when in the asymptotics considered here, we would not have consistency even at the level of the vector of
eigenvalues: in the case of Σp = Id, this is a consequence of the results of Marčenko and Pastur (1967) or
Geman (1980) and we refer to El Karoui (2006) for a thorough discussion.

Proof. The proof proceeds as the one of Theorem 1. Since Sp is still unbiased for Σp, the only thing we
have to show here is that the 2k − th central moments of Sp(i, j) decay in the same fashion as they did in
Theorem 1. First let us note that

Sp(i, j) =
1

n− 1

n∑
l=1

(Xl,i − µi)(Xl,j − µj)−
n

n− 1
(X̄i − µi)(X̄j − µj) ,

9



so

Sp(i, j)− σp(i, j) =
1

n− 1

n∑
l=1

((Xl,i − µi)(Xl,j − µj)− σp(i, j))

− n

n− 1

(
(X̄i − µi)(X̄j − µj)−

1
n

σp(i, j)
)

.

Now, since (a + b)2k ≤ 22k(a2k + b2k), we see that we will have the result we need if we can bound each
term in the right-hand side of the previous equation. The technique we used above immediately shows
that

E

(
1

n− 1

n∑
l=1

[(Xl,i − µi)(Xl,j − µj)− σp(i, j)]

)2k

= O
(

1
nk

)
,

assuming for a moment that all the needed moments exist. For the other part of the equation, the same
argument shows that the only thing we need to control is E

(
(X̄i − µi)(X̄j − µj)

)2k, since the assumptions
we made about the moments of Xi guarantee that σp(i, j) is bounded in p. Using the Cauchy-Schwarz
inequality, it is clear that all we need to do is control E

(
X̄i − µi

)4k, for all i. But X̄i − µi is a sum of
independent mean 0 random variables and the computations we made in the proof of Theorem 1 show that

E
(
X̄i − µi

)4k = O
(

1
n2k

)
.

Therefore,

E
(
(X̄i − µi)(X̄j − µj)

)2k = O
(

1
n2k

)
.

So we conclude that

E (Sp(i, j)− σp(i, j))
2k = O

(
1
nk

)
,

just as in the case of the Gaussian MLE estimator. This is all we need to complete the proof of Theorem
2, since the last steps follow exactly from the proof of Theorem 1. The assumptions made guarantee that
all the moments used above exist and are finite.

We note that the distribution of the entries of X can change with n and p as long as the moment
conditions are satisfied and the bounds on the moments are uniform in n and p. We now turn to the
question of estimating correlation matrices.

Theorem 3 (Correlation matrices). Under the assumptions of Theorem 1, but requiring the boundedness
of the 8k(η)-th moments of the Xi,j’s, if Σp is now the correlation matrix of the vector Xi, and if Sp is
now the sample correlation matrix, we have as before

|||Tα(Sp)− Σp|||2 → 0 a.s .

Proof. Because of invariance of the problem by centering and scaling, we can assume that the row vector Xi

has mean 0, and that the diagonal of its covariance matrix Σp is full of 1. Then we have ρ(i, j) = σp(i, j).
From the proof of Theorem 1, if it clear that if we can show that E (Sp(i, j)− ρ(i, j))2k = O(n−k) for all
(i, j), the same technique as above will lead to the theorem. To show that this is indeed the case, we first
make the following elementary remark, which prepares the study of ρ̂(i, j)− ρ(i, j). Suppose that Fn and
Gn are random variables, with E (Fn − ρ)2k = O(n−k) for some ρ ∈ [−1, 1], E (Gn − 1)2k = O(n−k) and
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further |Fn/Gn| ≤ 1. Call Ωn(ε) the event {ω : |Gn − 1| < ε}. We have

E
(

Fn

Gn
− ρ

)2k

= E

([
Fn

Gn
− ρ

]2k [
1Ωn(ε) + 1Ωc

n(ε)

])

≤ E

([
Fn

Gn
− ρ

]2k

1Ωn(ε)

)
+ E

([
Fn

Gn
− ρ

]2k

1Ωc
n(ε)

)

≤ E

([
Fn − ρ

Gn
− ρ(1− 1

Gn
)
]2k

1Ωn(ε)

)
+ 22kE

(
1Ωc

n(ε)

)
≤ 22kE

([
Fn − ρ

Gn

]2k

1Ωn(ε) + ρ2k

[
1− 1

Gn

]2k

1Ωn(ε)

)
+ 22kE

(
1Ωc

n(ε)

)
≤ 22k

(1− ε)2k

{
E
(
(Fn − ρ)2k1Ωn(ε)

)
+ ρ2kE

(
(Gn − 1)2k1Ωn(ε)

)}
+ 22kE

(
1Ωc

n(ε)

)
By Chebyshev’s inequality, and our assumptions it is clear that

E
(

Fn

Gn
− ρ

)2k

= O
(

1
nk

)
.

Now we claim that this remark applies in the case of the correlation matrix. We have

ρ̂(i, j) =
Fn(i, j)
Gn(i, j)

,

where

Fn(i, j) =
1

n− 1

n∑
l=1

(Xl,i − X̄i)(Xl,j − X̄j) ,

and Gn(i, j) =
√

Fn(i, i)Fn(j, j).
From the moment computations made in the proof of Theorem 2, we see that we have E (Fn(i, j)− ρ(i, j))2k =

O(n−k), for all (i, j). Let us denote by Yn(i) = Fn(i, i); this result implies that

E
(√

Yn(i)−
√

ρ(i, i)
)2k

≤ E (Yn(i)− ρ(i, i))2k /ρ(i, i)k = E (Yn(i)− 1)2k = O(n−k) .

If we denote by αn =
√

Yn(i) and βn =
√

Yn(j), we have, since αnβn − 1 = (αn − 1)βn + βn − 1,

E (αnβn − 1)2k ≤ 22k
[
E (βn − 1)2k + E

(
β2k

n (αn − 1)2k
)]

≤ 22k

[
E (βn − 1)2k +

√
E (β4k

n )
√

E (αn − 1)4k

]
We have already seen that E (βn − 1)2k = O(n−k), and since we are assuming the existence of a 8k-th

moment for the Xl,j , we also have
√

E (αn − 1)4k = O(n−k). To conclude that E (αnβn − 1)2k = O(n−k),

we just need to show that E (βn)4k is bounded. But β4k
n = (βn−1+1)4k ≤ 24k((βn−1)4k +1), from which

we conclude that E (βn)4k is bounded, since (βn−1)4k = O(n−2k). We now see that Gn(i, j) =
√

Yn(i)Yn(j)
satisfies with Fn the conditions needed to conclude that

E
(

Fn(i, j)
Gn(i, j)

− ρ(i, j)
)2k

= E (ρ̂(i, j)− ρ(i, j))2k = O(n−k) .
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3.2 Approximation of non-sparse matrices by sparse matrices

It is natural to ask whether a thresholding approach can also lead to good results when dealing with
matrices which are not sparse per se, but have many coefficients close to zero. In other words, we would
like to know when we can approximate non-sparse matrices by sparse matrices obtained by thresholding
a sample covariance or correlation matrix. We now present two propositions that relax the sparsity as-
sumptions and still lead to spectral norm convergence. The most general one basically says that if the
population covariance matrix can be approximated by a sparse matrix and does not have too many coeffi-
cients close to the threshold level 1/

√
n, then estimating the (not necessarily sparse) population covariance

by thresholding the sample covariance matrix will lead to good results.
Here is our first result in this direction:

Proposition 1. Making the same assumptions as in the theorems above, we now assume that there exists
Tα1(Σp) = Σ̃p, a version of Σp thresholded at n−α1, that is β-sparse. Further we assume that |||Σ̃p −
Σp|||2 → 0. We call Iα1,α0 the set of indices of those σ(i, j) for which Cn−α1 < |σ(i, j)| < Cn−α0, with
α0 < α1 < 1/2− δ0. Now choose α ∈ (α0, α1). If the adjacency matrix corresponding to Iα1,α0 is γ-sparse,
for some γ ≤ α0 − ζ0, and if the random variables Xi,j have moments of order 4k (8k in the correlation
case), with k satisfying the assumptions put forth in Theorem 1 as well as k ≥ (2 + ε− γ)/(2(α0 − γ)), for
some ε > 0, then the conclusions of all the theorems above apply:

|||Tα(Sp)− Σp|||2 → 0 a.s .

While this proposition might appear full of hard to check assumptions, we believe it is useful and not so
hard to use when checking whether thresholding is a reasonable idea for a particular estimation problem.
We give an example after stating Proposition 2 below. Finally, we note that under the assumptions stated,
both Tα0(Σp) and Tα1(Σp) are good approximations of Σp in operator norm.

Proof. From the previous proofs, we see that we can divide

Tα(Sp) = M0 + M1 + M2 ,

into three parts, M0 corresponding to the indices (i, j) for which σ(i, j) is larger (in absolute value) than
Cn−α0 , M1 corresponding to indices in Iα0,α1 , and M2 to those indices for which σ(i, j) < n−α1 . Similarly,
we can write with the same partition of indices,

Σp = Tα0(Σp) + [Tα1(Σp)− Tα0(Σp)] + [Σp − Tα1(Σp)] = Σ0 + Σ1 + Σ2 .

With the same notations for the subparts of Σ, we have from the computations we made in the proofs
of the previous theorems that |||M0 − Σ0|||2 → 0 a.s (by the oracle part of the proofs), and |||M2|||2 → 0
a.s., since the σ̂p(i, j) corresponding to |σ(i, j)| < n−α1 will all be (a.s) thresholded to 0 if the thresholding
level is n−α, α < α1.

Note that Σ0 + Σ1 = Σ̃p, so |||Σ2|||2 → 0. To reach the conclusions of the proposition, we need to show
that we control M1 − Σ1 in operator norm.

Recall that our assumption is that Σ1 is γ-sparse. We call

Σ1 = Tα(Σ1) + Rα(Σ1) ,

where Tα(Σ1) the version of Σ1 thresholded at n−α. It is of course also γ-sparse and so is Rα(Σ1). This
implies that

|||Rα(Σ1)|||2k
2 ≤ trace

(
(Rα(Σ1))2k

)
≤ f(k)pγ(2k−1)pn−2kα ,

which goes to 0 if γ ≤ α − ε: we can find k0 an integer, such that the left-hand side goes to 0 as n and p
go to infinity.

Using the oracle proof of Theorem 1, we see that if we make no error in thresholding for the indices in
Iα0,α1 , then |||oracleα(M1)−Tα(Σ1)|||2 tends to 0 a.s. Therefore, all we need to do is check that we control
the operator norm of the matrix of possible errors, i.e the difference M1− oracleα(M1). Let us call Υ1 this

12



matrix of potential errors. There are two types of possible errors: either a coefficient is thresholded when
it should not have been. Or it is not thresholded when it should have been thresholded. So

Υ1(i, j) =


0 if correctly thresholded σ̂(i, j)

σ̂(i, j) if |σi,j | ≤ n−α but did not threshold in M1

−σ̂(i, j) if |σi,j | > n−α but did threshold in M1

In any case, we conclude that |Υ1(i, j)| ≤ |σ̂(i, j)| ≤ |σ̂(i, j)−σ(i, j)|+ |σ(i, j)|. Note that all the indices
where ∆2 has potentially non-zero entries are in Iα0,α1 , so the corresponding adjacency matrix is γ-sparse.
Since

E (Υ1(i, j))
2k ≤ 22k

(
σ(i, j)2k + E (σ̂(i, j)− σ(i, j))2k

)
= O(n−2α0k + n−k) ,

we conclude as before that the expected weight of a path of length 2k is O(n−2α0k). Using the assump-
tion of γ-sparsity of the matrix Σ1, we conclude that the total contribution for the expected errors is
O(pγ(2k−1)+1n−2α0k). Therefore, if k > (2 + ε− γ)/(2(α0 − γ)), we have a.s convergence.

The following simple proposition is a clear case of applicability of the ideas of the previous one.

Fact 2. Let ε > 0 and suppose that T1+ε(Σp) is β-sparse and its non-zero entries are larger than n−α0.
Then under the same assumptions as Theorems 1, 2 and 3, we have, for α0 < α < 1/2− delta,

|||Tα(Sp)− Σp|||2 → 0 a.s .

Proof of Fact 2. Take α1 = α0 + δ, where δ is small. In particular, of course, α1 < 1/2 < 1+ ε. Here Iα1,α0

is empty so the corresponding matrix is 0-sparse. In particular, that means that in the notation of the
proof of Proposition 1, M1 = 0 and similarly for Σ1. Since those are in general the only parts that cause
problems, So the results on M0 − Σ0 and M2 apply directly and the only thing we have to check is that
|||Σ2|||2 → 0. Note that Σ2 contains only entries that of order n−(1+ε) or smaller. Using a Frobenius norm
bound, we therefore have

|||Σ2|||22 ≤ p2n−(2+2ε) → 0 ,

so the result is established.

Example: a simple (permuted) Toeplitz matrix We consider a matrix that is often used as an
example for estimation: the (Toeplitz) covariance matrix Σp, with Σ(i, j) = ρ|i−j|, |ρ| < 1. Of course, we
can also consider the same matrix where the variables have been randomly permuted and hence the Toeplitz
structure destroyed. However, on any given line, the entries are still a (possibly random) permutation of
the ρ|i−j|. We apply Proposition 1. To do so, we just need to count how many coefficients on each row
are between n−α1 and n−α0 , for α0 and α1 to be chosen later. Note that |ρ|k ≤ n−α1 is equivalent to
k ≥ log(n)α1/ log(1/|ρ|). So Tα1(Σp) is asymptotically 0 sparse, as it contains only O(log(n)) non-zero
terms on each row. Similarly, the adjacency matrix corresponding to I(α0, α1) is also asymptotically 0
sparse as there are at most O(log(n)) terms on each of its row. Finally, we need to check that the thresholded
Σp is a good approximation of Σp. Recall that for a symmetric matrix M , |||M |||2 ≤ maxi(

∑
j |mi,j |). (See

for instance Bickel and Levina (2007) or Stewart and Sun (1990), p. 70.) Now,
∑

k≥k0
ρk = ρk0/(1 − ρ),

so |||Σp − Tα1(Σp)|||2 ≤ n−α1/(1 − |ρ|), which tends to 0 as n goes to infinity. So we conclude that
Proposition 1 applies and thresholding the sample covariance (resp. correlation) matrix corresponding to
this population covariance will yield an operator norm consistent estimator, a.s., provided the moment
conditions are satisfied. In this situation, the moment conditions translate simply into k ≥ 2 + ε for some
ε, because α0 can be chosen arbitrarily close to 1/2 and γ arbitrarily close to 0.

Finally, we have the following corollaries that apply to all the theorems and proposition above.

Corollary 1 (Infinitely many moments). Suppose that the entries of X have infinitely moments. Then all
the above results hold with only the sparsity conditions having to be checked.

Corollary 2 (Asymptotic β-sparsity). Suppose that the sequence Σp is asymptotically β-sparse. Then all
the above results apply, with the modification that β be replaced by β̃ε = β+ε for ε > 0 but arbitrarily small.
In particular, moment conditions need only to be satisfied and checked with β̃ε. In the situation where one
has infinitely many moments, one therefore only needs to check that the sparsity conditions are satisfied by
a β̃ε.
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3.3 About 1/2-sparse matrices

The previous computations are very clearly limited to the case where β < 1/2. A natural question is
therefore to ask if this limitation is inherent to the problem, or if it is a consequence of the bounds we
use in the mathematical analysis. We now want to highlight the problems that occur in the case β = 1/2
and show that our result is “sharp”: at the level of generality at which we are working, (at least some)
1/2-sparse matrices are not estimable in operator norm. To show this, we will produce a 1/2-sparse matrix
that cannot be consistently estimated in operator norm even at the oracle level.

To do so, we consider estimating a matrix A of the following form:

Σp =


1 α2 α3 . . . αp

α2 1 0 . . . 0
...

...
. . . . . . 0

αp−1 0 0 1 0
αp 0 0 . . . 1

 .

To simplify the problem, we assume that the data is multivariate Gaussian, with mean 0, and that
we know that the diagonal is composed only of 1’s. We estimate Σp using the sample covariance matrix,
putting to 1 the main diagonal, and using the oracle information to put to 0 all other terms except the
first row and columns. We call Σ̂p the corresponding estimator. Note that

Σp − Σ̂p =


0 α2 − α̂2 α3 − α̂3 . . . αp − α̂p

α2 − α̂2 0 0 . . . 0
...

...
. . . . . . 0

αp−1 − α̂p−1 0 0 0 0
αp − α̂p 0 0 . . . 0

 .

Using the Schur complement formula for determinants (see for instance Horn and Johnson (1990), p.22),
we see that the characteristic polynomial of this matrix is

p(λ) = λp−2(λ2 −
p∑

i=2

(αi − α̂i)2) , and therefore

|||Σ̂p − Σp|||2 =

√√√√ p∑
i=2

(αi − α̂i)2 .

Note that the computation holds for the corresponding adjacency matrix, giving that φp(2k) = trace
(
A2k

p

)
=

2(p− 1)k. So this matrix is 1/2-sparse.
Now, since we assume the data is Gaussian, it is clear that λ1 = |||Σ̂p − Σp|||2 has infinitely many

moments, using for instance Frobenius norm as a bound on λ1. Also, E
(
λ2

1

)
=
∑p

i=2 E
(
(αi − α̂i)2

)
. The

covariance of elements of the sample covariance matrix is well-known in the Wishart case; see for instance
Anderson (2003), Theorem 3.4.4 p. 87. In our context, we see that E

(
(αi − α̂i)2

)
= (1 + α2

i )/(n − 1) =
νi/(n− 1). In particular,

E
(
λ2

1

)
=

p− 1 +
∑p

i=2 α2
i

n− 1
≥ p− 1

n− 1
→ l > 0 .

We now turn to showing that λ2
1 actually converges in probability to this limit.

A standard result in Gaussian multivariate analysis (see Anderson (2003), Theorem 3.3.2) states that
we can write α̂i − αi = (

∑n−1
k=1 Zk)/(n− 1), where the Zk’s are i.i.d and mean 0. Hence we get that

E
(
((α̂i − αi)2 − νi/(n− 1))2

)
=

1
(n− 1)4

E

 ∑
k1,k2,k3,k4

Zk1Zk2Zk3Zk4

 .
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In the above sum, the terms that contain an index repeated only once contribute zero to the expectation.
After elementary computations, we see that to first order this expectation is O(2ν2

i /n2). Using the same
ideas (see Appendix), we get that, for i 6= j,

E
(
((α̂i − αi)2 − νi/(n− 1))((α̂j − αj)2 − νj/(n− 1))

)
= O(

2
n2

α2
jα

2
i ∨

1
n3

) .

Hence we have that

var
(
λ2

1

)
= O

 p∑
i=2

2ν2
i

n2
+
∑
i6=j

2α2
jα

2
i

n2
∨ 1

n3

 = O

(
p∑

i=2

2ν2
i

n2
+

2
n2

(
p∑

i=2

α2
i )

2 ∨ 1
n

)

Therefore, if for instance, αi = 1√
p , var

(
λ2

1

)
= O( p

n2 + 1
n) → 0 and

λ2
1 −

p− 1 +
∑

i≥2 α2
i

n
→ 0 in probability ,

and therefore
λ2

1 ≥
p− 1

n
in probability .

Note that the same result would apply if αi = p−1/2+ε, with ε > 0, a situation where thresholding would
work for β-sparse graphs, with β ≤ 1/2− γ. (The case of αi = 1√

p is not covered in our theorems whereas

the case αi = p−1/2+ε is.)
Note also that if we had tried to estimate Σp using oracle information about the location of the non-zero

coefficient but nothing about the fact the diagonal was equal to 1, we would have encountered the same
problem. As a matter of fact, if we call Mp the diagonal matrix with entries σ̂(i, i), we have from previous
results in the paper (our moment computations and the 0-sparsity of this matrix) that |||Mp − Idp|||2 → 0
a.s. Note that because Σ̂p had 1’s on its diagonal,

Σ̂p + Mp − Idp =


σ̂(1, 1) α̂2 α̂3 . . . α̂p

α̂2 σ̂(2, 2) 0 . . . 0
...

...
. . . . . . 0

α̂p−1 0 0 σ̂(p− 1, p− 1) 0
α̂p 0 0 . . . σ̂(p, p)

 .

So for the oracle estimator that uses only information about the location of the non-zero coefficients,
we have

|||Σ̂p + (Mp − Idp)− Σp|||2 ≥ |||Σ̂p − Σp|||2 − |||Mp − Idp|||2 >
p− 1
2n

a.s .

This example shows that even using oracle information for estimation of the Σp pointed out above does
not lead to an operator norm consistent estimator, in the presence of this simple 1/2-sparse graph. This
suggests that for these graphs, simple thresholding might not be a good method. It also suggests that the
conditions of our theorems have more to do with the method we propose than with unrefined mathematical
details in its analysis.

3.3.1 Complement on this example

In what follows we investigate in more details the case where αi = 1/
√

p. One might ask whether,
despite the fact that |||Σp − Σ̂p|||2 does not go to zero, Σ̂p does not have some good characteristics as an
estimator of Σp anyway. In what follows, we show that both for the eigenvalues and eigenvectors, this is
not the case.

The previous computations essentially show that

E
(
λ2

1(Σ̂p − Idp)
)

=
∑
i≥2

α2
i +

1 + α2
i

n− 1
= (λ1(Σp − Id))2 +

p− 1
n− 1

+
p− 1

p(n− 1)
,
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so at the level of eigenvalues, the answer is negative. Note that the eigenvectors of Σp − Idp and therefore

of Σp are known. The ones corresponding to the non-zero eigenvalues are, calling λ+ =
√∑

i≥2 α2
i

u+ =
1√
2λ+


λ+

α2
...

αp

 and u− =
1√
2λ+


λ+

−α2
...

−αp

 .

We call û+ the eigenvector corresponding to the positive eigenvalue of Σ̂p − Idp. When αi = 1/
√

p,
cov (α̂i, α̂j) = (1i=j + 1/p)/(n− 1) and λ+ =

√
(p− 1)/p. Using the expression above for the eigenvectors,

we have
2λ+λ̂+〈u+, û+〉 = λ+λ̂+ +

1
√

p

∑
i≥2

α̂i .

Now var
(∑

i≥2 α̂i

)
= (p− 1)(1+ 1/p)/(n− 1)+ (p− 1)(p− 2)/(p(n− 1)), and E

(∑
i≥2 α̂i

)
= (p− 1)/

√
p,

from which we conclude that

1
√

p

∑
i≥2

α̂i

−
(

1− 1
p

)
→ 0 in probability.

Since when all αi = 1/
√

p,

var

∑
i≥2

α̂2
i

 ≤ 2

var

∑
i≥2

(α̂i − αi)2

+
4
p
var

∑
i≥2

α̂i

 ,

the above computations show that λ̂+ →
√

1 + p/n in probability and therefore, using Slutsky’s lemma,
we get that

〈u+, û+〉 →
1
2

(
1 +

1√
1 + p/n

)
in probability .

So when p/n has a non-zero limit, the angle between these two vectors has a finite non-zero limit (in
probability), showing that the eigenvectors are not consistently estimated.

3.4 Discussion

In the following, we call Σ̂p our (final) estimator of Σp, which is obtained from the standard estimator
Sp. As above, we denote by ∆p = Σ̂p − Σp, Ξp = oracle(Sp) − Σp, where oracle(Sp) the oracle version of
Sp, and Dp = Sp − Σp.

3.4.1 Finite dimensional character and sharpening of the bounds

As is clear from the proofs, all the bounds we derive are valid at n and p fixed. Essentially, we get
bounds on the probability of deviation of the largest eigenvalue of the matrix ∆p from 0. These bounds
are polynomial in nature since we used Chebyshev’s inequality and worked with moments.

Note that in particular cases, such as when the entries of the data matrix are bounded or satisfy
certain tail conditions, these bounds can be sharpened by using (exponential or gaussian) concentration
inequalities for the difference di,j = σ̂(i, j)− σ(i, j). If the entries of X are bounded in absolute value by a
constant C, in the setting of Theorem 1, Hoeffding’s inequality (see Hoeffding (1963)) would for instance
give that

P (|di,j | > t) = P (|σ̂(i, j)− σ(i, j)| > t) ≤ 2 exp(−nt2/(2C4)) .

This is a simple consequence of the fact that σ̂(i, j) is a sum of i.i.d random variables and their mean
is σ(i, j). (Of course, a slight adjustment is needed when dealing with sample covariance matrices, but
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it does not change the exponential character of the bounds. We give the argument in the simplest case
where Sp = X∗X/n, the Gaussian MLE when we know the mean is zero.) Suppose that the non-zero
coefficients of Σp are bounded below, in absolute value by C1n

−1/2+b. If we call Bp the event Bp =
{at least one mistake is made by the thresholding procedure}, and if we decide to refine our thresholding
to a (log(n))a/

√
n threshold, we see, using a simple union bound, that

P (Bp) ≤ 2p2(exp(−(log n)2a/(2C4)) + exp(−((log n)a − C1n
b)2/(2C4)) .

Therefore, by adding assumptions to our problem, we are able to get sharper bounds on the probability of
making a mistake by thresholding.

We can also get better bounds on the probability that |||Ξp|||2 > ε and |||∆p|||2 > ε. We assume that Σp

is β-sparse and use the corresponding notations. Of course, the event |||Ξp|||2 > ε is contained in the event
trace

(
Ξ2k

p

)
> ε2k, which is contained in the event max |wγ(2k)| > ε2k/(f(k)p1+β(2k−1)) which is contained

in the event max |di,j | > ε/(f(k)1/2kp1/2k+β(1−1/2k)). Hence, by using Hoeffding’s inequality, we get

P (|||Ξp|||2 > ε) ≤ 2p2 exp(−nε2p−2βp(β−1)/k/(2C4f(k)1/k)) .

Finally, using the fact that {|||∆p|||2 > ε} ⊆
(
{|||Ξp|||2 > ε} ∩Bc

p

)
∪Bp, we see that

P (|||∆p|||2 > ε) ≤ P (Bp) + P (|||Ξp|||2 > ε) ,

for which we just derived bounds. Similar types of bounds can be obtained in the context of Theorem 2,
when, for instance, Hoeffding’s inequality applies.

Though these results are sharper than the ones announced in the theorems above, they are less general.
Because one of our concern was maximal distributional generality, we decided to give the theorems in
general form with less sharp bounds.

3.4.2 Beyond the finite p/n limit

A close look at the proofs of the theorems and the bounds above reveal that the assumption that p/n
has a finite limit can be relaxed. As a matter of fact, our bounds on expected values of traces are generically
of the form O(pγn−λ), and all we require is that this quantity goes to zero fast enough. If we focus on the
oracle version of the theorems we see that the bounds are of the form

E
(
trace

(
Ξ2k

p

))
= O(n−kp1+β(2k−1)) .

If p = O(nν), we see that the exponent in n becomes of the form k(2βν − 1) + ν(1− β). If this quantity is
less than −(1 + ε) for some ε > 0 and k = k0, then we will have a.s convergence of Ξp to zero in operator
norm. This condition is satisfied if

ν ≤ k − (1 + ε)
1 + β(2k − 1)

.

So in particular, if we are working with random variables with infinitely many moments, the oracle
results will hold almost surely for a β-sparse matrix when

p = O(n1/(2β)−η) , for some η arbitrarily small .

As a matter of fact, all we need to do is pick a finite number k1 such that
k1 − (1 + ε)

1 + β(2k1 − 1)
> 1/(2β)− η

and carry out the analysis for E
(
trace

(
Ξ2k1

p

))
. k1 exists (and is finite), because k−(1+ε)

1+β(2k−1) → 1/(2β), as k
goes to infinity. If there are only 4k1 moments the results will hold, too.

On the other hand, the non-oracle results will be satisfied in the context of Theorem 1 as soon as

ν ≤ k(1− 2α0)− (1 + ε)
2

,

a constraint much less restrictive than the previous one in general. Finally, we note that Proposition 1
would apply if, assuming the other constraints had been satisfied, we also had

ν ≤ 2α0k − (1 + ε)
1 + γ(2k − 1)

.
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3.5 Consequences of spectral norm convergence

3.5.1 Convergence of eigenvalues

We recall some classical facts from matrix analysis. First, if A and B are two symmetric matrices,
and if λi is their i-th eigenvalue, where the eigenvalues are sorted in decreasing order, we have, by Weyl’s
Theorem (Theorem 4.3.1 in Horn and Johnson (1990))

|λi(A)− λi(B)| ≤ |||A−B|||2 .

Because the matrix Sp is symmetric, the thresholded version of it is symmetric, too. Therefore the operator
norm convergence we showed implies the following:

Fact 3. When the thresholded estimator Σ̂p is a spectral norm consistent estimator of the population
covariance or correlation matrix Σp, all the eigenvalues of Σ̂p are consistent estimators of the population
eigenvalues.

3.5.2 Convergence of eigenvectors

Perhaps even more interestingly, controlling the spectral norm allows us to get very good control on
the angles between the eigenspaces of the population and sample covariance matrix, through the use of the
classical sin(θ) theorems of Davis and Kahan (Davis and Kahan (1970), Section 2 and Stewart and Sun
(1990), Section V.3). For the sake of completeness we quote a version of this important result (Theorem
2 in Davis and Kahan (1970)) and show how to exploit it in our context.

Theorem 4 (sin(θ) Theorem). Suppose Σp has the spectral resolution(
X ′

1

X ′
2

)
Σp(X1X2) = diag(L1, L2)

with (X1X2) an orthogonal matrix, X1 being a p× k matrix. Suppose Z is a p× k matrix with orthogonal
columns, and for any hermitian matrix M of order k, call R = ΣpZ − ZM . Suppose the eigenvalues of
M are contained in an interval [α, β] and that for some δ > 0, the eigenvalues of L2 are contained in
R\[α− δ, β + δ]. Then for any unitarily invariant norm,

‖sinΘ[R(X1),R(Z)]‖ ≤ ‖R‖
δ

,

where Θ[R(X1),R(Z)] stands for the canonical angles between the column space of X1 and that of Z.

These angles are closely connected to canonical correlation analysis: their cosines are the canonical
correlations for the “data matrices” X1 and Z.

We therefore have the following corollaries to Theorems 2 and 3:

Corollary 3 (Consistency of eigenspaces). Suppose Σp has a group of eigenvalues contained in an interval
and separated from the other eigenvalues by δ > 0. Call the set of their indices (after say ordering them)
J . Then the canonical angles between the column space of the corresponding eigenvectors and the column
space of the eigenvectors of Σ̂p (our thresholding estimator) corresponding to the eigenvalues of Σ̂p with
index set J goes to zero a.s.

Proof. Call λ̂j the eigenvalues of Σ̂p with index set J . Let M be the diagonal matrix with diagonal entries
the {λ̂j}. Call L2 the set consisting of the other eigenvalues of Σp. Note that the convergence of eigenvalues
guarantees that the {λ̂j}j∈J will a.s stay away from that of L2, by a distance at least δ2 > 0. Call Zj the
eigenvectors corresponding to λ̂j and Z the matrix with columns Zj (if some eigenvalues have multiplicity
higher than 1, then we pick a set of such eigenvectors). We can write Σp = Σ̂p −∆p with |||∆p|||2 → 0 a.s.
Note that Σ̂pZ = ZM , so ΣpZ = ZM −∆pZ. Therefore R = −∆pZ and because ||| · |||2 is matrix norm
and the columns of Z are orthonormal, |||R|||2 ≤ |||∆p|||2. Applying Theorem 4 with these inputs gives
the result.
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3.6 Practical considerations

The theoretical part of this paper essentially says β-sparse matrices with β < 1/2 are asymptotically
estimable, in the strong notion of estimability induced by the spectral norm. However, it does not give
much information about how to choose the thresholding parameter.

In practice, covariance matrices are estimated for a purpose other than simply estimating them. So in
concrete applications, users would most likely be able to find a penalty function that incorporates a measure
of performance of a certain estimator and mitigates it with how sparse the corresponding matrix is. Then
cross-validation or resampling techniques might be used to assess the performance of different estimators
and choose the threshold from the data. Note also, that in Bickel and Levina (2007), Section 5, the authors
propose a technique for choosing a banding parameter from the data, which is shown empirically to work
quite well. Such technique is transferable in our context, through some fairly straightforward steps.

However, a shortcoming of resampling techniques is their heavy computational cost. Thresholding
methods are appealing because they are easily “parallelizable” and can be used on very large dimensional
datasets. Therefore having an a priori method that works reasonably well and is not too computationally
expensive is also worthwhile. Of course there is a clear link between thresholding and testing the hypothesis
that a certain parameter is 0. As a practical ansatz, one method that can be tried is the following: get a
p-value for the hypothesis σ(i, j) = 0 for all i > j. Such a p-value can be obtained by bootstrap methods
and since we are dealing with means those reduce to a simple z-test. Then perform the Benjamini-
Hochberg procedure (see Benjamini and Hochberg (1995)) for these p-values, using the FDR parameter
1/
√

p. Though the theoretical part of Benjamini and Hochberg (1995) does not apply, we found in the
practical examples we ran (limited to Gaussian simulations and relatively simple population covariance
matrices) that this worked reasonably well. We include some pictures illustrating our simulations below
(see Appendix A.1). If speed is the most important issue, not using the FDR but testing each entry at
level α/

√
p seems also to yield reasonable results.

We note that it is possible that our estimators will not be positive definite: thresholding entry-wise the
sample covariance or correlation matrix does not guarantee positive-definiteness of the resulting estimator.
Our theorems however say that if the population matrices have a smallest eigenvalue bounded away from
zero (uniformly in p), then asymptotically our estimators will yield positive-definite matrices (in that
case, the theorems also imply spectral norm consistency of Σ̂−1

p for Σ−1
p ). If, in practice, one encounters

a non-positive definite estimator, it is clear that the problem at hand should dictate the strategy to
remedy this flaw. Two general ideas can nevertheless be applied: one might think of “projecting” the
estimator on the cone of positive-semidefinite matrices, using semi-definite programming and probably a
sparseness penalty. The feasibility of this idea depends of course of the dimensionality of the problem and
it is unlikely to work well (at this point in time) in truly high-dimension. Another idea would be to do a
singular value decomposition of the estimator, which is possible even in high-dimension, since the estimator
is by construction sparse, and hence falls within the reach of several fast algorithms in numerical linear
algebra. Then one could keep a smaller rank approximation of Σ̂p as the final estimator, Σ̂f , by putting for
instance all the negative eigenvalues of Σ̂p to zero (or instead of 0 a real g(p), with g(p) → 0). Note that
Σ̂f can also be shown to be a consistent estimator of the population covariance, in spectral norm, since
|||Σ̂f − Σ̂p|||2 → 0 because the negative eigenvalues of Σ̂p have to converge to zero (otherwise |||Σ̂p−Σp|||2
would not tend to 0). The main drawback of such a solution to the positive definiteness problem is that
we may lose the sparsity of the estimator, a feature that is in general desirable. However, its spectral
characteristics would be quite easy to obtain, even in high-dimension.

Finally, we note that the results of this paper suggest that acting entry-wise on the sample covariance
matrix is a way to create good estimators of Σp. In particular, when other issues such as robustness
or contamination by heavy-tailed data arise, using (entry-wise) more robust estimators than the sample
covariance is likely to give improved results.

4 Conclusion

In this paper we have investigated the theoretical properties of the idea of thresholding the entries
of a sample covariance (or correlation) matrix to better estimate the population covariance, when it is
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assumed (or known) to be sparse. We have shown that the natural notion of sparsity, coming from
problems concerning random vectors is not appropriate when one is concerned with estimating matrices. By
contrast, we propose an alternative notion of sparsity, based on properties of the graph corresponding to the
adjacency matrix of the population covariance. We have shown that our notion of sparsity divides sharply
classes of matrices that are estimable through hard thresholding and those that are not, an appealing
property. The notion of sparsity we propose is invariant under permutation of the order of the variables
and hence is well-suited for the analysis of problems where there is no canonical ordering of the variables.

We show that β-sparse matrices, with β < 1/2 are consistently estimable in operator (a.k.a spectral)
norm, a very strong notion of convergence that implies consistency of all eigenvalues and eigenspaces
corresponding to eigenvalues separated from the rest of the spectrum (see Subsection 3.5). Practically, the
results of simulations are maybe not as striking as one may have hoped for, but lead to great improvement
over the sample covariance (or correlation) matrix.

We also show that certain non-sparse matrices are estimable by sparse matrices through the thresholding
method we analyzed. Numerically, this method has many advantages in terms of implementation. It is
easy to implement, and leads to sparse matrices, which have the desirable property that their eigenvalues
and eigenvectors can be numerically computed efficiently, even in high-dimension. Also, since the method
acts in an entrywise fashion, the corresponding algorithm is easily parallelizable and in general produces
results quickly.

Statistically, our results mean that under the assumption of β-sparsity, β < 1/2, applying the natural
practical idea of thresholding the entries of a sparse matrix leads to excellent convergence properties.
However, we also show that in situations that are not inconceivable in practice, i.e β ≥ 1/2, this strategy
may sometime fail to give an estimator as good as what we required. More sophisticated approaches may
be needed in these more difficult cases, though, as noted above, the simple thresholding approach has even
then many practical virtues.

Appendix

A 1/2-sparse matrices: details of computations

In what follows, we use the notation N for the quantity n− 1 (so N = n− 1) in an effort to alleviate
the notation. The computations that follow are used in Subsection 3.3 and the notations are defined there.
Recall that νi = 1 + α2

i and i ≥ 2. We give a detailed explanation of our estimate of

E
(
((α̂i − αi)2 − νi/N)((α̂j − αj)2 − νj/N)

)
.

Clearly, the only thing we need to control is E
(
(α̂i − αi)2(α̂j − αj)2

)
, since νi/N and νj/N are the means

of (α̂i−αi)2 and (α̂j −αj)2. Note that we can write (α̂i−αi) =
∑N

k=1 Zk(i)/N , where the Zk(i)’s are i.i.d
and mean 0. Similarly, we can write (α̂j − αj) =

∑N
k=1 Yk(j)/N . Note that Yk(j) is independent of Zl if k

is different from l. Therefore,

E
(
(α̂i − αi)2(α̂j − αj)2

)
=

1
N4

E
(∑

Zk1(i)Zk2(i)Yk3(j)Yk4(j)
)

.

In the previous sum if an index appears only once in the product, the expectation is zero. So only terms
where each index appears an even number of times will matter.

We first focus on terms where we have two distinct indices: the contribution of such terms is

N(N − 1)
N4

E
(
Z2

1Y 2
2 + Z1Z2Y1Y2 + Z1Z2Y2Y1

)
.

We can limit our investigations to the terms with two distinct indices since there are only N terms of the
form Z2

1Y 2
1 , so their contribution will be asymptotically negligible. Now, E

(
Z2

1Y 2
2

)
= νiνj , by independence

and definition. Also, if X is multivariate Gaussian vector with covariance Σp,

E (Z1(i)Y1(j)) = E ((X1Xi − αi)(X1Xj − αj)) = E
(
X2

1XiXj − αiαj

)
= σ(1, 1)σ(i, j) + αiαj + αjαi − αiαj = αiαj + 1i=j ,
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by using the fact that we are working with Gaussian random variables. Therefore, if i 6= j,

E
(
{(α̂i − αi)2 −

νi

N
}{(α̂j − αj)2 −

νj

N
}
)

=
(

1
N2

− 1
N3

)[
2(αiαj)2 + νiνj

]
+

E
(
Z2

1Y 2
1

)
N3

− νiνj

N2
,

= 2(αiαj)2
(

1
N2

− 1
N3

)
+

E
(
Z2

1Y 2
1

)
− νiνj

N3
,

= O
(

(αiαj)2

N2
∨ 1

N3

)
In the case where αiαj = o(1/

√
N), we see that this term is of order 1/n3. In general,

A.1 Performance of estimator: graphical illustration

The images of this subsection illustrate the performance of the estimator, assessing visually its vari-
ability and comparing it to the sample covariance matrix. All simulations were done with Gaussian data;
the thresholding was made according to the FDR rule - in connection with z-tests - with FDR parameter
1/
√

p. Our illustrations focus on the properties of eigenvalues because they are easier to visualize.
All matrices investigated are (symmetric) Toeplitz matrices, because of the ease with which they can

be simulated. We did not randomly permute the “variables” because this would have had no effect on the
performance of the estimator; in particular, the eigenvalues would be exactly the same. These matrices
can be summarized by their first row, which is what we refer to when speaking of “coefficients” below.

Case of a Toeplitz matrix, with n = p = 500, and coefficients (1, 0.3, 0.4, 0, . . . , 0) This situation
should be fairly easy since the non-zero coefficients are quite large compared to the variance of σ̂(i, j)’s for
those (i, j) for which σ(i, j) = 0.
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Thresholded Matrix: eigenvalues statistics over 1000 repetitions
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(a) Variability of estimator and population spectrum: scree
plot of population and corresponding confidence bounds for
ordered eigenvalues of our estimator
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Thresholded Matrix: one realization
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(b) Comparison between scree plot of our estimator (aka
“Realization”: the continuous line between the two dashed
ones) and that of the sample covariance matrix on one re-
alization, picked at random from our 1,000 repetitions

Figure 1: Case of a Toeplitz (1, 0.3, 0.4, 0, . . . , 0) population covariance matrix Σp, n = p = 500. The
dashed lines correspond to the .025 and .975 quantiles of the empirical distribution of the k-th eigenvalue,
for k = 1 to p. The data was N (0,Σp) and the experiment was repeated 1,000 times. As we can see the
estimator is very stable. It does well, especially “far” from the edges of the spectrum. For this particular
Σp, it can be explained by the fact that the non-zero coefficients in the matrix are easily detectable, when
n = 500. The improvement over the sample covariance matrix is quite dramatic.
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Case of a Toeplitz matrix, with n = p = 500, and coefficients (2, .2, .3, 0,−.4, 0, . . . , 0) This
situation is a bit harder than the one above a priori, as the non-zero coefficients are not as large compared
to the variance of σ̂(i, j)’s for those (i, j) for which σ(i, j) = 0 as they are in the previous example.
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(a) Variability of estimator and population spectrum: scree
plot of population and corresponding confidence bounds for
ordered eigenvalues of our estimator
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(b) Comparison between scree plot of our estimator (aka
“Realization”: the continuous line between the two dashed
ones) and that of the sample covariance matrix on one re-
alization, picked at random from our 1,000 repetitions

Figure 2: Case of a Toeplitz (2, .2, .3, 0,−.4, 0, . . . , 0) population covariance matrix Σp, n = p = 500. The
dashed lines correspond to the .025 and .975 quantiles of the empirical distribution of the k-th eigenvalue,
for k = 1 to p. The data was N (0,Σp) and the experiment was repeated 1,000 times. As we can see the
estimator is very stable. It does capture the support of the spectrum fairly accurately, but is not as good
in the capturing the fine details of the bulk. For this particular Σp, there is (compared to the previous
example of Figure 1) a certain lack of accuracy when estimating the adjacency matrix Ap of Σp, when
n = 500. The improvement over the sample covariance matrix is quite dramatic.

Case of a non-sparse Toeplitz matrix, with n = 500, p = 100, and coefficients {.3k}p−1
k=0 This

situation illustrates the approximation of a non-sparse matrix by a sparse matrix. As seen above, this
population covariance can be approximated in spectral norm by a 0-sparse matrix. In these type of
situations, it is possible that thresholding might be a bit “harsh” and “smoother” regularization approaches
might lead to better empirical results.
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