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Abstract. We analyze the eigenvalues of the adjacency matrices of a wide
variety of random trees. Using general, broadly applicable arguments based
on the interlacing inequalities for the eigenvalues of a principal submatrix of
a Hermitian matrix and a suitable notion of local weak convergence for an
ensemble of random trees that we call probability fringe convergence, we show
that the empirical spectral distributions for many random tree models converge
to a deterministic (model dependent) limit as the number of vertices goes to
infinity.

Moreover, the masses assigned by the empirical spectral distributions to
individual points also converge in distribution to constants. We conclude for
ensembles such as the linear preferential attachment models, random recursive
trees, and the uniform random trees that the limiting spectral distribution has
a set of atoms that is dense in the real line. We obtain lower bounds on the
mass assigned to zero by the empirical spectral measures via the connection
between the number of zero eigenvalues of the adjacency matrix of a tree and
the cardinality of a maximal matching on the tree. In particular, we employ a
simplified version of an algorithm due to Karp and Sipser to construct maxi-
mal matchings and understand their properties. Moreover, we show that the
total weight of a weighted matching is asymptotically equivalent to a constant
multiple of the number of vertices when the edge weights are independent, iden-
tically distributed, non-negative random variables with finite expected value,
thereby significantly extending a result obtained by Aldous and Steele in the
special case of uniform random trees.

We greatly generalize a celebrated result obtained by Schwenk for the uni-
form random trees by showing that if any ensemble converges in the probabil-
ity fringe sense and a very mild further condition holds, then, with probability
converging to one, the spectrum of a realization is shared by at least one other
(non-isomorphic) tree.

For the the linear preferential attachment model with parameter a > −1,
we show that for any fixed k the k largest eigenvalues jointly converge in
distribution to a non-trivial limit when rescaled by n1/2γa , where γa = a + 2
is the Malthusian rate of growth parameter for an associated continuous time
branching process.
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1. Introduction

The study of large random matrices and their eigenvalues is one of the primary
themes of current research in probability. It finds applications in such diverse
fields as number theory, random partitions, free probability and operator algebras,
high-dimensional statistical analysis, nuclear physics, signal processing, wireless
communication, quantum percolation, and the operation of search engines. Some
recent book length expositions are [Dei00, BI01, Meh04, TV04, Gui09, For09].

The objects of interest in this field are usually random real symmetric or complex
Hermitian matrices. For example, one of the most popular models is the Gauss-
ian unitary ensemble (GUE), where the matrices are Hermitian, the entries above
the diagonal are independent, identically distributed, standard complex Gaussian
random variables, and the entries on the diagonal are independent, identically dis-
tributed, standard real Gaussian random variables. Much is now known about the
asymptotic behavior of objects such as the empirical distribution of the eigenvalues
and the behavior of the maximal eigenvalue.

Here we investigate random matrices with substantially greater structure and
complexity than the GUE, namely the adjacency matrices of random graphs, al-
though our methods are also applicable to the closely related Laplacian matrices.
The recent availability of large amounts of data has led to an explosion in the num-
ber of models used to model real-world networks, and dynamically grown models
such as various preferential attachment schemes have attracted significant interest
from the computer science and mathematical physics community. It is known (see,
for example, the monographs [Chu97, GR01, Big93, CRS97, CDS95, CDGT88])
that a surprising diversity of features of a graph are determined, at least in part,
by the behavior of the eigenvalues of its adjacency and Laplacian matrices.

We concentrate on the adjacency matrices of various ensembles of random
trees. Random trees arise in numerous contexts, ranging from the analysis of
database and search algorithms in computer science to models of phylogenies
(that is, evolutionary family trees) in biology. Moreover, many of the preferen-
tial attachment schemes for networks are also largely random models of grow-
ing trees (see, for example, [Bha07] for a survey of some of the more popular
schemes). We note that, although trees are rather simple graphs, the analysis of
their eigenvalues is still rather challenging, and even in the case of highly symmet-
ric deterministic trees explicit formulae for spectra have only been found recently
[Roj08, RR07a, Roj07, RR07b, Roj06a, Roj06b, RS05].

We introduce a general technique based on the concept of probability fringe con-
vergence for showing that the spectral distributions (that is, empirical distributions
of the eigenvalues) of the adjacency matrices of an ensemble of random trees con-
verge in the topology of weak convergence of probability measures on the line to a
deterministic limit as the number of vertices goes to infinity, and we show how this
technique applies in several natural examples.

The notion of probability fringe convergence is a type of local weak convergence
for random graphs that involves the convergence in distribution of suitably defined
neighborhoods of a vertex picked uniformly from a random graph as the size of the
graph goes to infinity. Surveys of this general methodology are [Ald91a, AS04].
Such convergence results for random trees where the limit is described in terms
of a continuous-time branching processes go back to [JN84, NJ84]. The first (to
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our knowledge) use of such techniques in various general models of preferential
attachment is [RTV07]. Such notions are further explored in [Bha07].

The key algebraic element of our proof of convergence of the spectral distribu-
tions is the set of interlacing inequalities between the eigenvalues of a Hermitian
matrix and the eigenvalues of one of its principal sub-matrices. The interlacing
inequalities allow us to break a large tree up into a forest of smaller trees by delet-
ing a small proportion of edges and conclude that the spectral distribution of the
tree is close to that of the forest which, in turn, is a convex combination of the
spectral distributions of its component sub-trees. If the decomposition into a forest
is done appropriately, then the resulting sub-trees are “locally defined” in a sense
that allows probability fringe convergence to be brought to bear to show that the
spectral distribution of the forest converges.

We note that interlacing has found other applications in algebraic graph theory
[BN04, Fio99, Hae95].

Another interesting technical aspect of our work is that the method of moments,
one of the most commonly used tools in random matrix theory, fails for some natural
ensembles because, as we observe in Remark 4.5, expected values of moments of
the spectral distribution go to infinity.

While our method for showing that the spectral distribution converges is quite
general, it does not provide any sort of characterization of the limiting distribution.
In Section 8 we look at an extremely simple random tree that is obtained by taking
the tree consisting of a path of n points and independently connecting an edge to
each point with equal probability, so that the resulting tree resembles a comb with
some of its teeth missing. Our probability fringe convergence methodology does
not apply immediately to this ensemble of random trees, but a straightforward
modification of it does. We investigate the asymptotic moments of the spectral
distribution for this ensemble and show that even in this simple case closed form
expressions appear to be rather elusive, indicating that we should perhaps not ex-
pect simple characterizations of the limiting spectral distribution for more complex
models.

Quite closely related to our results for the spectral distribution is the recent
work [BL10a], where similar local weak convergence techniques are combined with
Stieltjes transform methods to prove various limiting results for families of random
graphs.

We extend our results on the convergence of the spectral distribution in two
different directions.

First, we show for any γ ∈ R that the proportion of eigenvalues that have the
value γ converges to a constant under the assumption of probability fringe conver-
gence. Moreover, we give a simple sufficient condition for the limit to be positive
and apply this condition to show for several models that the limiting spectral dis-
tribution has a set of atoms that is dense in R. We pay particular attention to the
proportion of zero eigenvalues, a quantity of importance in areas such as quantum
percolation [BG00, BG01]. It is possible to obtain much more exact information
on the limiting proportion because of the connection between the number of zero
eigenvalues of the adjacency matrix of a tree and the cardinality of a maximal
matching. In particular, we use a simplified version of the Karp-Sipser algorithm
[KS81] to construct maximal matchings. Incidentally, the Karp-Sipser algorithm
has been also used in a recent work [BL10b] to study the limiting proportion of
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zero eigenvalues of random sparse graphs. We also use our methods to obtain the
asymptotic behavior of the total weight of a maximal weighted matching when
the edge weights are given by independent, identically distributed, non-negative
random variables.

Second, we obtain results on the joint convergence in distribution of the suitably
normalized k largest eigenvalues for the preferential attachment tree. These results
extend and sharpen those in [CLV03b, CLV03a, FFF05, FFF03], where it was shown
that the k largest eigenvalues are asymptotically equivalent to the square roots of
the k largest out-degrees. The weak convergence of the suitably rescaled maximum
out-degree was obtained in [Mór05] using martingale methods. However it is not
clear how to extend this technique to describe the asymptotics for the k largest
out-degrees for k ≥ 2. We prove our more general results using an approach that
is essentially completely different.

2. Some representative random tree models

An enormous number of random tree models have been developed by computer
scientists working on the analysis of algorithms and the mathematical modeling
of real world networks: see [Ald91a, Bha07] for a description of some of the more
popular models. Although our methods apply quite generally, it will be useful to
have the following models in mind when it comes to checking how the hypotheses
of our results may be verified in particular instances.

Random recursive tree: This is the simplest model of constructing a rooted tree
sequentially via the addition of a new vertex at each stage. Start with a single vertex
(the root) at time 1. Label the vertex added at stage n by n, so the tree Tn that
has been constructed by stage n has vertex set [n] := {1, 2, . . . , n}. Construct the
tree at stage n+1 by adding an edge from vertex n+1 to a vertex chosen uniformly
among the vertices 1, 2, . . . , n. We refer the reader to [SM94] for a survey of some
of the properties of the random recursive tree.

Linear preferential attachment tree: This is another sequential construction.
As before, start with a single vertex (the root) at time 1. Suppose the tree on n
vertices labeled by [n] has been constructed. Think of the edges as directed away
from the root and let D(v, n) be the out-degree of vertex v ∈ [n] at time n (that
is, D(v, n) is the number of children of vertex v at time n). Construct a tree on
n + 1 vertices via the addition of an edge between the new vertex n + 1 and the
vertex v in [n] with probability proportional to D(v, n) + 1 + a, where a > −1 is
a parameter of the process. There is an enormous amount of recent literature on
this model. We refer the reader to [BR03, Dur07, Bha07] for relevant references.

Uniform random rooted unordered labeled tree: By Cayley’s theorem, there
are nn−1 rooted trees on n labeled vertices (we think of trees as abstract graphs and
so we don’t consider a particular embedding of a tree in the plane when it comes
to deciding whether two trees are “the same” or “different” – this is the import of
the adjective “unordered”). Choose one of these trees uniformly at random. Since
we are interested only in the structure of the tree, the labeling will be irrelevant.

Random binary tree: There are various models of random rooted binary trees.
The one we shall consider is the following sequential construction. Start at time 1



6 SHANKAR BHAMIDI, STEVEN N. EVANS, AND ARNAB SEN

with the three vertex tree consisting of a root and two leaves. At each stage, choose
a leaf uniformly and attach two new leaves to it by two new edges.

3. Probability fringe convergence of random trees

The key to understanding the asymptotic properties of the spectra of random
trees such as those introduced in Section 2 is that they converge “locally” to appro-
priate locally finite infinite trees. We define the relevant notion of local convergence
in this section, and then show how it applies to the models of Section 2.

We first need to be precise about what we mean by the term finite rooted tree.
So far, we have talked about trees as particular types of graphs. That is, we have
thought of a tree as being described by a finite set of vertices and a finite set of
edges that are unordered pairs of vertices. A rooted tree has then been defined as
such an object with a particular distinguished vertex that we call the root. This
point of view is useful for describing constructions of random trees. However, we
will often wish to consider two trees as being the same if they are isomorphic in the
usual graph-theoretic sense: that is, if they have the same shape and only differ by
a labeling of the vertices. A tree in this latter sense is thus an isomorphism class
of trees thought of as graphs. When we wish to distinguish these two notions we
will use standard terminology and speak of labeled and unlabeled trees, respectively.
Continuing in this vein, we take two rooted trees (thought of as graphs) to be the
same if there is a graph-theoretic isomorphism from one to the other that preserves
the root, and we call the corresponding equivalence classes unlabeled rooted trees.
Even more generally, we may consider unlabeled trees with several distinguished
vertices.

Let T be the countable space of all finite unlabeled rooted trees. Set T∗ = T�{∗},
where ∗ is an adjoined point. Equip T and T∗ with the respective discrete topologies,
and equip the Cartesian products T

∞ and T
∞
∗ with the usual product topologies.

Consider a finite unlabeled rooted tree t ∈ T with root ρ and another distin-
guished vertex v that is at distance h from the root (v may coincide with ρ, in
which case h = 0). Let (v = v0, v1, . . . , vh = ρ) denote the unique path from the
vertex v to the root. Write t0 for the subtree rooted at v0 = v that consists of
all vertices for which the path to the root passes through v0, and for 1 ≤ k ≤ h,
write tk for the subtree rooted at vk that consists of all vertices for which the
path from the root passes through vk but not through vk−1. Write Φ(t, ·) for the
probability distribution on T

∞
∗ that places mass (#t)−1 at each of the sequences

(t0, t1, . . . , th, ∗, ∗, . . .) ∈ T
∞
∗ as v ranges over the #t vertices of t. It is clear that

Φ is a probability kernel from T to T
∞
∗ .

Definition 3.1. Let (Tn)∞n=1 be a sequence of random finite unlabeled rooted trees,
and suppose that T is a T

∞-valued random variable. The sequence (Tn)∞n=1 con-
verges in the probability fringe sense to T if the sequence Φ(Tn, ·) of random prob-
ability measures on T

∞
∗ converges weakly to the distribution of T in the topology

of weak convergence of probability measures on T
∞
∗ .

Remark 3.2. The definition requires that the empirical distribution of the sub-trees
below the various vertices of Tn converges. However, it demands much more than
this: for each k ≥ 1, the joint empirical distribution of the sub-tree below a vertex
and the sub-trees below each of its k most recent ancestors must also converge.
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Remark 3.3. Note that any sequence (t0, t1, . . .) ∈ T
∞ may be thought of as a

locally finite unlabeled rooted tree with one end (that is, with a single semi-infinite
path) via the identification of the roots of tk, k ∈ Z

+, as the successive vertices on
the unique semi-infinite path from the root. We call such trees sin-trees (for single
infinite path trees).

Remark 3.4. The terminology “probability fringe convergence” is not standard. In
the literature, the convergence of the local structure around a uniformly chosen
vertex of Tn to the structure around the root for some limiting random sin-tree
is an instance of what has been termed “local weak convergence” by Aldous, see
[AS04]. Our definition is somewhat stronger.

A powerful technique for establishing probability fringe convergence of an en-
semble of random trees is to first show that each member of the ensemble can be
constructed as the family tree of a suitable stopped continuous-time branching pro-
cess. (For us, a continuous-time branching process is the sort of object considered
in [Jag89]: individuals give birth to a possibly random number of offspring at the
arrival times of a point process up to a possibly infinite death time, and those
offspring go on to behave as independent copies of their parent.) The next result
describes such embeddings for the ensembles of Section 2.

Proposition 3.5. (a) [Random recursive tree] Consider a continuous time branch-
ing process that starts with a single progenitor, individuals live forever, and individ-
uals produce a single offspring at each arrival time of a unit rate Poisson process
(this process is sometimes called the Yule process, but the usage of that terminology
is not completely consistent in the literature). Write F(t) ∈ T for the corresponding
family tree at time t ≥ 0. Set Tn := inf{t > 0 : #F(t) = n}. Then F(Tn) has the
same distribution as Tn, where Tn is the random recursive tree on n vertices.

(b) [Linear preferential attachment tree] Consider a continuous time branching pro-
cess that starts with a single progenitor, individuals live forever, and the point pro-
cess representing the offspring distribution of any individual is a pure birth point
process started at 0 that can be described as follows: Whenever any individual has
already given birth to k direct offspring, the individual produces a new offspring
at rate k + 1 + a. In particular, at the time an individual is born, the individ-
ual generates new offspring at rate 1 + a. Thus, the times that elapse between the
birth of an individual and the successive births of the individual’s offspring, say
(β1, β2, . . .), may be written as βi =

∑i−1
j=0 ηj, where the successive ηj are indepen-

dent exponential random variables and ηj has rate j + 1 + a. Each individual in
the population has its own independent and identically distributed copy of the above
offspring point process. Write F(t) ∈ T for the corresponding family tree at time
t ≥ 0. Set Tn := inf{t > 0 : #F(t) = n}. Then, F(Tn) has the same distribution as
Tn, where Tn is the linear preferential attachment tree on n vertices with parameter
a > −1.

(c) [Uniform random rooted unordered labeled tree] Let Z∞ be the complete family
tree for a (discrete-time) Galton-Watson branching process with mean 1 Poisson
offspring distribution. Note that Z∞ is finite almost surely. The distribution of
Z∞ conditioned on #Z∞ = n is the same as that of Tn, where Tn is the objected
obtained by taking the uniform random rooted unordered tree on n labeled vertices
and removing the labeling.
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(d) [Random binary tree] Consider a continuous-time branching process that starts
with a single progenitor, individuals live until a rate 1 exponential time, at which
time they produce two offspring (we will refer to this process as the random binary
splitting process). Write F(t) ∈ T for the corresponding family tree at time t ≥ 0.
Set Tn := inf{t > 0 : #F(t) = n}. Then, F(Tn) has the same distribution as Tn,
where Tn is the random binary tree on n vertices.

Proof. Parts (a), (b) and (d) follow from the comparison of the rates of the produc-
tion of the offspring and the corresponding growth dynamics of the associated tree
Tn. Part (c) is well-known and follows from randomly ordering the offspring of each
individual to obtain an ordered (that is, planar) tree, computing the conditional
probability distribution of the resulting rooted ordered tree, randomly labeling the
vertices of the rooted ordered tree, and verifying that the randomly labeled tree
is uniformly distributed using Cayley’s theorem for the number of rooted labeled
trees on n vertices (see, for example, [Ald91b]). �

We now describe briefly the limiting sin-trees for the models considered above.
Recall that a sin-tree can be thought of as an element of T

∞. The following
proposition follows from well-known results, and we give the appropriate references
for each specific construction.

Proposition 3.6. Each of the four ensembles of Section 2. converges in the prob-
ability fringe sense, (as defined in Definition 3.1). The limiting random sin-tree
for each model is described explicitly in Construction 3.7.

Construction 3.7. (a) [Random recursive tree: [JN84, NJ84, Ald91a]] Let Fi(·)
be independent rate one Yule processes. Let X0, X1, . . . be independent rate 1
exponential random variables and put Si =

∑i
j=0 Xj . Then, the limiting sin-tree

has the distribution of (Fi(Si))∞i=0.

(b) [Linear preferential attachment: [NJ84, JN84, Bha07]] Let (Xi)∞i=0 be indepen-
dent exponential random variables, where X0 has rate 2 + a and each Xi, i > 0,
has rate 1 + a. Let (Fi)∞i=0 be continuous time branching processes that are con-
ditionally independent given (Xi)∞i=0, with the conditional distribution of Fi being
that in part (b) of Proposition 3.5 subject to the minor modifications that the point
process describing the times at which the root individual gives birth is conditioned
to have a birth at time Xi and the offspring born at this time and all its descendants
are removed from the population. All other vertices give birth to according to the
original offspring point process. Then, the limiting sin-tree has the distribution of
(Fi(

∑i
j=0 Xj))∞i=0.

(c) [Uniform random tree: [Gri81]] The limiting sin-tree has the distribution of an
infinite sequence of independent copies of the critical Poisson Galton-Watson tree
Z∞ of part (c) of Proposition 3.5.

(d) [Random binary tree: [Ald91a]] Let (Fi)∞i=0 be independent random binary
splitting processes as in part (d) of Proposition 3.5. Let (Xi)∞i=0 be independent rate
1 exponential random variables and set Si =

∑i
j=0 Xj . Define T-valued random

variables (Ui)∞i=0 as follows. Put U0 = F0(S0). For i ≥ 1, Ui is constructed by
attaching a new vertex ρi to the root of Fi(Si−1) and re-rooting the resulting tree
at ρi. Then, the limiting sin-tree has the distribution of (Ui)∞i=0.
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Figure 1. Empirical distribution for the positive eigenvalues of
the random recursive tree with 200 vertices, averaged over 200
realizations.

4. Statement of results

4.1. Convergence of the spectral distribution and atoms in the limiting
spectral distribution.

Theorem 4.1. Suppose that (Tn)∞n=1 is a sequence of random finite unlabeled rooted
trees that converges in the probability fringe sense to a sin-tree T = (T 0, T 1, . . .).
Let Fn denote the spectral distribution of the adjacency matrix of Tn. Then the
following are true.

(a) There exists a (model dependent) deterministic probability distribution F
such that Fn converges in distribution to F in the topology of weak conver-
gence of probability measures on R.

(b) For any γ ∈ R, Fn({γ}) converges in distribution to a (model dependent)
constant cγ as n→∞. Moreover, F ({γ}) ≥ cγ.

(c) Consider a forest u composed of finitely many finite unlabeled rooted trees,
and assume that some eigenvalue γ of the adjacency matrix of u has mul-
tiplicity L > 1. Write U for the random forest obtained by deleting the
root of T 0 from T 0, and suppose that P{U = u} > 0. Then, the constant
cγ = limn→∞ Fn({γ}) is strictly positive and hence γ is an atom of the
limiting spectral distribution F .

Remark 4.2. Simulations of the expected value the spectral distribution for various
finite random trees are shown in Figure 1, Figure 2, and Figure 3. The large number
of “spikes” in these figures is a reflection of parts (b) and (c) of Theorem 4.1 and
the observation that the set of atoms of the limiting spectral distribution F is dense
in the real line R (resp. in the interval [−2

√
2, 2
√

2]) for the random recursive tree,
the linear preferential attachment tree and the uniform random tree (resp. for the
random binary tree). To see these claims, first note that the adjacency matrix of
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Figure 2. Empirical distribution for the positive eigenvalues of
the preferential attachment tree (a = 0) with 100 vertices, averaged
over 200 realizations.

Figure 3. Empirical distribution for the positive eigenvalues of
the random binary tree with 401 vertices, averaged over 100 real-
izations.

a forest u has an eigenvalue γ with multiplicity greater than 1 if γ is an eigenvalue
of more than one of the trees that make up u. In particular, this condition holds
if two or more of the trees that make up u are equal to some common tree t,
and γ is an eigenvalue of t. It is clear for the random recursive tree, the linear
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preferential attachment tree, and the uniform random tree, that, in the notation of
Theorem 4.1, if u is any forest of finite unlabeled rooted trees, then P{U = u} > 0,
and so any number γ that is the eigenvalue of the adjacency matrix of some finite
tree will be an atom of the limiting spectral distribution F for these models. From
Theorem 7 of [RR07a], the eigenvalues of the adjacency matrix of the rooted tree
in which every non-leaf vertex has out-degree d and each leaf is distance k− 1 from
the root are

2
√

d cos
(

π�

j + 1

)
, j = 1, . . . , k, � = 1, . . . , j,

with given multiplicities. A similar argument shows that the limiting spectral
distribution for the random binary tree has a set of atoms that is dense in the
interval [−2

√
2, 2
√

2], and because we can embed any binary tree into a complete
binary tree of suitable height, we see that the limiting spectral measure in fact has
this interval as its support.

Remark 4.3. In light of the previous remark, it is natural to inquire whether the
limiting spectral distribution F is purely discrete or whether it also has a continuous
component. Our methods do not suffice to resolve this question.

Remark 4.4. Recall that the graph Laplacian of a tree t with adjacency matrix A
is the matrix A −D, where D is the diagonal matrix recording the degrees of the
vertices of t (we caution the reader that some authors refer to the negative of this
matrix as the Laplacian). The methods we use to establish Theorem 4.1 can also
be used to show that if the sequence (Tn)∞n=1 converges in the probability fringe
sense, then the spectral distribution of the Laplacian matrix of Tn converges in
distribution to a deterministic probability distribution on R.

Remark 4.5. The following result shows that the method of moments cannot be
used for linear preferential attachment model with parameter a = 0. We omit the
proof.

Lemma 4.6. Let An be the adjacency matrix of the linear preferential attachment
tree Tn with a = 0. Then

lim
n→∞

E

[
1
n

tr(A4
n)
]

=∞.

4.2. The proportion of zero eigenvalues and maximal matchings. Part (b)
and (c) of Theorem 4.1 show that the limiting spectral distribution F will typically
have many atoms. However, Theorem 4.1(c) provides a rather crude lower bounds
on the mass of each atom. We obtain better lower bounds on the limiting proportion
of zero eigenvalues in Subsection 6.3. The key tool we use is the intimate connection
we recall in Subsection 6.1 between the number of zero eigenvalues of the adjacency
matrix of a tree and maximal matchings on the tree – a notion that we now review
briefly.

Suppose that G is a graph with vertex set V and edge set E and for each edge
e ∈ E there is a corresponding weight w(e). Recall that a matching of G is a subset
of S ⊆ E such that no two edges in S share a common vertex. A matching S∗

is maximal for the system of weights {w(e) : e ∈ E} if
∑

e∈S∗ w(e) ≥
∑

e∈S w(e)
for any other matching S. There may be several maximal matchings but the total
weight

∑
e∈S∗ w(e) is, of course, the same for all of them. When no weights are
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mentioned explicitly, they are assumed to be all 1, and the total weight of a maximal
matching in this case is just the maximal possible cardinality of a matching.

Although we only need the case when all the weights are 1 to investigate the
proportion of zero eigenvalues, our methods establish the following more general
result without much further effort.

Theorem 4.7. Consider a sequence (Tn)∞n=1 of random trees that converge in the
probability fringe sense to a random sin-tree T = (T 0, T 1, . . .). Write Mn for the
number of vertices of Tn and M(Tn) for the total weight of a maximal matching on
Tn when the associated system of edge weights is a collection of independent and
identically distributed R+-valued random variables Xn(e) with a common distribu-
tion ν that has finite expected value. Then, M−1

n M(Tn) converges in distribution
to a (model dependent) constant cT ,ν as n→∞.

Using their objective method, Aldous and Steele [AS04] show that M−1
n E[M(Tn)]

converges in the case of the ensemble of uniform random trees. Moreover, they
characterize the limit in terms of the fixed points of certain distributional identities.

4.3. Isospectrality. A result of Schwenk [Sch73] states that the probability the
adjacency matrix of a realization of the uniform random tree has the same spectrum
as some other (non-isomorphic) tree converges to one as the number of vertices goes
to infinity. Schwenk’s method was developed further in [BM93]. The key idea is
to first establish that a certain pair of non-isomorphic finite rooted trees t1 and
t2 with the same number of vertices have the following exchange property: If t′ is
any finite rooted tree with t1 as a subtree, then replacing t1 by t2 produces a tree
t′′ with the same adjacency matrix spectrum as that of t′. If one can then show
that a given sequence (Tn)∞n=1 is such that P{t1 is a subtree of Tn} → 1 as n→∞,
then P{Tn shares its spectrum with another tree} → 1 as n → ∞. Pairs of trees
with exchange property are exhibited in [Sch73, BM93]. Pairs of binary trees (that
is, every non-leaf vertex has out-degree 2) with the exchange property are found
in [ME06]. The following result is sufficiently obvious that we will not provide a
proof. It applies to all four of the models in Section 2, with the pair t1, t2 being,
for example, the binary trees in [ME06].

Proposition 4.8. Consider a sequence (Tn)∞n=1 of random finite unlabeled rooted
trees that converges in the probability fringe sense to a sin-tree T = (T 0, T 1, . . .).
Suppose for some pair t1, t2 ∈ T with the exchange property that P{T 0 = t1} > 0.
Then,

lim
n→∞

P{Tn shares its spectrum with another tree} = 1.

4.4. Largest eigenvalues and largest degrees. The following result is proved
in [FFF05, FFF03] in the case a = 0. The proof extends readily to general a > −1.

Theorem 4.9. Let (Tn)∞n=1 be the ensemble of linear preferential attachment trees.
Fix any k ≥ 1. Write λn,1 ≥ λn,2 ≥ . . . ≥ λn,k for the k largest eigenvalues of
the adjacency matrix of Tn and denote by Δn,1 ≥ Δn,2 ≥ . . . ≥ Δn,k the k largest
out-degrees of Tn. Then, λn,i/

√
Δn,i converges in distribution to 1 as n → ∞ for

1 ≤ i ≤ k.

We complement this result by establishing the following theorem. Recall that
the linear preferential attachment model depends on a parameter a > −1. Define
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the corresponding Malthusian parameter by

(4.1) γa := a + 2.

Theorem 4.10. There exist random variables X1 ≥ X2 ≥ · · ·Xk > 0 that such
that (

Δn,1

n1/γa
,

Δn,2

n1/γa
, . . . ,

Δn,k

n1/γa

)
converges in distribution to (X1, X2, . . . , Xk) as n→∞. Hence,(

λn,1

n1/2γa
,

λn,2

n1/2γa
, . . . ,

λn,k

n1/2γa

)

converges in distribution to (
√

X1,
√

X2, . . . ,
√

Xk) as n→∞.

5. Convergence of spectral distributions

5.1. Interlacing inequalities and some of their consequences. Suppose that
A is an m ×m Hermitian matrix and B is an n× n principal sub-matrix of A for
1 ≤ n ≤ m (that is, B is formed by deleting m−n rows and columns of A with the
same indices).

Write μ1 ≤ . . . ≤ μm for the eigenvalues of A and ν1 ≤ . . . ≤ νn for the
eigenvalues of B. The interlacing theorem (see, for example, [HJ90]) gives that
μk ≤ νk ≤ μk+m−n for 1 ≤ k ≤ n.

Write P := 1
m

∑m
i=1 δμi for the spectral distribution of A and Q := 1

n

∑n
i=1 δνi

for the spectral distribution of B.
We wish to compare P and Q. To this end, we recall that the Lévy distance

between two probability measures σ and τ on R is given by

d(σ, τ) := inf{ε > 0 : S(x− ε)− ε < T (x) < S(x + ε) + ε, ∀x ∈ R},

where S and T are the cumulative distribution functions of σ and τ , respectively
– see, for example, [Zol01]. The Lévy distance is a metric that metrizes weak
convergence of probability measures on R, and the space of probability measures
on R is complete with respect to this metric.

We collect several simple facts in the following proposition.

Proposition 5.1. In the above notation,

(a) d(P, Q) ≤ (m
n − 1) ∧ 1.

(b) Consider a sequence (Ak)∞k=1 of Hermitian matrices, with (Ak)∞k=1 being
mk ×mk and having spectral distribution Pk. For each ε > 0, let (Bε

k)∞k=1

be such that Bε
k is an nε

k × nε
k principal sub-matrix of Ak with spectral

distribution Qε
k. Suppose for every ε > 0 that Qε

∞ = limk→∞ Qε
k exists and

lim supk→∞ mk/nε
k ≤ 1 + ε. Then, P∞ = limk→∞ Pk exists and is given by

P∞ = limε↓0 Qε
∞.

(c) For each γ ∈ R,

|#{1 ≤ k ≤ m : μk = γ} −#{1 ≤ k ≤ n : νk = γ}|
= |mP ({γ})− nQ({γ})|
≤ (m− n)
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(d) Let (Ak)∞k=1, (B
ε
k)∞k=1, mk and nε

k be as in part (b). Suppose for some
fixed γ ∈ R that for every ε > 0 the limit limk→∞ Qε

k({γ}) exists and
lim supk→∞ mk/nε

k ≤ 1 + ε. Then, limk→∞ Pk({γ}) exists and is given by
limε↓0 limk→∞ Qε

k({γ}).
Proof. (a) By triangle inequality, it is enough to prove the assertion for n = m− 1.
It follows immediately from the interlacing inequality (for example, see Lemma 3.3
in [Bai93]) that the Komogorov-Smirnov distance of P and Q (and hence the Lévy
distance of P and Q) is at most 1/(m− 1).

(b) From Proposition 5.1(a),
lim sup
k,�→∞

d(Pk, P�) ≤ lim sup
k→∞

d(Pk, Qε
k)

+ lim sup
k,�→∞

d(Qε
k, Qε

�) + lim sup
�→∞

d(Qε
� , P�)

≤ 2ε

for each ε > 0. The sequence (Pk)∞k=1 is thus Cauchy in the Lévy metric, and hence
it converges weakly to a limit P∞.

Moreover,
d(P∞, Qε

∞) = lim
k→∞

d(Pk, Qε
k) ≤ ε,

and so P∞ = limε↓0 Qε
∞.

(c) Suppose that p = #{1 ≤ k ≤ m : μk = γ}, with μa+1 = . . . μa+p = γ, and q =
#{1 ≤ k ≤ n : νk = γ}, with νb+1 = . . . νb+q = γ. It follows from the interlacing
inequalities that νa+1 ≤ μa+1, provided a+1 ≤ n, and νa+p−(m−n) ≤ μa+p provided
a + p − (m − n) ≥ 1. Hence, q ≥ p − (m − n). Similarly, νb+1 ≤ μb+1+(m−n) and
μb+q ≤ νb+q, so that p ≥ q − (m− n). Thus, |p− q| ≤ (m− n), as required.

(d) From part (c),

|mkPk({γ})− nε
kQε

k({γ})| ≤ (mk − nε
k),

and so

|Pk({γ})−Qε
k({γ})| ≤

(
1− nε

k

mk

)
+
(

mk

nε
k

− 1
)

.

An argument using completeness similar to that in the proof of Proposition 5.1(b)
finishes the proof.

�
Corollary 5.2. Consider a forest u made up of finitely many finite unlabeled rooted
trees, and assume that some eigenvalue γ of the adjacency matrix of u has multi-
plicity L. Suppose that A is the adjacency matrix of a finite unlabeled rooted tree t
with m vertices, and suppose that there are K vertices v of t such that the forest
formed by deleting v from the subtree below v produces the forest u. Then, γ is an
eigenvalue of the matrix A with multiplicity at least KL−m+(m−K) = K(L−1).

Proof. The proof follows immediately by applying Proposition 5.1(c) to the matrix
B that is the adjacency matrix of the graph obtained by deleting the K designated
vertices from t. The matrix B is block diagonal, and some of its blocks can be
collected into K identical larger blocks that each form a copy of the adjacency
matrix of the forest u. It remains to observe that the set of eigenvalues of a block
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diagonal matrix is the union (including multiplicities) of the sets of eigenvalues of
the respective blocks. �

5.2. Proof of Theorem 4.1(a). Suppose that the random tree Tn has Mn vertices
and adjacency matrix An.

Fix a positive integer K. The construction of several objects in the proof will
depend on K, but our notation will not record this.

Denote by Wn the set of vertices v of Tn such that the sub-tree below v (including
v) contains at most K vertices. Put Nn := #Wn. In the notation of Section 3,
Nn/Mn = Φ(Tn, {(t0, t1, . . .) : #t0 ≤ K}).

In order to avoid conflicting notation, write the limit sin-tree T as (T 0, T 1, . . .).
By the assumption of probability fringe convergence, Nn/Mn converges in distri-
bution to the constant P{#T 0 ≤ K}. The latter constant can be made arbitrarily
close to 1 by choosing K sufficiently large.

Denote by Un the subgraph of Tn induced by the set of vertices Wn. That is,
the graph Un has vertex set Wn and two vertices in Un are connected by an edge if
they are connected by an edge in Tn. The graph Un is a forest.

Write Xnk, 1 ≤ k ≤ K, for the set of vertices v of Tn with the following two
properties:

• the subtree below v contains k vertices,
• if w is first vertex (other than v) on the path to the root from v, then w

is on the path to the root for more than K vertices (that is, the subtree
below w contains more than K vertices).

The set of roots of the trees in the the forest Un is the disjoint union
⋃K

k=1 Xnk.
Put Rnk := #Xnk, so that Nn =

∑K
k=1 kRnk. It follows from the assumption of

probability fringe convergence that Rnk/Mn = Φ(Tn, {(t0, t1, . . .) : #t0 = k, #t0 +
#t1 > K}) converges in distribution to the constant pk := P{#T 0 = k, #T 0 +
#T 1 > K}. Of course, the value of pk depends on K and may be 0. However,

K∑
k=1

kpk = lim
n→∞

K∑
k=1

k
Rnk

Mn

= lim
n→∞

Nn

Mn

= P{#T 0 ≤ K}.

Moreover, if we write

Ξnk :=
Mn

Rnk
Φ(Tn, · ∩ {(t0, t1, . . .) : #t0 = k, #t0 + #t1 > K})

for the empirical distribution of the subtrees rooted at the vertices in Xnk (with
some suitable convention when Rnk = 0), then Ξnk is concentrated on the finite set
of trees with k vertices and Ξnk({t}) converges in distribution when pk > 0 to the
constant

Ξk({t}) := P{T 0 = t | #T 0 = k, #T 0 + #T 1 > K}
for each such tree.

Denote by λk the distribution of an eigenvalue picked independently and uni-
formly at random from the k eigenvalues (counting possible multiplicities) of the
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k × k adjacency matrix of a k-vertex random tree with distribution Ξk. The prob-
ability measure λk is concentrated on the finite set of real numbers that are the
possible eigenvalues of some tree with k vertices.

Write Bn for the adjacency matrix of the forest Un. This is a block diagonal
matrix with Rnk many k × k blocks for 1 ≤ k ≤ K. Recall that the set of eigen-
values of a block diagonal Hermitian matrix is the union of the eigenvalues of the
blocks (including multiplicities). Thus, the spectral distribution of Bn converges in
distribution to the deterministic probability measure∑K

k=1 kpkλk∑K
k=1 kpk

as n→∞.
An application of Proposition 5.1(b) completes the proof.

Remark 5.3. It is instructive to consider what the various objects that appeared in
the proof look like in a simple example. Suppose that Tn is the deterministic tree
with 2n+1−1 vertices in which every non-leaf vertex has out-degree 2 and each leaf
is distance n from the root. We say that Tn is a complete binary tree of height n.
It is clear that Tn converges in the probability fringe sense to a random sin-tree
(T 0, T 1, . . .), where T 0 is a complete binary tree of height H with P{H = h} = 2−h,
h = 0, 1, . . ., and T i consists of a root connected by an edge to the root of a complete
binary tree of height H + i− 1 for i ≥ 1.

If 2n+1 − 1 ≥ K and � is the unique integer such that 2�+1 − 1 ≤ K < 2�+2 − 1,
then Wn is the set of vertices of Tn that are within distance at most � of the leaves.
Thus, Nn = 2n−�(2�+1 − 1). Moreover, the set Xnk is empty unless k = 2�+1, in
which case Xnk is the set of vertices of Tn that are at distance exactly � from the
leaves and Rnk = 2n−�.

The sub-probability distribution (pk)K
k=1 assigns mass 2−� to 2�+1 − 1 and 0

elsewhere, while the probability measure Ξk is the point mass at the complete
binary tree of height h when k is of the form 2h+1− 1. The spectral distribution of
Bn converges to the spectral distribution of the complete binary tree of height �.

5.3. Proof of Theorem 4.1(b). The proof is almost identical to that of part (a)
of the theorem in Subsection 5.2. Recall from that proof the constant K, the
probabilities p1, . . . , pK , the probability distributions λk, 1 ≤ k ≤ K, on R, and the
random adjacency matrix Bn with distribution depending on K and n. Recall also
that the probability measure λk is concentrated on the finite set of real numbers
that are the possible eigenvalues of some tree with k vertices.

It follows from the argument in Subsection 5.2 that the mass assigned by the
spectral distribution of Bn to γ ∈ R converges in distribution to the deterministic
probability measure ∑K

k=1 kpkλk({γ})∑K
k=1 kpk

as n→∞.
An application of Proposition 5.1(d) completes the proof.

5.4. Proof of Theorem 4.1(c). It follows from Corollary 5.2 that multiplicity of
γ as an eigenvalue of the adjacency matrix of Tn is at least (L−1) times the number
of vertices v of Tn such that the forest formed by deleting v from the subtree below
v produces the forest u. By the assumption of probability fringe convergence, the
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proportion of eigenvalues of the adjacency matrix of Tn that have the value γ (that
is, Fn({γ})) satisfies

P{Fn({γ}) > (L − 1)P{U = u} − ε} → 1

as n→∞ for any ε > 0. Moreover, because Fn converges weakly to F in distribu-
tion by Theorem 4.1(a),

P{F ({γ}) > Fn({γ})− ε} → 1

as n→∞ for any ε > 0. Combining these observations establishes that

F ({γ}) ≥ (L− 1)P{U = u} > 0,

as required.

6. Maximal matchings and the number of zero eigenvalues

6.1. Combinatorial preliminaries. The following lemma is standard, but we
include the proof for completeness.

Lemma 6.1. Consider a tree t with n vertices and adjacency matrix A. Let δ(t)
denote the number of zero eigenvalues A. Then

δ(t) = n− 2M(t),

where M(t) is the cardinality of a maximal matching of t.

Proof. It follows from the usual expansion of the determinant that the characteristic
polynomial of the adjacency matrix of t is given by

det(zI −A) =
�n/2	∑
k=0

(−1)kNk(t)zn−2k,

where Nk(t) is the number of matchings of t that contain k edges (see, for example,
Additional Result 7b of [Big93]), and the result follows immediately. �

Our analysis of the cardinality of a maximal matching for a tree relies on the
following “greedy” algorithm for producing a maximal matching of a forest. It
is a simplification of one due to Karp and Sipser [KS81] that is intended to find
approximate maximal matchings of more general sparse graphs. The algorithm
takes an initial forest and iteratively produces forests with the same set of vertices
but smaller sets of edges while at the same time adding edges to a matching of the
initial forest. We stress that a leaf of a forest is a vertex with degree one.

• Input a forest f with vertices V (f) and edges E(f).
• Initialize S ← ∅.
• While E(f) �= ∅ do

* Choose a leaf, say x, and let {x, y} be the unique edge in f incident to
x.

* Set E(f)← {e ∈ E(f) : e ∩ {x, y} = ∅}, and S ← S ∪ {{x, y}} .
• Output the matching S.

Lemma 6.2. The algorithm produces a maximal matching as its output.
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Proof. Let x be any leaf of the forest, and write {x, y} for the unique incident edge.
Note that every maximal matching either contains the edge {x, y} or an edge of the
form {y, z} for some vertex z �= x, because otherwise {x, y} could be added to a
putative maximal matching that contains no edge of the form {y, w} to produce a
matching with a larger cardinality. Also, note that replacing any edge of the form
{y, z} with z �= x that appears in some matching by the edge {x, y} results in a
collection of edges that is also a matching and has the same cardinality. It follows
that the edge {x, y} must belong to at least one maximal matching.

The result now follows by induction on the number of edges in the forest. �

Note that we are free to take any current leaf at each iteration of the “while”
step of the algorithm. We start with some initial set of leaves and each iteration of
the while step removes some leaves (by turning them into isolated vertices) as well
as sometimes producing new leaves. We can therefore think of the leaves present
after the completion of each while step as being labeled with the number of the
step at which that vertex became a leaf, where the leaves in the initial forest are
labeled with 0. We adopt the convention that in any iteration of the while step we
take one of the current leaves with the lowest label.

Put i0 = 0 and define i1, i2, . . . inductively by setting ik+1 to be the number of
iterations of the while step required until all of the leaves with labels at most ik
are turned into isolated vertices, where ik+1 = ik if the forest after ik iterations
already consists of only isolated vertices. The numbers ik are eventually constant
and this final value is the cardinality of a maximal matching.

The iterations ik + 1, . . . , ik+1 of the while step are of the following two types.

Type I: An iteration that removes all of the edges of the form {y, z}, where the
vertex y is not a leaf with label at most ik and there is a leaf x with label
at most ik such that {y, x} is an edge (so that y is at graph distance 1 from
the leaves of the forest present after ik iterations).

Type II: An iteration that removes an edge of the form {y, z} such that y and z are
both leaves with label at most ik (we say that {y, z} is an isolated edge in
the forest present after ik iterations).

Therefore, the cardinality of a maximal matching is the number of vertices that
will be at graph distance 1 from the current leaves after ik iterations of the while
step for some k plus the number of edges in the initial forest that will eventually
become isolated edges after ik iterations of the while step for some k. We next
introduce some notation to describe the sets of vertices and edges we have just
characterized.

Write fk, Ek(f), Lk(f), and Ik(f), respectively, for the forest, the set of edges,
the set of leaves, and the set of isolated vertices after ik iterations of the while
step starting from the initial forest f . Note that Ek(f) is obtained by removing all
edges {y, z} ∈ Ek−1(f) such that there exists x ∈ Lk−1(f) with {x, y} ∈ Ek−1(f).
Equivalently, Ek(f) consists of exactly those edges {u, v} ∈ Ek−1(f) such that both
vertices u and v are at graph distance at least 2 from Lk−1(f) in fk−1. This means
that vertices that are distance 0 or 1 from Lk−1(f) in fk−1 are isolated in fk, and
vertices that are at graph distance 2 or greater from Lk−1(f) have degree in fk equal
to the number of their neighbors in fk−1 that are at graph distance 2 or greater
from Lk−1(f).
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We further introduce new sets Gk(f), Hk(f) and Jk(f) as follows:

Gk(f) := {u ∈ Lk(f) : ∃v ∈ Lk(f) so that {u, v} ∈ Ek(f)},
Hk(f) := {u ∈ V (f) \ Lk(f) : ∃v ∈ Lk(f) so that {u, v} ∈ Ek(f)},
Jk(f) := (Ik+1(f) \ Ik(f)) \ (Gk(f) ∪Hk(f)).

In words, Gk(f) is the set of leaves that are one of the two leaves of an isolated edge
present after ik iterations of the while step – these are the vertices that become
isolated during iterations ik + 1, . . . , ik+1 due to Type II steps, Hk(f) is the set of
vertices that are graph distance 1 from the leaves after ik iterations of the while
step – these are the non-leaf vertices that become isolated during iterations ik +
1, . . . , ik+1 due to Type I steps, and Jk(f) is the remaining set of vertices that
become isolated during iterations ik + 1, . . . , ik+1 (all due to Type I steps). Note
that V (f) is the disjoint union of I0(f) and Gk(f), Hk(f), Jk(f), k ≥ 0, and so

#V (f) = #I0(f) +
∞∑

k=0

(#Gk(f) + #Hk(f) + #Jk(f)) .

Note that the forest fk can be obtained from the forest fk−1 by deleting all the
isolated edges of fk−1 along with all the edges of fk−1 that are incident to the
vertices that are at a graph distance 1 from the leaves of fk−1. In particular, fk
does not depend on the order in which we perform the leaf-removal operations
(Type I and Type II) between iterations ik−1 + 1, . . . , ik of the while step. Thus,
by induction on k, it is easy to see that the sets of vertices Gk(f), Hk(f) and Jk(f)
are well defined in the sense that they do not depend on how we order the leaves
of the initial forest f0.

Clearly, all the above objects can also be defined for an infinite forest f such that
every vertex is at a finite graph distance from a leaf, (that is, a vertex of degree
one).

The discussion above leads immediately to the following result.

Lemma 6.3. The cardinality of a maximal matching of a finite forest f is

M(f) =
∞∑

k=0

#Hk(f) +
1
2

∞∑
k=0

#Gk(f).

Consequently, the number of zero eigenvalues of the adjacency matrix of a finite
tree t is

δ(t) = #V (t)− 2M(t) =
∞∑

k=0

#Jk(t)−
∞∑

k=0

#Hk(t).

Example 6.4. Consider the tree t with vertices {1, . . . , m} and edges connecting
successive integers. The cardinality of a maximal matching is obviously (m− 1)/2
when m is odd and m/2 when is even (so that δ(t) is 1 when m is odd and 0 when
is even). There are four cases to consider in checking that this agrees with the
formula of Lemma 6.3.
Case I: m is odd and (m− 1)/2 is odd (⇔ m ≡ 3 mod 4).

Then, H0(t) = {2, m− 1}, H1(t) = {4, m− 3}, . . ., H(m−3)/4(t) = {(m + 1)/2},
all other Hk(t) are empty, and all Gk(t) are empty. The formula of Lemma 6.3
gives 2× (m− 3)/4 + 1 = (m− 1)/2.
Case II: m is odd and (m− 1)/2 is even (⇔ m ≡ 1 mod 4).
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Then, H0(t) = {2, m − 1}, H1(t) = {4, m − 3}, . . ., H(m−5)/4(t) = {(m −
1)/2, (m + 3)/2}, all other Hk(t) are empty, and all Gk(t) are empty. The formula
of Lemma 6.3 gives 2× ((m− 5)/4 + 1) = (m− 1)/2.
Case III: m is even and (m− 2)/2 is odd (⇔ m ≡ 0 mod 4).

Then, H0(t) = {2, m− 1}, H1(t) = {4, m− 3}, . . ., H(m−4)/4(t) = {m/2, (m +
2)/2}, all other Hk(t) are empty, and all Gk(t) are empty. The formula of
Lemma 6.3 gives 2× ((m− 4)/4 + 1) = m/2.
Case IV: m is even and (m− 2)/2 is even (⇔ m ≡ 2 mod 4)

Then, H0(t) = {2, m − 1}, H1(t) = {4, m − 3}, . . ., H(m−6)/4(t) = {(m −
2)/2, (m+4)/2}, all other Hk(t) are empty, G(m−2)/4(t) = {(m/2, (m+2)/2}, and
all other Gk(t) are empty. The formula of Lemma 6.3 gives 2×((m−6)/4+1)+1 =
m/2.

6.2. Maximal weighted matchings: Proof of Theorem 4.7. We will use the
same construction as we used in the proof of Theorem 4.1 in Subsection 5.2.

Recall that for a fixed positive integer K this construction produced for each n
a set of vertices Wn of Tn with cardinality Nn such that Nn/Mn, where Mn is the
number of vertices of Tn, converged in distribution to P{#T 0 ≤ K} – a constant
that can be made arbitrarily close to 1 by choosing K sufficiently large.

The subgraph of Tn induced by Wn was the forest Un rooted at the points⋃K
k=1 Xnk and #Xnk/Mn converged in distribution to the constant pk := P{#T 0 =

k, #T 0 + #T 1 > K}.
Moreover, the random probability measure Ξnk given by the empirical distribu-

tion of the subtrees rooted at the vertices in Xnk was concentrated on the finite set
of trees with k vertices and Ξnk({t}) converged in distribution when pk > 0 to the
constant

Ξk({t}) := P{T 0 = t | #T 0 = k, #T 0 + #T 1 > K}
for each such tree t.

Write M(Tn) (respectively, M(Un) for the total weight of a maximal matching
on Tn (respectively, Un) for the independent, identically distributed edge weights
Xn(e), where e ranges over the edges of Tn.

Note that a maximal matching on Un is obtained by separately constructing
maximal matchings on each component subtree of Un. It follows from Lemma 6.5
below that M−1

n M(Un) converges in distribution to
K∑

k=1

pk

∑
t:#t=k

Ξk({t})μ(t),

where μ(t) is the expected value of the total weight of a maximal matching on
t when the weights of the edges are independent and identically distributed with
common distribution ν.

Observe that any matching on Un is also a matching on Tn and that the restriction
of any matching on Tn to Un is a matching on Un. Thus,

M(Un) ≤M(Tn) ≤M(Un) +
∑

e∈E(Tn)\E(Un)

Xn(e),

where E(Tn) (respectively, E(Un)) is the set of edges of Tn (respectively, Un).
There is an element of E(Tn)\E(Un) for each vertex of Tn other than the root

that is not a vertex of Un and one for each root of a subtree in the forest Un. Thus,
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writing μ for the common expected value of the edge weights,

E

⎡
⎣M−1

n

∑
e∈E(Tn)\E(Un)

Xn(e)
∣∣∣∣ Tn

⎤
⎦ = M−1

n

[
(Mn −Nn − 1)+ +

K∑
k=1

#Xnk

]
μ.

Note from above that 1 − M−1
n Nn converges in distribution to the constant

P{#T 0 > K} and M−1
n

∑K
k=1 #Xnk converges in distribution to the constant∑K

k=1 pk = P{#T 0 ≤ K, #T 0 + #T 1 > K} as n → ∞. Both of these constants
converge to 0 as K →∞. It follows that

lim
K→∞

lim
n→∞

P

⎧⎨
⎩M−1

n

∑
e∈E(Tn)\E(Un)

Xn(e) > ε

⎫⎬
⎭ = 0

for all ε > 0.
Therefore, M−1

n M(Tn) converges in distribution as n→∞ to the constant

lim
K→∞

K∑
k=1

pk

∑
t:#t=k

Ξk({t})μ(t),

where we stress that pk and Ξk depend on K, even though this is not indicated by
our notation.

The following lemma, which we used above, is a straightforward consequence of
the strong law of large numbers.

Lemma 6.5. For i = 1, 2, . . . let Li be a positive integer-valued random variable
and θi

1, . . . , θ
i
Li be random variables taking values in a finite set Θ. Suppose that as

i → ∞ the random variable Li converges in distribution to ∞ and for each θ ∈ Θ
the random variable

#{1 ≤ j ≤ Li : θi
j = θ}

Li

converges in distribution to a constant π(θ). Let ξi
1, . . . , ξ

i
Li be R+-valued random

variables that are conditionally independent given θi
1, . . . , θ

i
Li , and such that

P{ξi
j ∈ A | θi

1, . . . , θ
i
Li} = Π(θi

j ; A)

for some collection of Borel probability measures (Π(θ; ·))θ∈Θ. Suppose that

υ(θ) :=
∫

R+

xΠ(θ; dx) <∞

for all θ ∈ Θ. Then, ∑Li

j=1 ξi
j

Li

converges in distribution to ∑
θ∈Θ

π(θ)υ(θ)

as i→∞.

Remark 6.6. Let a sequence (Tn)∞n=1 of random unlabeled rooted trees converge
in the probability fringe sense to a random sin-tree T . Let Mn be the number of
vertices in Tn. Consider the case when each edge-weight is identically one. Write
I(Tn) for the cardinality of a maximal independent set for Tn. By König’s theorem
[BM76], for a general bipartite graph the cardinality of a maximal matching is equal
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to the cardinality of a minimal vertex cover. On the other hand, complementation
of a minimal vertex cover in any graph always yields a maximal independent set.
Thus, I(Tn) = Mn −M(Tn) in our case. Consequently, M−1

n I(Tn) also converges
in distribution to a (model-dependent) constant κT ≥ 1/2 as n→∞.

6.3. Asymptotics of the number of zero eigenvalues. If we combine The-
orem 4.7 on the rescaled convergence of the total weight of a maximal weighted
matching with Lemma 6.1 on the connection between the cardinality of a maximal
matching and the number of zero eigenvalues of the adjacency matrix, then we get
another proof of Theorem 4.1(b) on the convergence of Fn({γ}) in the special case
when γ = 0. We now improve this result by using Lemma 6.3 to give a formula for
the limit in terms of features of the limit sin-tree. We then show that how this
formula may be used to get explicit lower bounds on the limit.

Proposition 6.7. Consider a sequence (Tn)∞n=1 of random unlabeled rooted trees,
where Tn has Mn vertices. Suppose that (Tn)∞n=1 converges in the probability fringe
sense to a random sin-tree T = (T 0, T 1, . . .) and write R for the root of T 0. Then
Fn({0}) converges in distribution as n→∞ to

∞∑
k=0

(
P{R ∈ Jk(T )} − P{R ∈ Hk(T )}

)
.

Proof. In view of Theorem 4.1(b), its enough to prove the convergence of Fn({0})
to the desired quantity in expectation. If V is a vertex chosen uniformly at random
from Tn, then, by Lemma 6.3 we can write E[Fn({0})] = M−1

n E[δ(Tn)] as
∞∑

k=0

(
M−1

n E[#Jk(Tn)]−M−1
n E[#Hk(Tn)]

)

=
∞∑

k=0

(P{V ∈ Jk(Tn)} − P{V ∈ Hk(Tn)}) .

(6.1)

Given a tree t ∈ T with root ρ and a vertex v ∈ t, writeNk(v, t) for the subtree of
t induced by vertices that are at graph distance at most k from v. Note that whether
or not a vertex v of t belongs to the sets Hk(t) or Jk(t) can be determined by exam-
ining the neighborhood N2k+4(v, t). Observe also that (t0, t1, . . . , th, ∗, ∗, . . .) ∈ T

∞
∗

is the decomposition of t relative to ρ and v, then Nk(v, t) can be reconstructed
from (t0, t1, . . . , tk∧h).

Recall that Jk(Tn) and Hk(Tn) are both subsets of Ik+1(Tn) \ Ik(Tn), and so

|P{V ∈ Jk(Tn)} − P{V ∈ Hk(Tn)}| ≤ P{V ∈ Ik+1(Tn) \ Ik(Tn)}.
Moreover, for any nonnegative integer m,

∞∑
k=m

P{V ∈ Ik+1(Tn) \ Ik(Tn)}

= P{V ∈ V (Tn) \ Im(Tn)}
≤ P{the subtree of Tn below V contains at least 2m− 1 vertices }
→ P{#T 0 ≥ 2m− 1}

as n → ∞, by the assumption of probability fringe convergence. The last term
clearly converges to 0 as m → ∞. A similar argument shows that the analogous
series involving the limiting sin-tree is also absolutely convergent.
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Finally, it follows from the assumption of probability fringe convergence and our
observations above about membership of Hk(T ) and Jk(T ) being locally determined
that for each k ≥ 1, the first k terms of the series (6.1) converge to the corresponding
terms of the desired infinite series involving the limiting sin-tree. �

By construction, for any tree t, Gk(t) ⊆ Lk(t) and Lk(t) \ Gk(t) ⊆ Jk(t).
Set Kk(t) := Jk(t) \ (Lk(t) \ Gk(t)). That is, Kk(t) consists of vertices that
become isolated due to Type I steps during iterations ik + 1, . . . , ik+1 of the Karp-
Sipser algorithm but are of distance at least 2 from the leaves in the forest present
after iteration ik; for example, if t has vertices {1, 2, 3, 4, 5} and adjacent integers
are joined by edges, then J0(t) = {1, 3, 5}, L0(t) \ G0(t) = L0(t) = {1, 5}, and
K0(t) = {3}. Note that for each v ∈ Hk(t) there exists u ∈ Lk(t) \ Gk(t) such
that {v, u} ∈ Ek(t). Also, if v1, v2 are distinct elements of Hk(t) and u1, u2 ∈
Lk(t) \ Gk(t) are such that {v1, u1}, {v2, u2} ∈ Ek(t), then u1 and u2 are also
distinct. Consequently, #Lk(t)−#Gk(t)−#Hk(t) ≥ 0. Applying this observation
to Tn, dividing by Mn, and taking the limit as n→∞, we deduce that the formula
in Proposition 6.7 for the limit of Fn({0}) may be written as a sum over k of the sum
of the two nonnegative terms P{R ∈ Lk(T )} − P{R ∈ Gk(T )} − P{R ∈ Hk(T )}
and P{R ∈ Kk(T )}. We may give good lower bounds for the first few of these
summands with relative ease.

We first find a lower bound on P{R ∈ L0(T )}−P{R ∈ G0(T )}−P{R ∈ H0(T )}.
Note for any tree t with 3 or more vertices that G0(t) = ∅. Observe also that

#L0(Tn)−#H0(Tn)

=
∞∑

m=2

(m− 1)×#{u ∈ H0(Tn) : u is connected to exactly m vertices in L0(Tn)}

≥
∞∑

m=2

(m− 1)×#{u ∈ V (Tn) : the subtree below u is an m-star},

where by a m-star we mean a unlabeled rooted tree with (m + 1) vertices in which
the root is connected to each of the other m vertices via an edge. Therefore,

P{R ∈ L0(T )} − P{R ∈ H0(T )} = lim
n→∞

M−1
n (E[#L0(Tn)]− E[#H0(Tn)])

≥
∞∑

m=2

(m− 1)× P{T 0 is an m-star}.

On the other hand, it is easy to check that P{R ∈ K0(T )} ≥ P{T 0 ∈ T
′′, T 1 ∈ T

′},
where T

′ ⊆ T is the set of finite unlabeled rooted trees for which the root has at
least one child that has no children, and T

′′ ⊆ T is the set of finite unlabeled rooted
trees for which the root has single child and that child in turn has at least one child
that has no children.

As one might expect, finding good lower bounds on the terms P{R ∈ Lk(T )} −
P{R ∈ Gk(T )} − P{R ∈ Hk(T )} and P{R ∈ Kk(T )} becomes increasingly difficult
as k gets larger. However, we can still get crude lower bounds by computing the
probability of appearance of special kinds of trees in the first few fringes in the
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limiting sin-tree. For example,

P{R ∈ Lk(T )} − P{R ∈ Gk(T )} − P{R ∈ Hk(T )}
≥ P{T 0 is a complete binary tree of depth (2k + 1)

and T i = • for 1 ≤ i ≤ 2k − 2}.
where • denotes the rooted tree with a single vertex. The proof follows along the
same lines as the k = 0 case above. Furthermore,

P{R ∈ Kk(T )}
≥ P{T 0 is a path of length (2k + 2) ,

T i = • for 1 ≤ i ≤ 2k,

and T 2k+1 is a 1-star}.
For the ensemble of linear preferential attachment trees with parameter a = 0, it

is well known (see, for example, [Dur07]) that the proportion of vertices with degree
d converges in distribution to pd = 4/d(d + 1)(d + 2). Specializing to d = 1, we see
that n−1#L0(Tn) converges in distribution to 2/3, and so P{R ∈ L0(T )} = 2/3.
Hence,

lim
n→∞

Fn({0}) ≥ P{R ∈ L0(T )} − P{R ∈ H0(T )} ≥ 2P{R ∈ L0(T )} − 1 = 1/3.

Now consider the ensemble of random recursive trees. Recall Construction 3.7(a).
Let ξi, ξ

′
i, i ≥ 1 and X be i.i.d. exponential random variables with rate 1. To get

a lower bound on limn→∞ Fn({0}), we may use the inequality limn→∞ Fn({0}) ≥∑∞
m=2(m− 1)× P{T 0 is an m-star} where

P{T 0 is an m-star} ≥ E

[
P

{
m∑

i=1

ξi ≤ X,

m+1∑
i=1

ξi > X
∣∣∣X
}

m∏
i=1

P{ξ′i > X |X}
]

= E

[
P

{
m∑

i=1

ξi ≤ X,

m+1∑
i=1

ξi > X
∣∣∣X
}

e−mX

]

= E

[
e−X Xm

m!
e−mX

]

=
1
m!

∫ ∞

0

xme−(m+2)x dx

= (m + 2)−(m+1).

For the uniform random trees, we can easily obtain lower bounds for various
terms using the description of the fringes of the limiting sin-tree in terms of critical
Poisson Galton-Watson trees. For example,

P{T 0 is an m-star} =
e−1

m!
× (e−1)m =

e−(m+1)

m!
,

P{T 1 ∈ T
′} = 1−

∞∑
i=0

e−1

i!
× (1− e−1)i = 1− e−1e1−e−1

,

and
P{T 0 ∈ T

′′} = e−1 × (1− e−1e1−e−1
).
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Therefore,

lim
n

Fn({0}) ≥
∞∑

m=2

(m− 1)× P{T 0 is a m-star}+ P{T 0 ∈ T
′′, T 1 ∈ T

′}

= e−1(1− (1 − e−1)ee−1
) + e−1(1− e−1e1−e−1

)2.

It’s worth mentioning that [BG00] showed that the expected portion of zero
eigenvalues of the empirical spectral distribution converges to 2x∗ − 1 where x∗
is the unique real root of the equation x = e−x. But they do not prove any
concentration result. In that sense, Proposition 6.7 in the special case of uniform
random trees completes their result.

7. Largest eigenvalues: Proof of Theorem 4.10

We first recall from Proposition 3.5(b) how Tn, the linear preferential attachment
tree on n vertices with parameter a > −1, can be constructed from a particular
continuous-time branching process.

Denote by Na = (Na(t))t≥0 a pure birth process that starts with a single progen-
itor and when there have been k births a new birth occurs at rate k + 1 + a. Recall
that F(t) ∈ T is the family tree at time t ≥ 0 of the continuous-time branching
process in which the birth process of each individual is a copy of Na. Then, Tn has
the same distribution as F(Tn), where Tn := inf{t > 0 : #F(t) = n}.

We now record some useful facts about the birth process Na. Recall the Malthu-
sian rate of growth parameter γa := a + 2.

Lemma 7.1. (a) For any fixed time t ≥ 0, the random variable P{N0(t) = k} =
(1 − e−t)ke−t, k = 0, 1, . . .. That is, N0(t) is distributed as a geometric random
variable with success probability e−t.
(b) For a > −1, set A := �a + 1�. Then,

P{Na(t) > Ket} ≤ Ae−
K
A

for all K > 0 and t ≥ 0.

Proof. For part (a), note that N0 + 1 is a Yule process – the birth rate in state � is
� – and the claimed distribution is well-known, see for example [Nor98], Chapter 2.

To prove part (b), suppose that M = (M(t))t≥0 is a Yule process started in
state A (that is, M is pure birth process and the birth rate in state � is �). Then,
(M(t) − A)t≥0 is a pure birth process that starts in state 0 and has birth rate
� + A ≥ � + 1 + a in state �. It is therefore possible to couple M and Na in such a
way that Na(t) ≤M(t)−A for all t ≥ 0. Observe that M has the same distribution
as
∑A

i=1(N
i
0 + 1), and so M − A has the same distribution as

∑A
i=1 N i

0. We could
prove (b) using the fact that M(t) is distributed as the number of trials before the
Ath success in in a sequence of independent Bernoulli trials with common success
probability e−t, but it is more straightforward to use a simple union bound.
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Observe that from part (a) and the inequality 1 − x ≤ exp(−x) that, for any
C ≥ 0,

P{N0(t) > Cet} = (1 − e−t)�Cet	+1

≤ (exp(−e−t))�Cet	+1

= exp(−e−t(�Cet�+ 1))

≤ e−C ,

and hence,

P{Na(t) > Ket} ≤
A∑

i=1

P{N i
0(t) >

K

A
et}

≤ Ae−
K
A .

�
Theorem 7.2. (a) There exists a random variable Za > 0 such that

lim
t→∞

#F(t)
eγat

= Za almost surely.

(b) There exists a constant C such that E[#F(t)] ≤ Ceγat.
(c) For the random variable Za of part (a),

lim
n→∞

Tn −
1
γa

log n = − log Za almost surely.

(d) There exists a random variable Wa > 0 such that

lim
t→∞

Na(t)
et

= Wa almost surely.

Proof. Parts (a) and (b) (in a more general context) can be found in [Bha07], so
we shall not give the proof here. They essentially follow from the general theory of
continuous time branching processes developed by Jagers and Nerman.

Part (c) follows immediately from part (a) and the relationship #F(Tn) = n.
Turning to part (d), note that

Na(t)−
∫ t

0

(Na(s) + 1 + a) dt, t ≥ 0,

is a local martingale with bounded variation. Stochastic calculus shows that the
process (e−t · (Na(t) + 1+ a))t≥0 is also a local martingale with bounded variation.
The fact that the latter process is bounded in L

2 and hence, in particular, a true
martingale follows from Lemma 7.1(b).

It follows from the martingale convergence theorem that e−tNa(t) converges
almost surely and in L

2 to a random variable Wa.
It remains to show that Wa is strictly positive almost surely. Consider first the

case a ≥ 0. From a comparison of branching rates similar to that in the proof of
Lemma 7.1, it is possible to couple Na and N0 so that N0(t) ≤ Na(t) for all t ≥ 0.
Note that W0 has an exponential distribution with mean 1, and so Wa is certainly
almost surely positive.

Consider now the case −1 < a < 0. Let Ña be Na started in the initial state
1 rather than 0, and put N̂a = Ña − 1. Another comparison of branching rates
shows that it is possible to couple N̂a and N0 so that N0(t) ≤ N̂a(t) for all t ≥ 0.
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Thus, limt→∞ e−tNa(t) is stochastically greater than the strictly positive random
variable e−τW0, where the random variable τ is independent of W0 and has the
same distribution as the time taken for Na to go from 0 to 1 (that is, τ has an
exponential distribution with rate 1 + a). �

Fix k ≥ 1. Recall that Δn,1 ≥ Δn,2 ≥ · · · ≥ Δn,k are the k largest out-degrees
in Tn (the out-degree of a vertex is its number of children). We will show that the
vertices with these out-degrees occur in a finite neighborhood about the root and
that the out-degrees of vertices in a finite neighborhood about the root converge in
distribution when properly normalized.

Lemma 7.3. In the branching process construction of the linear preferential at-
tachment tree Tn, let ΔS

n,1 denote the maximum out-degree in Tn among all vertices
born before time S. Given any ε > 0, there exists a finite constant Sε such that

lim inf
n→∞

P{ΔSε
n,1 = Δn,1} ≥ 1− ε.

Proof. Fix ε > 0. Write An,S for the event

There exists a vertex in Tn which was born after time S and has
out-degree greater than the root.

The claim of the lemma may be rephrased as a statement that there is a finite
constant Sε such that

lim sup
n→∞

P(An,Sε) ≤ ε.

Note from Theorem 7.2(c) that there is a constant Bε such that

lim sup
n→∞

P

{∣∣∣∣Tn −
1
γa

log n

∣∣∣∣ > Bε

}
≤ ε/2.

Set tn− := 1
γa

log n − Bε and tn+ := 1
γa

log n + Bε. It is enough to prove that there
exists a finite constant Sε such that

lim sup
n→∞

P(A′
n,Sε

) ≤ ε/2,

where A′
n,S is the event

There exists a vertex born after time S that has out-degree greater
than the root for some time t in the interval [tn−, tn+] .

Furthermore, since the out-degrees of vertices increase with time, it is enough to
show that

lim sup
n→∞

P(A′′
n,Sε

) ≤ ε/2,

where A′′
n,S is the event

There exists a vertex born after time after time S such that the
out-degree of the vertex at time tn+ is greater than the out-degree of
the root at time tn−.

For t ≥ 0 and a time interval I ⊆ [0, t] denote by Z(I, t) the maximum out-degree
at time t of all vertices born in the time interval I. Let ζρ(t) denote the out-degree
of the root at time t. Note that

A′′
n,S = {Z([S, tn+], tn+) > ζρ(tn−)}.
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Observe also, that for any constant K,

P(A′′
n,S) ≤ P

{
ζρ(tn−) ≤ K or Z([S, tn+], tn+) > K

}
≤ P{ζρ(tn−) ≤ K}+ P{Z([Sε, t

n
+], tn+) > K}.

It thus suffices to show that there is a sequence Kn and a constant Sε such that

(7.1) lim sup
n→∞

P{ζρ(tn−) ≤ Kn} ≤ ε/4

and

(7.2) lim sup
n→∞

P{Z([S, tn+], tn+) > Kn} ≤ ε/4.

It follows from Theorem 7.2(d) that the inequality (7.1) holds with Kn =
Kεn

1/γa for a suitable constant Kε > 0.
Turning to the inequality (7.2), assume without loss of generality that S and tn+

are integers. In that case,

Z(S, tn+) = max
S≤m≤tn

+−1
Z([m, m + 1], tn+).

Note that, by the union bound,

P{Z([m, m + 1], tn+) > Kn} ≤ E[#F(m + 1)] P{Na(tn+ −m) > Kn}.
Applying Theorem 7.2(b) and Lemma 7.1(b) gives

P{Z(S, tn+) > Kn} ≤
tn
+−1∑

m=S

Ceγa(m+1)Ae−C′em

,

where C′ = Kε/(AeBε). The inequality (7.2) follows upon choosing S = Sε large
enough. �

A slightly more detailed analysis shows that Lemma 7.3 can be generalized to
the k maximal out-degrees for any fixed k. Let ΔS

n,1 ≥ ΔS
n,2 ≥ · · · ≥ ΔS

n,k be the
k largest out-degrees in Tn from among the vertices that are born before time S,
with the convention that ΔS,n

i = 0 for i ≥ #F(S) when #F(S) < k. We leave the
proof of the following result to the reader.

Lemma 7.4. For any ε > 0 there exists a finite constant Sε such that

lim inf
n→∞

P{(ΔSε
n,1, . . . , Δ

Sε

n,k) = (Δn,1, . . . , Δn,k)} ≥ 1− ε.

Proposition 7.5. Fix S > 0 and consider the marked tree T #
n constructed by

marking each vertex v of the tree F(S) with n−1/γaD(v, n) ∈ R+, where D(v, n) is
the out-degree of v in Tn. Then, T #

n converges almost surely as n→∞ to the tree
F(S) equipped with a set of marks that are strictly positive almost surely.

Proof. For any vertex v ∈ F(S), write ζv(t) for the out-degree (that is, number
of offspring) of v at time t, so that ζv(Tn) = D(v, n). Note that ζv(S) can be
computed by only looking at F(S) (recall that our trees are rooted). Conditional
on F(S), the processes ζ̂v := (ζv(S + t) − ζv(S))t≥0, v ∈ F(S), are conditionally
independent. Note that the conditional distribution of ζ̂v is that of a pure birth
process that starts in state 0 and has birth rate ζv(S) + � + 1 + a in state �. It
follows from Theorem 7.2(d) that e−tζ̂v(t) converges almost surely as t → ∞ to
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a random variable that has a conditional distribution which is that of the strictly
positive random variable Wa+ζv(S). Hence, by Theorem 7.2(c),

lim
n→∞

e−(Tn−S)ζ̂v(Tn − S) = lim
n→∞

eSZan
−1/γa ζ̂v(Tn − S)

exists almost surely and the limit is strictly positive almost surely.
The result follows because n−1/γaD(v, n) = n−1/γa(ζv(S) + ζ̂v(Tn − S)). �

Corollary 7.6. The random vector n−1/γa(ΔS
n,1, . . . , Δ

S
n,k) converges almost surely

to a random vector (Y S
1 , Y S

2 , . . . , Y S
k ) as n → ∞, where Y S

1 ≥ Y S
2 ≥ . . . ≥ Y S

k > 0
almost surely.

Completion of the proof of Theorem 4.10. Given Corollary 7.6 and
Lemma 7.4, the proof is completed by applying the following elementary result
with Xn,i = n−1/γaΔn,i and Y ε

n,i = n−1/γaΔSε

n,i.

Lemma 7.7. Let (Xn)∞n=1 = ((Xn,1, . . . , Xn,k))∞n=1 be a sequence of R
k-valued

random variables. Suppose for each fixed ε > 0 that there exists a sequence of R
k-

valued random variables (Y(ε)
n )∞n=1 = ((Y ε

n,1, . . . , Y
ε
n,k))∞n=1 on the same probability

space such that
lim inf
n→∞

P{Xn = Y(ε)
n } ≥ 1− ε.

Suppose further that for each ε > 0 there exists a random vector Y(ε)
∞ such that

Y(ε)
n converges in probability to Y(ε)

∞ as n → ∞. Then, there exists an R
k-valued

random variable X∞ such that Xn converges in probability to X∞ as n→∞.

Proof. Convergence in probability for the space of R
k-valued random variables is

metrized by the metric r, where r(X,Y) := E[|X−Y|∧1] and where | · | denotes the
Euclidean norm on R

k. Moreover, this metric space is complete. By assumption,

lim sup
m,n→∞

r(Xm,Xn) ≤ lim sup
m→∞

r(Xm,Y(ε)
m )

+ lim sup
m,n→∞

r(Y(ε)
m ,Y(ε)

n ) + lim sup
n→∞

r(Y(ε)
n ,Xn)

≤ 2 lim sup
n→∞

P{Yε
n �= Xn}

≤ 2ε.

The sequence (Xn)∞n=1 is thus Cauchy in the metric r, and hence it converges in
probability to a limit X∞. �

8. An example: the random comb

We have shown in previous sections that under quite general conditions the
empirical spectral distributions of the adjacency matrices for many ensembles of
random trees converge to a deterministic probability distribution as the number of
vertices goes to infinity, and we have been able to deduce various properties of the
limit. However, we have not identified the limit explicitly, except in highly regular,
deterministic examples where the answer was already known. In this section we
present an extremely simple ensemble of random trees, describe some of the ingre-
dients that might go into identifying the limit, and conclude that even in this case
“closed form” expressions for moments of the limit seem difficult to come by.

Consider the following construction of a random finite graph Gn for a given
positive integer n. The set of vertices of Gn is {1, . . . , 2n}. Let εn1, . . . , εnn be
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Figure 4. In the above graph Gn, every horizontal edge always
occurs whereas every vertical (dotted) edge occurs independently
with probability 1− q. The comb tree Tn is the unique connected
component of Gn that is not an isolated point.

independent, identically distributed random variables, with P{εnk = 0} = P{εnk =
1} = 1

2 . There is always an edge between the vertices 2k − 1 and 2k + 1 for
1 ≤ k ≤ n − 1, and there is an edge between the vertices 2k − 1 and 2k for
1 ≤ k ≤ n if and only if εnk = 1. There are no other edges.

The graph Gn consists of a large connected component Tn with vertices

{1, 3, . . . , 2n− 1} ∪ {2k : 1 ≤ k ≤ n, εnk = 1}

and the (possibly empty) set of isolated points {2k : 1 ≤ k ≤ n, εnk = 0}. Note
that the graph Tn is a tree. It resembles a comb with some of the teeth missing,
see Figure 4.

Observe that, irrespective of the choice of the root, the sequence of random
finite trees (Tn)∞n=1 will not converge in the probability fringe sense because the
cardinality of the subtree below a uniformly chosen point does not converge in
distribution to a finite random variable. However, if we look at the empirical
distribution of the subtrees spanned by the vertices within graph distance k of a
vertex v as v ranges over the Tn, then that this random measure converges to a
deterministic limit for every k. This observation and the fact that the vertices of
Tn have degree at most 3 shows that the moments of the spectral distribution of
Tn converge as n→∞ to finite constants, and further that these constants are the
moments of a unique probability distribution. Thus, the spectral distribution of Tn

converges in distribution to a deterministic limit as n→∞, and in order to compute
the moments of that limit it suffices to compute the limits of the expectations of
the moments of the spectral distribution of Tn

Write Zn = #{1 ≤ k ≤ n : εnk = 0}. By permuting indices, it is possible
to re-write the adjacency matrix of Gn in block form, where the upper-left block
has dimensions (2n − Zn) × (2n − Zn) and is the adjacency matrix of Tn, while
the lower-right block is the zero matrix of dimensions Zn × Zn. Therefore, if we
write Fn (respectively, Hn) for the empirical distribution of the eigenvalues of the
adjacency matrix of Tn (respectively, Gn), then

Hn =
Zn

2n
δ0 +

(
1− Zn

2n

)
Fn,
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where δ0 is the unit point mass at 0. Since Zn/n converges in probability to 1/2
as n→∞, the limiting behavior of Fn is determined by that of Hn and vice-versa:
Hn converges in probability to a non-random probability measure H and

H =
1
4
δ0 +

3
4
F,

where the probability measure F is the limit of the sequence Fn. In particular, to
compute F it suffices to compute H .

Now define a random infinite graph G with vertex set Z as follows. Let εk, k ∈ Z,
be independent, identically distributed random variables, with P{εk = 0} = P{εk =
1} = 1

2 . There is an edge between the vertices 2k − 1 and 2k + 1 for all k ∈ Z, and
there is an edge between the vertices 2k− 1 and 2k for k ∈ Z if and only if εk = 1.
There are no other edges.

Let Bn (resp. B) denote the adjacency matrix of Gn (resp. G). For each non-
negative integer m, ∫

xm H(dx)

= lim
n→∞

∫
xm Hn(dx)

= lim
n→∞

E

[∫
xm Hn(dx)

]

= lim
n→∞

E

[
1
2n

tr Bm
n

]

= E

[
1
2
(Bm)11 +

1
2
(Bm)22

]

=
1
2

E

[
tr
(

(Bm)11 (Bm)12
(Bm)21 (Bm)22

)]
.

(8.1)

Note that since Bij = 0 for |i− j| > 2, there is no problem defining Bm. Note also
that these moments are are zero when m is odd.

This observation suggests that we divide the matrix B into 2 × 2 blocks with
the rows (resp. columns) of the (i, j)th block indexed by {2i + 1, 2i + 2} (resp.
{2j + 1, 2j + 2}) and perform the matrix multiplications necessary to compute the
powers of B blockwise. The resulting block form matrix is block tridiagonal. The
entries in the diagonals above and below the main diagonal are always the matrix

Πx :=
(

1 0
0 0

)
.

We use this notation because we can think of Πx as the matrix for the orthogonal
projection onto the x-axis in a two-dimensional (x, y) coordinate system. The entry
in the (k, k) diagonal block is the matrix(

0 εk+1

εk+1 0

)
.

If εk+1 = 1, then this is the matrix

Σ :=
(

0 1
1 0

)
that permutes the two coordinates. Otherwise, it is the 2× 2 zero matrix.
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By analogy with the definition of Πx, set

Πy :=
(

0 0
0 1

)
.

The following relations between these various matrices will be useful in comput-
ing the powers of the matrix B.

Π2
x = Πx

Π2
y = Πy

ΠxΠy = ΠyΠx = 0

Σ2 = I

ΣΠx = ΠyΣ
ΣΠy = ΠxΣ
tr Πx = trΠy = 1

tr ΣΠx = trΠxΣ = 0
tr ΣΠy = trΠyΣ = 0.

A consequence of these relations is the following.

Lemma 8.1. For a ≥ 0,

tr Σa =

{
2, if a is even,
0, if a is odd.

For any r ≥ 1,

tr (Σa1ΠxΣa2Πx · · ·ΣarΠxΣar+1) =

{
1, if a1 + ar+1, a2, . . . , ar are all even,
0, otherwise.

Proof. The first claim is obvious, because Σa either the 2× 2 identity matrix or Σ
depending on whether a is even or odd.

For the second claim, first observe that the product in question may be rewritten
as

Σb1ΠxΣb2Πx · · ·ΣbrΠxΣbr+1 ,

where b� is 0 or 1 depending on whether a� is even or odd. This in turn may be
rewritten as

Πz1Πz2 · · ·ΠzrΣ
c,

where z�, 1 ≤ � ≤ r, is x or y depending on whether b1 + · · · + b� is even or odd,
and c is 0 or 1 depending on whether b1 + · · ·+ br+1 is even or odd.

The product is non-zero if and only if z1 = z2 = . . . = zr. This is equivalent to
either b1 = 0 and b2 = . . . = br = 0, in which case the product is (Πx)rΣc = ΠxΣc,
or b1 = 1 and b2 = . . . = br = 0, in which case the product is (Πy)rΣc = ΠyΣc.

Furthermore, even if the product is non-zero, and hence of the form ΠxΣc or
ΠyΣc, the trace is zero if c = 1. Otherwise, the trace is 1.

Thus, the trace is zero unless b2 = . . . = br = 0 and b1+· · ·+br+1 is even, in which
case the trace is 1. This condition is equivalent to a2, . . . , ar and a1 + · · ·+ ar+1 all
being even, and the result follows. �
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Lemma 8.1 suggests the following construction. Consider the random (non-
simple) graph Z with vertex set Z, where consecutive integers are connected by
an edge and vertex k is connected to itself by a self-loop if and only if εk = 1.
Thus, with an appropriate re-labeling of vertices, the graph Z is obtained from the
infinite connected component of G by replacing each “tooth” in that “comb” by a
self-loop. As usual, a path in the graph Z is a finite sequence of vertices (that is,
a sequence of integers) (p0,p1, . . . ,p�) such that there is an an edge in Z between
pi−1 and pi for each 1 ≤ i ≤ �. We say that the such a path connects the vertices
x ∈ Z and y ∈ Z if p0 = x and p� = y, and we say that � is the length of the path.
Define H�(x, y) to be the the set of the paths in Z of length � that connect x, y ∈ Z.
Then, (8.1) may be re-written as

(8.2)
∫

xm H(dx) =
1
2

E

⎡
⎣ ∑

p∈Hm(0,0)

tr(Ξp0,p1Ξp1,p2 · · ·Ξpm−1,pm)

⎤
⎦ ,

where

Ξpi−1,pi :=

{
Σ, if pi − pi−1 = 0,
Πx, if pi − pi−1 ∈ {−1, +1}

and we have used the observation that the sequences {εk}k∈Z and {εk+1}k∈Z have
the same distribution.

Given a path (p0,p1, . . . ,p�), we say that the ith step of the path is a stutter
(resp. a move) if pi − pi−1 = 0 (resp. pi − pi−1 ∈ {−1, +1}). We can use
the successive moves to split the stutters of a path into successive disjoint (possibly
empty) runs: if the path p has length � and s(p) stutters, then there will be �−s(p)
moves and �− s(p) + 1 runs of stutters. For 1 ≤ k ≤ �− s(p) + 1 write sk(p) for
the number of stutters in the kth such run, so that s(p) =

∑�−s(p)+1
k=1 sk(p).

For example, if p = (0, 1, 2, 2, 2, 1, 0, 0) ∈ H7(0, 0), then s(p) = 3 and s1(p) = 0,
s2(p) = 0, s3(p) = 2, s4(p) = 0, s5(p) = 1.

For � ≥ 1 and 0 ≤ z < �, set

C(�, z) :=
{
p ∈ H�(0, 0) : s(p) = z, s1(p) + s�−z+1(p) ∈ 2Z,

sk(p) ∈ 2Z, 1 < k < �− z + 1
}

and put
C(�, �) := {p ∈ H�(0, 0) : s(p) = �, s(p) ∈ 2Z} .

Because of Lemma 8.1, we may rewrite (8.2) in terms of the expected sizes of
the sets C(m, z) as follows∫

xm H(dx) =
1
2

[
2E[#C(m, m)] +

m−1∑
z=0

E[#C(m, z)]

]
.

Observe that E[#C(m, m)] = P{ε0 = 1} = 1
2 when m is even. For a positive integer

m and 0 ≤ z < m we can write the set C(m, z) as the disjoint union of the sets
B(m, z, j), 0 ≤ j ≤ z

2 , where

B(m, z, j) :=
{
p ∈ Hm(0, 0) : s(p) = m, s1(p) + sm−z+1(p) = 2j,

sk(p) ∈ 2Z, 1 < k < m− z + 1
}
.

We can express the cardinalities of the sets B(m, z, j) as follows.
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Case I. j = 0. We have

#B(m, z, 0) =
∑

x,y=±1

#
{
p ∈ Hm−2(x, y) : s(p) = z, sk(p) ∈ 2Z, 1 ≤ k ≤ m− z − 1

}

=
∑

x,y=±1

#
{
p ∈ Hm−z/2−2(x, y) : s(p) =

z

2

}
.

The first equality follows by considering the first and and the last steps of a path
in Hm(0, 0). The second inequality is then obtained by realizing that each path p
in the set

{
p ∈ Hm−2(x, y) : s(p) = z, sk(p) ∈ 2Z, 1 ≤ k ≤ m− z − 1

}
may be tranformed to a path in the set

{
p ∈ Hm−z/2−2(x, y) : s(p) =

z

2

}

by removing for 1 ≤ k ≤ m− z − 1 every second stutter in the kth run of stutters
of size sk(p) ∈ 2Z, and that this transformation is a bijection.

Because the distribution of the sequence {εk}k∈Z is invariant under the group of
transformations of the index set Z generated by the transformations k �→ k± 1 and
k �→ −k, the distribution of the random graph Z inherits similar invariance and we
have

E[#B(m, z, 0)] =2E

[
#
{
p ∈ Hm−z/2−2(0, 0) : s(p) =

z

2

}]
+ 2E

[
#
{
p ∈ Hm−z/2−2(0, 2) : s(p) =

z

2

}]
.

(8.3)

Case II. 0 < j ≤ z
2 . By reasoning similar to the above, we deduce that

#B(m, z, j) =
∑

x,y=±1

#
{
p ∈ Hm−2j−2(x, y) : s(p) = z − 2j,

sk(p) ∈ 2Z, 1 ≤ k ≤ m− z − 1
}
11ε0=1

=
∑

x,y=±1

#
{
p ∈ Hm−2j−2−(z−2j)/2(x, y) : s(p) =

(z − 2j)
2

}
11ε0=1.

The first equality is obtained by considering both the first and the last steps of a
path in Hm(0, 0) that are moves (that is, are not stutters). Taking expectation and
again using the symmetry properties of the distribution of Z, we have

E[#B(m, z, j)] = E

[
#
{
p ∈ Hm−z/2−j−2(0, 0) : s(p) =

z

2
− j
}
| ε1 = 1

]
+ E

[
#
{
p ∈ Hm− z

2−j−2(0, 2) : s(p) =
z

2
− j
}
|ε1 = 1

]
.

(8.4)
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Combining these identities, we obtain for m even that

∫
xm H(dx)

=
1
2

(
1 + 2

m−1∑
z=0

E

[
#
{
p ∈ Hm−z/2−2(0, 0) : s(p) =

z

2

}]

+ 2
m−1∑
z=0

E

[
#
{
p ∈ Hm−z/2−2(0, 2) : s(p) =

z

2

}]

+
m−1∑
z=0

∑
1≤j≤z/2

E

[
#
{
p ∈ Hm−z/2−j−2(0, 0) : s(p) =

z

2
− j
} ∣∣∣ ε1 = 1

]

+
m−1∑
z=0

∑
1≤j≤z/2

E

[
#
{
p ∈ Hm−z/2−j−2(0, 2) : s(p) =

z

2
− j
} ∣∣∣ ε1 = 1

])
.

(8.5)

It is clear (8.5) from that moments of the limit of the empirical spectral distribu-
tion of the adjacency matrix of the random comb model can be expressed in terms
of quantities involving the random walk on the random graph Z. However, since
computing these quantities appears to involve taking an expectation with respect
to the random graph Z (or at least with respect to a neighborhood of 0 that grows
with the order m of the moment), it is not clear how much of an advance this
observation is over the formula (8.1). We show in the next subsection that this
computation for a ‘random walk in random environment’ can be reformulated as
a computation for a random walk on a deterministic graph, thereby removing the
explicit expectation over the random environment.

8.1. Random walk on Z with random self-loops and the lamplighter
group. The lamplighter group is the wreath product of the group Z/2Z of in-
tegers modulo 2 and the group of integers Z; that is, it is the semi-direct product of
the infinite product group (Z/2Z)Z and Z, where Z is thought of as a group of au-
tomorphisms on (Z/2Z)Z by associating k ∈ Z with the automorphism of (Z/2Z)Z

that sends the sequence (ci)i∈Z to the sequence (ci−k)i∈Z.
More concretely, the lamplighter group may be taken to be {0, 1}Z × Z as a

set. Elements can be thought of as consisting of two components: a doubly infinite
sequence of street lamps that are each either “off” (0) or “on” (1) and an integer
giving the location of the lamplighter. The group operation is defined by

((ci)i∈Z, k) · ((dj)j∈Z, �) = ((ch + dh−k)h∈Z, k + �),

where the additions in {0, 1} are, of course, performed modulo 2. The identity
element is id := (0, 0), where 0 ∈ {0, 1}Z is the sequence consisting of all zeros.

Write en ∈ {0, 1}Z for the sequence that has 1 in the nth coordinate and 0
elsewhere. Set a := (e0, 0) and t := (0, 1). Observe that

((ci)i∈Z, k) · a = ((c′i)i∈Z, k),

where c′i = ci except for i = k, for which c′k = ck + 1 mod 2, and

((ci)i∈Z, k) · t = ((ci)i∈Z, k + 1).
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Thus, right multiplication by the element a corresponds to the lamplighter flip-
ping the state of the lamp at his current location and staying where he is, while
right multiplication by the element t corresponds to the lamplighter leaving the
configuration of lamps unchanged and taking one step to the right.

The elements a and t generate the lamplighter group and we consider the Cayley
graph corresponding to the symmetric set of generators {t, t−1, a}. This is an
infinite 3-regular graph.

Given γ ∈ R, define Aγ : ({0, 1}Z × Z)2 → R by

Aγ((u, x), (v, y)) =

⎧⎪⎨
⎪⎩

1, if (u, x)−1(v, y) ∈ {t, t−1},
γ, if (u, x)−1(v, y) = a,

0, otherwise.

That is, Aγ is the adjacency matrix of the Cayley graph of the lamplighter group
modified so that edges corresponding to the generator a = a−1 have “weight” γ
rather than 1.

Lemma 8.2. For any x ∈ Z and non-negative integers 0 ≤ k ≤ m

E

[
#
{
p ∈ Hm(0, x) : s(p) = k

}]
is the coefficient of αk in

m∑
�=0

(
m

�

)
(α/2)m−�A�

α/2

(
id, (0, x)

)
and

E

[
#
{
p ∈ Hm(0, x) : s(p) = k

} ∣∣ ε1 = 1
]

is the coefficient of αk

m∑
�=0

(
m

�

)
(α/2)m−�

[
A�

α/2

(
id, (0, x)

)
+ A�

α/2

(
id, (e1, x)

)]
.

Proof. We will only establish the first claim. The proof of the second claim is
similar and we leave it to the reader.

For α ∈ R define a random doubly infinite tridiagonal matrix Tα with rows and
columns indexed by Z by setting Tα(i, i + 1) = Tα(i − 1, i) = 1 and Tα(i, i) = αεi

for all i ∈ Z. Note that Tα is obtained from the adjacency matrix of the random
graph Z by replacing each entry that corresponds to a self-loop (that is, a one on
the diagonal) by α. It is clear that

E

[
#
{
p ∈ Hm(0, x) : s(p) = k

}]
is the coefficient of αk in E[T m

α (0, x)].
Set Tα = Tα − α

2 I, where I is the identity matrix. Then,

E[T m
α (0, x)] =

m∑
�=0

(
m

�

)
(α/2)m−�

E[T
�

α(0, x)].

We claim that
E[T

�

α(0, x)] = A�
α/2

(
id, (0, x)

)
.

To see this, note first that if we define a graph Z with vertex set Z by placing edges
between successive integers and self-loops at each integer, then Tα is the adjacency
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matrix of Z except that the diagonal entries (which are all ones) have been replaced
by i.i.d. symmetric random variables with values in the set {±α

2 }. Therefore, we

can expand T
�

α(0, x) out as a sum of products of entries of Tα(0, x), with each
product in the sum corresponding to a path of length � from 0 to x in the graph
Z. In order that the expectation of the product corresponding to such a path p
is non-zero, it is necessary that any self-loop in Z is traversed an even number of
times, in which case the expectation is (α

2 )s(p), where, as above, s(p) is the number
of stutters in the path. Such paths can be associated bijectively with paths in the
Cayley graph of the lamplighter group where the lamplighter goes from position 0
to position x in � steps in such a way that if every lamp is “off” at the beginning
of his journey, then every lamp is also “off” at the end of his journey and a total of
s(p) flips of lamp states have been made. We can expand A�

α/2(id, (0, x)) as a sum
of products with each product corresponding to one of the latter collection of paths
in the Cayley graph, and the value of such a product for the path in the Cayley
graph associated with the path p in Z is (α

2 )s(p). �

In view of (8.5) and Lemma 8.2, the moments of the probability measure H
can be recovered from powers of the matrices Aγ . Computing the �th power of the
matrix Aγ is equivalent to computing the �-fold convolution of the measure μ on the
lamplighter group that assigns mass γ to the generator a and mass 1 to each of the
generators t and t−1. One might therefore hope to use the representation theory of
the lamplighter group (see, for example, [BW05, LNW08, ST08]) to compute the
relevant quantities. For example, Corollary 3.5 of [ST08] gives a formula for the
entries of A�

γ when γ = 1. The treatment in [ST08] is for the finite lamplighter
group in which the lamps are indexed by the group Z/nZ instead of Z, but when
n is large enough, say n > 2�, the random walker cannot feel this finiteness within
� steps and so the formula still applies. Unfortunately, the formula involves a sum
over all subsets of Z/nZ and we are effectively led back to performing a computation
for each possible realization of the random graph Z and taking the expectation over
all such realizations!
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