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Abstract

Kernel random matrices have attracted a lot of interest in recent years, from both practical and
theoretical standpoints. Most of the theoretical work so far has focused on the case were the data is
sampled from a low-dimensional structure. Very recently, the first results concerning kernel random
matrices with high-dimensional input data were obtained, in a setting where the data was sampled from
a genuinely high-dimensional structure - similar to standard assumptions in random matrix theory.

In this paper, we consider the case where the data is of the type “information+noise”. In other words,
each observation is the sum of two independent elements: one sampled from a “low-dimensional” struc-
ture, the signal part of the data, the other being high-dimensional noise, normalized to not overwhelm
but still affect the signal. We consider two types of noise, spherical and elliptical.

In the spherical setting, we show that the spectral properties of kernel random matrices can be
understood from a new kernel matrix, computed only from the signal part of the data, but using (in
general) a slightly different kernel. The Gaussian kernel has some special properties in this setting.

The elliptical setting, which is important from a robustness standpoint, is less prone to easy inter-
pretation.

1 Introduction

Kernel techniques are now a standard tool of statistical practice and kernel versions of many methods
of classical multivariate statistics have now been created. A few important examples can be found in
Schölkopf and Smola (2002) (see the description of kernel PCA, pp. 41-45), and Bach and Jordan (2003)
(for kernel ICA) for instance. There are several ways to describe kernel methods, but one of them is to
think of them as classical multivariate techniques using generalized notions of inner-product. A basic
input in these techniques is a kernel matrix, i.e an inner-product (or Gram) matrix, for generalized inner
products. If our vectors of observations are X1, . . . , Xn, the kernel matrices studied in this paper have
(i, j) entry f(‖Xi − Xj‖2

2) or f(X ′
iXj), for a certain f . Popular examples include the Gaussian kernel

(entries exp(−‖Xi −Xj‖2
2/2s2)), the Sigmoid kernel (entries tanh(κX ′

iXj + θ)), and polynomial kernels
(entries (X ′

iXj)
d). We refer to Rasmussen and Williams (2006) for more examples. As explained in for

instance Schölkopf and Smola (2002), kernel techniques allow practitioners to essentially do multivariate
analysis in infinite dimensional spaces, by embedding the data in a infinite dimensional space through
the use of the kernel. A nice numerical feature is that the embedding need not be specified, and all
computations can be made using the finite-dimensional kernel matrix. Kernel techniques also allow users
to do certain forms of non-linear data analysis and dimensionality reduction, which is naturally very
desirable. Zwald et al. (2004) and von Luxburg et al. (2008) are two interesting relatively recent papers
concerned broadly speaking with the same types of inferential questions we have in mind and investigate
in this paper, though the settings of these papers is quite different from the one we will work under.

∗I would like to thank Peter Bickel for suggesting that I consider the problem studied here and in general for many
enlightening discussions about topics in high-dimensional statistics. I would also like to thank an anonymous referee and
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acknowledged. AMS 2000 SC: Primary: 62H10. Secondary: 60F99 Key words and Phrases : covariance matrices, kernel
matrices, multivariate statistical analysis, high-dimensional inference, random matrix theory, machine learning, concentration
of measure. Contact : nkaroui@stat.berkeley.edu
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Kernel matrices and the closely related Laplacian matrices also play a central role in manifold learn-
ing (see e.g Belkin and Niyogi (2003) and Izenman (2008) for an overview of various techniques). In
“classical” statistics, they have been a mainstay of spatial statistics and geostatistics in particular (see
Cressie (1993)).

In geostatistical applications, it is clear that the dimension of the data is at most 3. Also, in
applications of kernel techniques and manifold learning, it is often assumed that the data live on a
low-dimensional manifold or structure, the kernel approach allowing us to somehow recover (at least
partially) this information. Consequently, most theoretical analyses of kernel matrices and kernel or
manifold learning techniques have focused on situations where the data is assumed to live on such a
low-dimensional structure. In particular, it is often the case that asymptotics are studied under the
assumption that the data is i.i.d from a fixed distribution - independent of the number of points. Some
remarkable results have been obtained in this setting (see Koltchinskii and Giné (2000) and also Belkin
and Niyogi (2008)).

Let us give a brief overview of such results. In Koltchinskii and Giné (2000), the authors prove that
if Xi are i.i.d with distribution P , under regularity conditions on the kernel k(x, y), the k-th largest
eigenvalue of the kernel matrix M , with entries

M(i, j) =
1

n
k(Xi, Xj) ,

converges to the k-th largest eigenvalue of the operator K defined as

Kf(x) =

∫
k(x, y)f(y)dP (y) .

In this important paper, the authors were also able to obtain fluctuation behavior for these eigenvalues,
under certain technical conditions (see Theorem 5.1 in Koltchinskii and Giné (2000)). Similar first-order
convergence results were obtained, at a heuristic level but through interesting arguments, in Williams
and Seeger (2000).

These results gave theoretical confirmation to practitioners’ intuition and heuristics that the kernel
matrix could be used as a good proxy for the operator K on L2(dP ) and hence kernel techniques could
be explained and justified through the spectral properties of this operator.

To statisticians well-versed in the theory of random matrices, this set of results appears to be similar
to results for low-dimensional covariance matrices stating that when the dimension of the data is fixed
and the number of observations goes to infinity, the sample covariance matrix is a spectrally consistent
estimator of the population covariance matrix (see e.g Anderson (2003)). However, it is well-known
(see e.g Marčenko and Pastur (1967), Bai (1999), Johnstone (2007)) that this is not the case when the
dimension of the data, p, changes with n the number of observations, and in particular when asymptotics
are studied under the assumption that p/n has a finite limit. We refer to the asymptotic setting where p
and n both tend to infinity as the “high-dimensional” setting. We note that given that more and more
datasets have observations that are high-dimensional, and kernel techniques are used on some of them
(see Williams and Seeger (2000)), it is natural to study kernel random matrices in the high-dimensional
setting.

Another important reason to study this type of asymptotics is that by keeping track of the effect
of the dimension of the data, p, and of other parameters of the problem on the results, they might
help us give more accurate prediction about the finite-dimensional behavior of certain statistics than
the classical “small p, large n” asymptotics. An example of this phenomenon can be found in the
paper Johnstone (2001) where it turned out in simulation that some of the doubly asymptotic results
concerning fluctuation behavior of the largest eigenvalue of a Wishart matrix with identity covariance
are quite accurate for p and n as small as 5 or 10, at least in the right tail of the distribution. (We refer
the interested reader to Johnstone (2001) for more details on the specific example we just described.)
Hence, it is also potentially practically important to carry out these theoretical studies for they can be
informative even for finite dimensional considerations.

The properties of kernel random matrices under classical random matrix assumptions have been
studied by the author in the recent El Karoui (2007). It was shown there that when the data is high-
dimensional, for instance Xi ∼ N (0, Σp), and the operator norm of Σp is e.g bounded, kernel random
matrices essentially act like standard Gram/“covariance matrices”, up to re-centering and re-scaling,
which depend only on f . Naturally, a certain scaling is needed to make the problem non-degenerate,
and the results we just stated hold, for instance, when M(i, j) = f(‖Xi − Xj‖2

2/p), for otherwise the
kernel matrix is in general degenerate. We refer to El Karoui (2007) for more details and discussions of
the relevance of these results in practice. In limited simulations, we found that the theory agreed with
the numerics even when p was of the order of several 10’s and p/n was not “too small” (e.g p/n ≃ .2).
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These results came as somewhat of a surprise and seemed to contradict the intuition and numerous
positive practical results that have been obtained, since they suggested that the kernel matrices we
considered were just a (centered and scaled) version of the matrix XX ′. However, it should be noted
that the assumptions implied that the data was truly high-dimensional.

So an interesting middle-ground, from modeling, theoretical and practical points of view is the
following: what happens if the data does not live exactly on a fixed-dimensional manifold, but lives
“nearby”? In other words, the data is now sampled from a “noisy” version of the manifold. This is the
question we study in this paper. We assume now that the data points Xi ∈ R

p we observe are of the
form

Xi = Yi + Zi ,

where Yi is the “signal” part of the observations (and live for instance on a low-dimensional manifold,
e.g a 3-dimensional sphere) and Zi is the noise part of the observations (and is e.g multivariate Gaussian
in dimension p, where p might be 100).

We think this is interesting from a practical standpoint because the assumption that the data is
exactly on a manifold is perhaps a bit optimistic and the “noisy manifold” version is perhaps more in
line with what statisticians expect to encounter in practice (there is a clear analogy with linear regression
here). From a theoretical standpoint, such a model allows us to bridge the two extremes between truly
low-dimensional data and fully high-dimensional data. From a modeling standpoint, we propose to scale
the noise so that its norm stays bounded (or does not grow too fast) in the asymptotics. That way, the
“signal” part of the data is likely to be affected but not totally drowned by the noise. It is important
to note however that the noise is not “small” in any sense of the word - it is of a size comparable with
that of the signal.

In the case of spherical noise (see below for details but note that the Gaussian distribution falls into
this category) our results say that, to first-order, the kernel matrix computed from information+noise
data behaves like a kernel matrix computed from the “signal” part of the data, but, we might have
to use a different kernel than the one we started with. This other kernel is quite explicit. In the
case of dot-product kernel matrices (i.e M(i, j) = f(X ′

iXj)/n), the original kernel can be used (under
certain assumptions) - so, to first order, the noise part has no effect on the spectral properties of
the kernel matrix. The results are different when looking at Euclidian distance kernels (i.e M(i, j) =
f(‖Xi−Xj‖2

2)/n) where the effect of the noise is basically to change the kernel that is used. This is in any
case a quite positive result in that it says that the whole body of work concerning the behavior of kernel
random matrices with low-dimensional input data can be used to also study the “information+noise”
case - the only change being a change of kernels.

The case of elliptical noise is more complicated. The dot-product kernels results still have the same
interpretation. But the Euclidian distance kernels results are not as easy to interpret.

2 Results

Before we start, we set some notations. We use ‖M‖F to denote the Frobenius norm of the matrix
M (so ‖M‖2

F =
∑

i,j M2(i, j)) and |||M |||2 to denote its operator norm, i.e its largest singular value.
We also use ‖v‖2 to denote the Euclidian norm of the vector v. a∨ b is shorthand for max(a, b). Unless
otherwise noted, functions that are said to be Lipschitz are Lipschitz with respect to Euclidian norm.

We split our results into two parts, according to distributional assumptions on the noise. One deals
with the Gaussian-like case, which allows us to give a simple proof of the results. The second part
is about the case where the noise has a distribution that satisfies certain concentration and ellipticity
properties. This is more general and brings the geometry of the problem forward. It also allows us to
study the robustness (and lack thereof) of the results to the sphericity of the noise, an assumption that
is implicit in the high-dimensional Gaussian (and Gaussian-like) case.

We draw some practical conclusions from our results for the case of spherical noise in Subsection 2.3.

2.1 The case of Gaussian-like noise

We first study a setting where the noise is drawn according to a distribution that is similar to a
Gaussian, but slightly more general.

Theorem 2.1. Suppose we observe data X1, . . . , Xn in R
p, with

Xi = Yi +
Zi√

p
,

3



where Zi = Σ
1/2
p Ui where the p-dimensional vector Ui has i.i.d entries with mean 0, variance 1, and

fourth moment µ4, and {Yi}n
i=1 ∼ Pn. We assume that there exists a deterministic vector a and a real

C1 > 0, possibly dependent on n, such that ∀i, E
(
‖Yi − a‖2

2

)
< C1. Also, µ4 might change with n but

is assumed to remain bounded.
{Zi}n

i=1 are i.i.d, and we also assume that {Yi}n
i=1 and {Zi}n

i=1 are independent.
We consider the random matrices Mf with (i, j) entry

Mf (i, j) =
1

n
f
(
‖Xi − Xj‖2

2

)
, for functions f ∈ FC0(n) = {f such that sup

x,y
|f(x)−f(y)| ≤ C0(n)|x−y|} .

Let us call ν =
trace(Σp)

p . Let M̃f be the matrix with (i, j)-th entry

M̃f (i, j) =

{
1
nf
(
‖Yi − Yj‖2

2 + 2ν
)

if i 6= j
1
nf(0) if i = j

Assuming only that µ4 is bounded uniformly in n, we have, for a constant C independent of n, p, and
Σp,

E∗

(
sup

f∈FC0(n)

‖Mf − M̃f‖2
F

)
≤ C C2

0 (n)

[
trace

(
Σ2

p

)

p2
+

|||Σp|||2
p

C1

]
. (1)

We place ourselves in the high-dimensional setting where n and p tend to infinity. We assume that
trace

(
Σ2

p

)
/p2 → 0, as p tends to infinity.

Under these assumptions, for any fixed C0 > 0 and C1 > 0,

lim
n,p→∞

sup
f∈FC0

‖Mf − M̃f‖2
F = 0 in probability .

If we further assume that ν remains for instance bounded, the same result holds if we replace the
diagonal of M̃ by f(2ν)/n, because |f(2ν)−f(0)| ≤ 2νC0 and therefore supf∈FC0

|f(2ν)−f(0)| ≤ 2νC0.

The approximating matrix we then get is the matrix with (i, j)-th entry fν(‖Yi − Yj‖2
2), where fν(x) =

f(x + 2ν), i.e a “pure signal” matrix involving a different kernel from the one we started with.
We note that there is a potential measurability issue that we address in the proof. Our theorem really

means that we can find a random variable that dominates the random element supf∈FC0(n)
‖Mf − M̃f‖2

F

and goes to 0 in probability.
A subcase of our result is the case of Gaussian noise: then Ui is N (0, Idp) and our result naturally

applies.
We also note that Pn can change with n. The class of functions we consider is fixed in the last

statement of the theorem but if we were to look at a sequence of kernels we could pick a different
function in the class FC0 for each n. It should also be noted that the proof technique allows us to deal
with classes of functions that vary with n: we could have a varying C0(n). As Equation (1) makes clear,
the approximation result will hold as soon as the right hand side of Equation (1) goes to 0 asymptotically,
i.e C2

0 (n)max(trace
(
Σ2

p

)
/p2, |||Σp|||2/p) → 0. Finally, we work here with uniformly Lipschitz functions.

The proof technique carries over to other classes, such as certain classes of Hölder functions, but the
bounds would be different.

Proof. The strategy is to use the same entry-wise expansion approach that was used in El Karoui (2007).
To do so, we remark that ‖Zi − Zj‖2

2/p remains essentially constant (across (i, j)) in the setting we are
considering - this is a consequence of the “spherical” nature of high-dimensional Gaussian distributions.
We can therefore try to approximate M(i, j) by f(‖Yi − Yj‖2

2 + 2ν)/n and all we need to do is to show
that the remainder is small.

We also note that if, as we assume, trace
(
Σ2

p

)
/p2 → 0, then |||Σp|||2 = o(p), since |||Σp|||22 ≤

trace
(
Σ2

p

)
.

• Work conditional on Yn = {Yi}
n
i=1

, for i 6= j.

We clearly have

‖Xi − Xj‖2
2 = ‖Yi − Yj‖2

2 + 2
(Zi − Zj)

′
√

p
(Yi − Yj) +

‖Zi − Zj‖2
2

p
.

Let us study the various parts of this expansion. Conditional on Yn, if we call yi,j = Yi − Yj , we see
easily that

Zi − Zj = Σ1/2
p (Ui − Uj) , and

(Zi − Zj)
′(Yi − Yj) = (Ui − Uj)

′Σ1/2
p yi,j .
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Note that Ui − Uj , which we denote Γi,j , has i.i.d entries, with mean 0, variance 2 and fourth moment
2µ4 + 6. We call

αi,j = (Zi − Zj)
′(Yi − Yj)/

√
p and

βi,j =
‖Zi − Zj‖2

2

p
− 2

trace (Σp)

p
.

With these notations, we have

‖Xi − Xj‖2
2 − (‖Yi − Yj‖2

2 + 2ν) = 2αi,j + βi,j .

Therefore, for any function f in FC0(n),

|f(‖Xi − Xj‖2
2) − f(‖Yi − Yj‖2

2 + 2ν)| ≤ C0(n) |βi,j + 2αi,j| ,

and hence, [
f(‖Xi − Xj‖2

2) − f(‖Yi − Yj‖2
2 + 2ν)

]2 ≤ 2C0(n)2
[
β2

i,j + 4α2
i,j

]
.

We naturally also have

sup
f∈FC0(n)

[
f(‖Xi − Xj‖2

2) − f(‖Yi − Yj‖2
2 + 2ν)

]2 ≤ 2C0(n)2
[
β2

i,j + 4α2
i,j

]
.

So we have found a random variable τn = 2C2
0 (n)

[
β2

i,j + 4α2
i,j

]
that dominates the random element ζn =

supf∈FC0(n)

[
f(‖Xi − Xj‖2

2) − f(‖Yi − Yj‖2
2 + 2ν)

]2
. One might be concerned about the measurability

of ζn - but by using outer expectations (see van der Vaart (1998), p. 258), we can completely bypass this
potential problem. In what follows, we denote by E∗ (·) an outer expectation. (Though this technical
point does not shed further light on the problem, it naturally needs to be addressed.)

Hence,

E∗

(
sup

f∈FC0(n)

(
f(‖Xi − Xj‖2

2) − f(‖Yi − Yj‖2
2 + 2ν)

)2
∣∣∣∣∣Yn

)
≤ 2C0(n)2

(
E
(
β2

i,j

)
+ E

(
4α2

i,j

∣∣Yn

))
.

Let us focus on E
(
β2

i,j

)
for a moment. Let us call Γi,j = Ui − Uj . We first note that ‖Zi − Zj‖2

2 =

Γ′
i,jΣpΓi,j = trace

(
ΣpΓi,jΓ

′
i,j

)
. In particular,

E
(
‖Zi − Zj‖2

2

)
= 2trace (Σp) ,

so E (βi,j) = 0. Therefore, E
(
β2

i,j

)
= var

(
‖Zi − Zj‖2

2

)
/p2. Now recall the results found for instance in

Lemma A-1 in El Karoui (2007): if the vector γ has i.i.d entries with mean 0, variance σ2 and fourth
moment κ4, and if M is a symmetric matrix,

E
(
(γ′Mγ)2

)
= σ4(2trace

(
M2
)

+ trace (M)
2
) + (κ4 − 3σ4)trace (M ◦ M) ,

where M ◦ M is the Hadamard product of M with itself, i.e the entrywise product of two matrices.
Applying this result in our setting (i.e using the moments (given above) of Γi,j , which has i.i.d entries,

in the previous formula) gives

var
(
‖Zi − Zj‖2

2

)
= var

(
Γ′

i,jΣpΓi,j

)
= 8 trace

(
Σ2

p

)
+ 2(µ4 − 3)trace (Σp ◦ Σp) .

It is easy to see that trace (Σp ◦ Σp) ≤ trace
(
Σ2

p

)
, since trace

(
Σ2

p

)
=
∑

i,j σ2
p(i, j) and trace (Σp ◦ Σp) =∑

i σ2
p(i, i). Therefore,

E
(
β2

i,j

)
=

var
(
‖Zi − Zj‖2

2

)

p2
≤ 8 + 2(µ4 − 3)

p2
trace

(
Σ2

p

)
= O

(
trace

(
Σ2

p

)

p2

)
.

We note that under our assumptions on trace
(
Σ2

p

)
/p2 and the fact that µ4 remains bounded in n (and

therefore p), this term will go to 0 as p → ∞.

On the other hand, because αi,j |Yn = Γ′
i,jΣ

1/2
p yi,j/

√
p, and because E (Γi,j) = 0 and cov (Γi,j) =

2Idp, we have

E
(
α2

i,j

∣∣Yn

)
= 2

y′
i,jΣpyi,j

p
≤ 2|||Σp|||2

‖yi,j‖2
2

p
≤ 4|||Σp|||2

‖Yi − a‖2
2 + ‖Yj − a‖2

2

p
.
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Hence, we have for C a constant independent of Σp, p and n,

E∗

(
sup

f∈FC0(n)

(
f(‖Xi − Xj‖2

2) − f(‖Yi − Yj‖2
2 + 2ν)

)2
∣∣∣∣∣Yn

)
≤ CC2

0 (n)

[
trace

(
Σ2

p

)

p2
+

|||Σp|||2
p

(
‖Yi − a‖2

2 + ‖Yj − a‖2
2

)
]

.

This inequality allows us to conclude that, for another constant C,

E∗

(
sup

f∈FC0(n)

‖Mf − M̃f‖2
F

∣∣∣∣∣Yn

)
≤ CC2

0 (n)

[
trace

(
Σ2

p

)

p2
+

|||Σp|||2
p

1

n

n∑

i=1

‖Yi − a‖2
2

]
,

since clearly,

sup
f∈FC0(n)

‖Mf − M̃f‖2
F ≤ 1

n2

∑

i,j

sup
f∈FC0(n)

(
f(‖Xi − Xj‖2

2) − f(‖Yi − Yj‖2
2 + 2ν)

)2
.

Under the assumption that E
(
‖Yi − a‖2

2

)
exists and is less than C1, we finally conclude that

E∗

(
sup

f∈FC0(n)

‖Mf − M̃f‖2
F

)
≤ CC2

0 (n)

[
trace

(
Σ2

p

)

p2
+

|||Σp|||2
p

C1

]
,

and Equation (1) is shown.
Therefore, under our assumptions,

E∗

(
sup

f∈FC0

‖Mf − M̃f‖2
F

)
= o(1) .

Hence, when n and p tend to ∞,

sup
f∈FC0

‖M − M̃‖2
F → 0 in probability ,

as announced in the Theorem.

2.2 Case of noise drawn from a distribution satisfying concentration inequal-

ities

The proof of Theorem 2.1 makes clear that the heart of our argument is geometric: we exploit the fact
that ‖Zi − Zj‖2

2/p is essentially constant across pairs (i, j). It is therefore natural to try to extend the
theorem to more general assumptions about the noise distribution than the Gaussian-like one we worked
under previously. It is also important to understand the impact of the implicit geometric assumptions
(i.e sphericity of the noise) that are made and in particular the robustness of our results against these
geometric assumptions.

We extend the results in two directions. First, we investigate the generalization of our Gaussian-
like results to the setting of Euclidian-distance kernel random matrices, when the noise is distributed
according to a distribution satisfying a concentration inequality multiplied by a random variable, i.e a
generalization of elliptical distributions. This allows us to show that the Gaussian-like results of Theorem
2.1 essentially hold under much weaker assumptions on the noise distribution, as long as the Gaussian
geometry (i.e a spherical geometry) is preserved (see Corollary 2.3). The results of Theorem 2.2 show
that breaking the Gaussian geometry results in quite different approximation results.

We also discuss in Theorem 2.4 the situation of inner-product kernel random matrices under the
same “generalized elliptical” assumptions on the noise.

2.2.1 The case of Euclidian distance kernel random matrices

We have the following theorem.

Theorem 2.2 (Euclidian distance kernels). Suppose we observe data X1, . . . , Xn in R
p, with

Xi = Yi + Ri
Zi√

p
.

We place ourselves in the high-dimensional setting where n and p tend to infinity. We assume that
{Yi}n

i=1 ∼ Pn.

6



{Zi}n
i=1 are i.i.d with E (Zi) = 0, and we also assume that Yn = {Yi}n

i=1 and {Zi}n
i=1 are independent.

Ri are random variables independent of {Zi}n
i=1.

We now assume that the distribution of Zi is such that, for any 1-Lipschitz function F , if µF =
E (F (Zi)),

P (|F (Zi) − µF | > r) ≤ C exp(−c0r
b) , h(r) ,

where for simplicity we assume that c0, C and b are independent of p. We call ν = E
(
‖Zi‖2

2

)
/p and

assume that ν stays bounded as p → ∞.
We assume that ∀i, |Ri| ∈ [r∞(p), R∞(p)], where r∞(p) and R∞(p) are deterministic sequences

depending on p. We assume without loss of generality that R∞(p) ≥ 1.
Calling M(Yn) = maxi6=j‖Yi−Yj‖2

2, we assume that there exists Mp such that P (M(Yn) ≤ Mp) → 1
and ǫ > 0 such that

max(M1/2
p , R∞(p))

R∞(p)(log n + (log n)ǫ)1/b

√
p

→ 0.

Then we have

max
i6=j

∣∣‖Xi − Xj‖2
2 −

[
‖Yi − Yj‖2

2 + ν(R2
i + R2

j )
]∣∣→ 0 in probability . (2)

We call W(Yn) = mini6=j‖Yi−Yj‖2
2, and suppose we pick Wp such that P (W(Yn) ≥ Wp) → 1. (Note

that Wp = 0 is always a possibility.)
We call, for η > 0 given, Ip(η) = [Wp + 2νr2

∞(p) − η,Mp + 2νR2
∞(p) + η], and

FC1,Ip(η) =

{
f such that sup

x,y∈Ip(η)

|f(x) − f(y)| ≤ C1|x − y|
}

.

We consider the random matrices Mf with (i, j) entry

Mf (i, j) =
1

n
f
(
‖Xi − Xj‖2

2

)
, for f ∈ FC1,Ip(η) .

Let us call M̃f the matrix with (i, j)-th entry

M̃f(i, j) =

{
1
nf
(
‖Yi − Yj‖2

2 + ν(R2
i + R2

j )
)

if i 6= j
1
nf(0) if i = j

We have, for any given C1 > 0 and η > 0,

lim
n,p→∞

sup
f∈FC1,Ip(η)

‖Mf − M̃f‖F = 0 in probability . (3)

We have the following corollary in the case of “spherical” noise, which is a generalization of the
Gaussian-like case considered in Theorem 2.1.

Corollary 2.3 (Euclidian distance kernels with spherical noise). Suppose we observe data X1, . . . , Xn

in R
p, with

Xi = Yi +
Zi√

p
,

where Yi and Zi satisfy the same assumptions as in Theorem 2.2 (with r∞(p) = R∞(p) = 1). Then the
results of Theorem 2.2 apply with

Ip(η) = [Wp + 2ν − η,Mp + 2ν + η] , and

M̃f (i, j) =

{
1
nf
(
‖Yi − Yj‖2

2 + 2ν
)

if i 6= j
1
nf(0) if i = j

As in Theorem 2.1, we deal with potential measurability issues concerning the sup in the proof. Our
theorem is really that we can find a random variable that goes to 0 with probability 1 and dominates
the random element supf∈FC1,Ip(η)

‖Mf − M̃f‖F - an outer-probability statement.

This theorem generalizes Theorem 2.1 in two ways. The “spherical” case, detailed in Corollary 2.3,
is a more general version of Theorem 2.1 limited to Gaussian noise. This is because the Gaussian setting
corresponds to b = 2 and c0 = 1/(2|||Σp|||2). However, assuming “only” concentration inequalities
allows us to handle much more complicated structures for the noise distribution. Some examples are

7



given below. We also note that if the Yi’s (i.e the signal part of the Xi’s) are sampled, for instance, from
a fixed manifold of finite Euclidian diameter, the conditions on M are automatically satisfied, with Mp

being the Euclidian diameter of the corresponding manifold.
Another generalization is “geometric”: by allowing Ri to vary with i, we move away from the

spherical geometry of high-dimensional Gaussian vectors (and generalizations), to a more “elliptical”
setting. Hence our results show clearly the potential limitations and the structural assumptions that
are made when one assumes Gaussianity of the noise. Theorem 2.2 and Corollary 2.3 show that the
Gaussian-like results of Theorem 2.1 are not robust against a change in the geometry of the noise. We
note however that if Ri is independent of Zi and E

(
R2

i

)
= 1, cov (RiZi) = cov (Zi), so all the noise

models have the same covariance but they may yield different approximating matrices and hence different
spectral behavior for our information+noise models.

However, the spherical results have the advantage of having simple interpretations. In the setting of
Corollary 2.3, if we assume that f(0) and f(2ν) are uniformly bounded (in n) over the class of functions

we consider, we can replace the diagonal of M̃ by f(2ν)/n and have the same approximation results.

Then the “new” M̃ is a kernel matrix computed from the signal part of the data with the new kernel
fν(x) = f(x + 2ν).

To make our result more concrete, we give a few examples of distributions for which the concentration
assumptions on Zi are satisfied:

• Gaussian random variables, for which we have c0 = 1/(2|||Σ|||2). We refer to Ledoux (2001),
Theorem 2.7, for a justification of this claim.

• Vectors of the type
√

pv where v is uniformly distributed on the unit (ℓ2-) sphere in dimension p.
Theorem 2.3 in Ledoux (2001) shows that our assumptions are satisfied, with c(p) = (1−1/p)/2 ≥
c0 = 1/4, after noticing that a 1-Lipschitz function with respect to Euclidean norm is also 1-
Lipschitz with respect to the geodesic distance on the sphere.

• Vectors Γ
√

pv, with v uniformly distributed on the unit (ℓ2-)sphere in R
p and with ΓΓ′ = Σ having

bounded operator norm.

• Vectors of the type p1/bv, 1 ≤ b ≤ 2, where v is uniformly distributed in the unit ℓb ball or sphere
in R

p. (See Ledoux (2001), Theorem 4.21, which refers to Schechtman and Zinn (2000) as the
source of the theorem.) In this case, c0 depends only on b.

• Vectors with log-concave density of the type e−U(x), with the Hessian of U satisfying, for all x,
Hess(U) ≥ 2c0Idp, where c0 > 0 is the real that appears in our assumptions. See Ledoux (2001),
Theorem 2.7 for a justification.

• Vectors v distributed according to a (centered) Gaussian copula, with corresponding correlation
matrix, Σ, having |||Σ|||2 bounded. We refer to El Karoui (2009) for a justification of the fact
that our assumptions are satisfied. (If ṽ has a Gaussian copula distribution, then its i-th entry
satisfy ṽi = Φ(Ni), where N is multivariate normal with covariance matrix Σ, Σ being a correlation
matrix, i.e its diagonal is 1. Here Φ is the cumulative distribution function of a standard normal
distribution. Taking v = ṽ− 1/2 gives a centered Gaussian copula.) This last example is intended
to show that the result can handle quite complicated and non-linear noise structure.

We note that to justify that the assumptions of the theorem are satisfied, it is enough to be able to show
concentration around the mean or the median, as Proposition 1.8 in Ledoux (2001) makes clear.

The reader might feel that the assumptions concerning the boundedness of the Ri’s will be limiting
in practice. We note that the same proof essentially goes through if we just require that |Ri|’s belong to
the interval [r∞(p), R∞(p)] with probability going to 1, but this requires a little bit more conditioning
and we leave the details, which are not difficult, to the interested reader. So for instance, if we had a
tail condition on |Ri|, we could bound max |Ri| with high-probability to get a choice of R∞(p). So this
boundedness condition is here just to make the exposition simpler and is not particularly limiting in our
opinion. On the other hand, we note that our conditions allow dependence in the Ri’s and are therefore
rather weak requirements.

Finally, the theorem as stated is for a fixed C1, though the class of functions we are considering
might vary with n and p through the influence of Ip(η). The proof makes clear that C1 could also vary
with n and p. We discuss in more details the necessary adjustments after the proof.

Proof of Theorem 2.2: We use the notation Yn = {Yi}n
i=1 and PYn

to denote probability conditional
on Yn. We call L = {Yn : M(Yn) ≤ Mp}.

Let us also call YRn = {{Yi}n
i=1, {Ri}n

i=1}; similarly, PYRn
denotes probability conditional on YRn.

We call LR = {YRn : Y ∈ L}. We will start by working conditionally on YRn and eventually de-
condition our results.
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We assume from now on that the YRn we work with is such that Yn ∈ L. Note that P (Yn ∈ L) → 1
by assumption and also P (YRn ∈ LR) → 1.

The main idea now is that, in a strong sense,

∀i 6= j, ‖Xi − Xj‖2
2 ≃ ‖Yi − Yj‖2

2 + (R2
i + R2

j )ν ,

where ν = E
(
Z2

i

)
. To show this formally, we write

‖Xi − Xj‖2
2 −

[
‖Yi − Yj‖2

2 + (R2
i + R2

j )ν
]

= 2αi,j + βi,j ,

where

αi,j =
(RiZi − RjZj)

′(Yi − Yj)√
p

, and

βi,j =
‖RiZi − RjZj‖2

2

p
−

(R2
i E
(
‖Zi‖2

2

)
+ R2

jE
(
‖Zj‖2

2

)
)

p
.

Our aim is to show that, as n and p tend to infinity,

max
i6=j

|αi,j | + |βi,j | → 0 in probability .

• On maxi6=j |αi,j |
Note that if i = j, αi,j = 0. Clearly,

PYRn
(|αi,j | > 2r) ≤ PYRn

(
|Ri|

|Z ′
i(Yi − Yj)|√

p
> r

)
+ PYRn

(
|Rj |

|Z ′
j(Yi − Yj)|√

p
> r

)
.

Since we assumed that |Ri| ≤ R∞(p), we see that the function Fi,j(Z) = RiZ
′(Yi − Yj)/

√
p is Lipschitz

(with respect to Euclidian norm), with Lipschitz constant smaller than (Mp)
1/2R∞(p)/

√
p, when Yn

is in L. Also, since E (Zi) = 0, E (Fi,j(Z)| YRn) = 0, where the expectation is conditional on YRn.
Hence, our concentration assumptions on Zi imply that

PYRn
(|Ri||Z ′

i(Yi − Yj)/
√

p| > r) ≤ C exp(−c0(p
1/2r/[M1/2

p R∞(p)])b) .

Therefore, if we use a simple union bound, we get

PYRn
(max

i6=j
|αi,j | > 2r) ≤ 2Cn2 exp(−c0(p

1/2r/[M1/2
p R∞(p)])b) .

In particular, if we pick, for ǫ > 0, r0 = R∞(p)M1/2
p p−1/2(log n + (log n)ǫ)1/b(2/c0)

1/b, we see that

PYRn
(max

i6=j
|αi,j | > 2r0) ≤ 2Cn2 exp(−c0(p

1/2r0/[M1/2
p R∞(p)])b) = 2C exp(−2(log n)ǫ) → 0 .

Since
P (max

i,j
|αi,j | > t) ≤ P (max

i,j
|αi,j | > t &YRn ∈ LR) + P (YRn /∈ LR) ,

and since the latter goes to 0, we have, unconditionally,

P (max
i,j

|αi,j | > 2r0) → 0 .

• On maxi6=j |βi,j|
We see that if A and B are vectors in R

p, the map NRi,Rj
: (A, B) → ‖RiA − RjB‖2 is (|Ri| ∨ |Rj |)-

Lipschitz on R
2p equipped with the norm ‖A‖2 + ‖B‖2, by the triangle inequality. Therefore, using

Proposition 1.11 and 1.7 in Ledoux (2001)(and using the fact that h(r) → 0 as r → ∞ and h is
continuous when using the latter), we conclude that

PYRn
(|‖RiZi − RjZj‖2 − E (‖RiZi − RjZj‖2)| > r) ≤ 4h(r/(2R∞(p))) . (4)

If now γi,j = E (‖RiZi − RjZj‖2| YRn), and if r1 = 2R∞(p)(2/c0)
1/b(log n + (log n)ǫ)1/bp−1/2,

PYRn

(
max
i6=j

∣∣∣∣
‖RiZi − RjZj‖2 − γi,j√

p

∣∣∣∣ > r1

)
≤ K exp(−(log n)ǫ) → 0 ,
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where K is a constant which does not depend on YRn. So we conclude that unconditionally, if

∆0 = max
i6=j

∣∣∣∣
‖RiZi − RjZj‖2 − γi,j√

p

∣∣∣∣ ,

P (∆0 > r1) → 0 .

Note also that under our assumptions, r1 → 0. Recall that we aim to show that

∆2 = max
i6=j

∣∣∣∣
‖RiZi − RjZj‖2

2

p
− ν(R2

i + R2
j )

∣∣∣∣→ 0 in probability.

Let us first work on

∆1 = max
i6=j

∣∣∣∣∣
‖RiZi − RjZj‖2

2 − γ2
i,j

p

∣∣∣∣∣ .

Using the fact that a2 − b2 = (a− b)(a + b), and therefore, |a2 − b2| ≤ |a− b|(|a− b|+ 2|b|), we see that

max
i,j

|a2
i,j − b2

i,j | ≤ max
i,j

|ai,j − bi,j |
(

max
i,j

|ai,j − bi,j| + 2 max |bi,j |
)

.

If we choose ai,j = ‖RiZi − RjZj‖2/
√

p and bi,j = γi,j/
√

p, we see that the previous equation becomes

∆1 ≤ ∆0

(
∆0 + 2 max

i6=j

γi,j√
p

)
.

Therefore, if we can show that ∆0 maxi6=j γi,j/
√

p goes to 0 in probability, we will have ∆1 → 0 in
probability. Using the concentration result given in (4), in connection with proposition 1.9 in Ledoux
(2001) and a slight modification explained in El Karoui (2007), we have

(R2
i + R2

j )ν −
γ2

i,j

p
= varYRn

(‖RiZi − RjZj‖2/
√

p) ≤ R2
∞(p)

p

32C

b(c0)2/b
Γ(2/b) = R2

∞(p)
κb

p
. (5)

Using our assumption that ν remains bounded, we see that

1

R∞(p)
max
i6=j

γi,j√
p

remains bounded.

Therefore, for some K independent of p,

max
i6=j

γi,j√
p

∆0 ≤ KR∞(p)r1 ,

with probability going to 1. Our assumptions also guarantee that R∞(p)r1 → 0, so we conclude that,
for a constant K independent of p,

max
i6=j

∣∣∣∣∣
‖RiZi − RjZj‖2

2 − γ2
i,j

p

∣∣∣∣∣ = ∆1 ≤ Kr1R∞(p) → 0 with probability going to 1 .

Using Equation (5), we have the deterministic inequality

max
i,j

∣∣∣∣∣(R
2
i + R2

j )ν −
γ2

i,j

p

∣∣∣∣∣ ≤ R2
∞(p)

κb

p
≪ r2

1 ≪ r1 .

So we can finally conclude that with high probability

∆2 = max
i6=j

|βi,j | = max
i6=j

∣∣∣∣
‖RiZi − RjZj‖2

2

p
− ν(R2

i + R2
j)

∣∣∣∣ ≤ Kr1R∞(p) → 0 .

Putting all these elements together, we see that if up = (M1/2
p ∨R∞(p))R∞(p) (log n + (log n)ǫ)

1/b
p−1/2,

we can find a constant K such that

P (max
i6=j

|2αi,j + βi,j | > Kup) → 0 .
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In other words,

P

(
max
i6=j

∣∣‖Xi − Xj‖2
2 −

[
‖Yi − Yj‖2

2 + ν(R2
i + R2

j )
]∣∣ > Kup

)
→ 0 . (6)

This establishes (a strong form of) the first part of the theorem, i.e Equation (2).
• Second part of the theorem (Equation (3)) To get to the second part, we recall that, assuming
that f is C1-Lipschitz on an interval containing {‖Xi − Xj‖2

2, ‖Yi − Yj‖2
2 + ν(R2

i + R2
j )}, we have

∣∣f(‖Xi − Xj‖2
2) − f(‖Yi − Yj‖2

2 + ν(R2
i + R2

j ))
∣∣ ≤ C1

∣∣‖Xi − Xj‖2
2 − (‖Yi − Yj‖2

2 + ν(R2
i + R2

j ))
∣∣ .

Let us define, for η > 0 given, the event

E = {∀i 6= j, ‖Xi − Xj‖2
2 ∈ Ip(η) , ‖Yi − Yj‖2

2 ∈ [Wp,Mp]} ,

and the random element

ζn = sup
f∈FC1,Ip(η)

max
i6=j

∣∣f(‖Xi − Xj‖2
2) − f(‖Yi − Yj‖2

2 + ν(R2
i + R2

j ))
∣∣ .

When E is true, all the pairs {‖Xi−Xj‖2
2, ‖Yi−Yj‖2

2 +ν(R2
i +R2

j )} are in Ip(η): the part concerning

‖Yi − Yj‖2
2 + ν(R2

i + R2
j ) is obvious, and the one concerning ‖Xi −Xj‖2

2 comes from the definition of E.
So when E is true, we also have

∀ i 6= j ,
∣∣f(‖Xi − Xj‖2

2) − f(‖Yi − Yj‖2
2 + ν(R2

i + R2
j ))
∣∣ ≤ C1 |2αi,j + βi,j | .

Let us now consider the random variable τn such that τn = C1 on E and ∞ otherwise, so τn =
C11E + ∞1Ec . Our remark above shows that

ζn ≤ τn max
i6=j

|2αi,j + βi,j | .

Now, we see from our assumptions about {Yi}n
i=1, Equation (6) and the fact that up → 0, that for

any η > 0, P (E) → 1. So we have
P (τn ≤ C1) → 1 .

Also, maxi6=j |2αi,j + βi,j | ≤ Kup with probability tending to 1, so we can conclude that

P (τn max
i6=j

|2αi,j + βi,j | ≤ C1Kup) → 1 .

Hence, we also have
P ∗ (ζn ≤ C1Kup) → 1 ,

where this statement might have to be understood in terms of outer probabilities - hence the P ∗ in-
stead of P . (See van der Vaart (1998), p. 258. In plain English, we have found a random variable,
τn maxi6=j |2αi,j + βi,j |, bounded by C1Kup with probability going to 1, which is larger than the random
element ζn.)

In other respects, we have, for all f ∈ FC1,Ip(η),

‖Mf − M̃f‖2
F ≤ ζ2

n ,

since

max
i,j

|Mf (i, j) − M̃f (i, j)| ≤ 1

n
max
i6=j

|f(‖Xi − Xj‖2
2) − f(‖Yi − Yj‖2

2 + ν(R2
i + R2

j ))| ≤
ζn

n
.

Therefore,
sup

f∈FC1,Ip(η)

‖Mf − M̃f‖F ≤ ζn → 0 in probability , (7)

where once again this statement may have to be understood in terms of outer probabilities. The result
stated in Equation (3) is proved.

We mentioned before the proof the possibility that we might let C1 vary with n and p and still get a
good approximation result. This can be done by looking at Equation (7) above: ζn is less than KC1up

with high-probability, so when upC1(n) → 0 the main approximation result of Theorem 2.2 holds, for a
C1 and therefore a class of functions, that vary with n (and p).
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2.2.2 The case of inner-product kernel random matrices

We now turn our attention to kernel matrices of the form M(i, j) = f(X ′
iXj)/n which are also of

interest in practice. In that setting, we are able to obtain results similar in flavor to Theorem 2.2, with
slight modifications on the assumptions we make about f .

Theorem 2.4 (Scalar product kernels). Suppose we observe data X1, . . . , Xn in R
p, with

Xi = Yi + Ri
Zi√

p
.

We place ourselves in the high-dimensional setting where n and p tend to infinity. We assume that
{Yi}n

i=1 ∼ Pn.
{Zi}n

i=1 are i.i.d with E (Zi) = 0, and we also assume that {Yi}n
i=1 and {Zi}n

i=1 are independent.
{Ri}n

i=1 are assumed to be independent of {Zi}n
i=1. We also assume that we can find a deterministic

sequence R∞(p) such that ∀i, |Ri| ≤ R∞(p) and R∞(p) ≥ 1.
We assume that the distribution of Zi is such for any 1-Lipschitz function F (with respect to Euclidian

norm), if µF = E (F (Zi)),

P (|F (Zi) − µF | > r) ≤ C exp(−c0r
b) , h(r) ,

where for simplicity we assume that c0, C and b are independent of p. We call ν = E
(
‖Zi‖2

2

)
/p and

assume that ν stays bounded as p → ∞.
We call M = maxi,j |Y ′

i Yj |, and Mp a real such that P (M ≤ Mp) → 1. We assume that there
exists ǫ > 0 such that

max(M1/2
p , R∞(p))

R∞(p)(log n + (log n)ǫ)1/b

√
p

→ 0.

We then have
max

i,j

∣∣X ′
iXj − (Y ′

i Yj + δi,jνR2
i )
∣∣→ 0 in probability. (8)

We call Jp(η) = [−Mp − η − R2
∞(p)ν,Mp + η + R2

∞(p)ν] and

FC1,Jp(η) = {f such that sup
x,y∈Jp(η)

|f(x) − f(y)| ≤ C1|x − y|} .

We then consider the random matrices Mf with (i, j) entry

Mf (i, j) =
1

n
f (X ′

iXj) , for f ∈ FC1,Jp(η) .

Let us call M̃ the matrix with (i, j)-th entry

M̃f (i, j) =

{
1
nf (Y ′

i Yj) if i 6= j
1
nf(‖Yi‖2

2 + νR2
i ) if i = j

We have, for any C1 > 0 and η > 0,

lim
n,p→∞

sup
f∈FC1,Jp(η)

‖Mf − M̃f‖F = 0 in probability .

We note that under our assumptions, we also have |f(‖Yi‖2
2 + νR2

i ) − f(‖Yi‖2
2)| ≤ νC1R

2
∞(p), with

high probability, and uniformly in f in FC1,Jp(η). Therefore, when R4
∞(p)/n → 0, the result is also valid

if we replace the diagonal of M̃f by {f(‖Yi‖2
2)}n

i=1/n - in which case the new approximating matrix is
the kernel matrix computed from the signal part of the data. Furthermore, the same argument shows
that we get a valid operator norm approximation of M by this “pure signal” matrix as soon as R2

∞(p)/n
tends to 0.

The same measurability issues as in the previous theorems might arise here and the statement should
be understood as before: we can find a random variable going to 0 in probability that is larger than the
random element supf∈FC1,Jp(η)

‖Mf − M̃f‖F .

Finally, let us note that once again the theorem is stated for a fixed C1 (and hence for an essentially
fixed (with n) class of functions, though some changes in this class might come from varying Jp(η)),
but the proof allows us to deal with a varying C1(n). The adjustments are very similar to the ones we
discussed after the proof of Theorem 2.2 and we leave them to the interested reader.
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Proof. The proof is quite similar to that of Theorem 2.2, so we mostly outline the differences and use
the same notations as before. We now have to focus on

X ′
iXj = Y ′

i Yj + Ri
Z ′

iYj√
p

+ Rj

Z ′
jYi√
p

+ RiRj
Z ′

iZj

p
.

The analysis of Ri
Z′

iYj√
p is entirely similar to our analysis of αi,j in the proof of Theorem 2.2. The

key remark now is that as function of Zi, when YRn ∈ LR, it is, with the new definition of Mp,

R∞(p)
√
Mp/p-Lipschitz with respect to Euclidian norm. So we immediately have, with the new defi-

nition of Mp: if r0 = R∞(p)(Mp/p)1/2(log n + (log n)ǫ)1/b(2/c0)
1/b, and YRn ∈ LR, for some K > 0

which does not depend on YRn,

PYRn

(
max

i,j

∣∣∣∣Ri
Z ′

iYj√
p

∣∣∣∣ > r0

)
≤ K exp(−2(logn)ǫ) .

Now, since P (YRn /∈ LR) → 0, we conclude as before that

P

(
max

i,j

∣∣∣∣Ri
Z ′

iYj√
p

∣∣∣∣ > r0

)
→ 0 .

On the other hand, using the fact that 4RiRjZ
′
iZj = ‖RiZi+RjZj‖2

2−‖RiZi−RjZj‖2
2, and analyzing

the concentration properties of ‖RiZi + RjZj‖2
2 in the same way as we did those of ‖RiZi −RjZj‖2

2, we
conclude that if up = R2

∞(p)(2/c0)
1/b(log n + (log n)ǫ)1/bp−1/2, we can find a constant K such that

P

(
max
i6=j

∣∣∣∣
‖RiZi − RjZj‖2

2

p
− ν(R2

i + R2
j )

∣∣∣∣ > Kup

)
→ 0 , and

P

(
max
i6=j

∣∣∣∣
‖RiZi + RjZj‖2

2

p
− ν(R2

i + R2
j )

∣∣∣∣ > Kup

)
→ 0 .

Similar arguments, relying on the fact that ‖·‖2 is obviously 1-Lipschitz with respect to Euclidian norm,
also lead to the fact that

P

(
max

i

∣∣∣∣
R2

i ‖Zi‖2
2

p
− νR2

i

∣∣∣∣ > Kup

)
→ 0 .

Therefore, we can find K, greater than 1 without loss of generality, such that

P

(
max

i,j

∣∣∣∣RiRj
Z ′

iZj

p
− δi,jνR2

i

∣∣∣∣ > Kup

)
→ 0 .

We can therefore conclude that

P

(
max

i,j

∣∣X ′
iXj − (Y ′

i Yj + δi,jνR2
i )
∣∣ > Kup + 2r0

)
→ 0 .

If R∞(p)max((Mp)
1/2, R∞(p))(log n + (log n)ǫ)1/b/

√
p → 0, then both r0 and up tend to 0. There-

fore, under our assumptions,

max
i,j

∣∣X ′
iXj − (Y ′

i Yj + δi,jνR2
i )
∣∣→ 0 in probability.

So we have shown the first assertion of the theorem.
The final step of the proof is now clear: we have, for all (i, j),

∣∣f(X ′
iXj) − f(Y ′

i Yj + δi,jνR2
i )
∣∣ ≤ C1

∣∣X ′
iXj − (Y ′

i Yj + δi,jνR2
i )
∣∣ ,

when for all (i, j), X ′
iXj and (Y ′

i Yj + δi,jνR2
i ) are in Jp(η). This event happens with probability going

to 1 under our assumptions. So following the same approach as before and dealing with measurability
in the same way, we have, with probability going to 1,

sup
f∈FC1,Jp(η)

max
i,j

∣∣f(X ′
iXj) − f(Y ′

i Yj + δi,jνR2
i )
∣∣ ≤ C1 max

i,j

∣∣X ′
iXj − (Y ′

i Yj + δi,jνR2
i )
∣∣ .

So we conclude that

sup
f∈FC1,Jp(η)

max
i,j

∣∣f(X ′
iXj) − f(Y ′

i Yj + δi,jνR2
i )
∣∣→ 0 in probability.
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From this statement, we get in the same manner as before,

sup
f∈FC1,Jp(η)

‖Mf − M̃f‖F → 0 in probability .

As before, the equations above show that if C1(n)(up +r0) → 0, the same approximation result holds,
with now a varying C1(n).

2.3 Practical consequences of the results: case of spherical noise

Our aim in giving approximation results is naturally to use existing knowledge concerning the ap-
proximating matrix to reach conclusions concerning the information+noise kernel matrices that are of
interest here. In particular, we have in mind situations where the “signal” part of the data, i.e what
we called {Yi}n

i=1 in the theorems, and f (or f(· + 2ν), with ν being as defined in Theorems 2.1 or 2.2)
are such that the assumptions of Theorems 3.1 or 5.1 in Koltchinskii and Giné (2000) are satisfied, in

which case we can approximate the eigenvalues of M̃ by those of the corresponding operator in L2(dP ).

In this setting the matrix M̃ , which is normalized so its entries are of order 1/n has a non-degenerate
limit, which is why we considered for our kernel matrices the normalization f(‖Xi − Xj‖2

2)/n. (This
normalization by 1/n makes our proofs considerably simpler than the ones given in El Karoui (2007).)

Another potentially interesting application is the case where the signal part of the data is sampled
i.i.d from a manifold with bounded Euclidian diameter, in which case our results are clearly applicable.

2.3.1 Spectral properties of information+noise kernel random matrices from pure
signal kernel random matrices

The practical interest of the theorems we obtained above lie in the fact that the Frobenius norm is
larger than the operator norm, and therefore all of our results also hold in operator norm. Now we recall
the discussion in El Karoui (2008), Section 3.3, where we explained that consistency in operator norm
implies consistency of eigenvalues and consistency of eigenspaces corresponding to separated eigenvalues
(as consequences of Weyl’s inequality and the Davis-Kahane sin(θ) theorem - see Bhatia (1997) and
Stewart and Sun (1990)).

Theorems 2.1, 2.2, 2.4 therefore imply that under the assumptions stated there, the spectral prop-
erties of the matrix M can be deduced from those of the matrix M̃ . In particular, for techniques such
as Kernel PCA, we expect, when it is a reasonable idea to use that technique, that M will have some
separated eigenvalues, i.e a few will be large and there will be a gap in the spectrum. In that setting, it
is enough to understand M̃ , which corresponds, if ∀i, Ri = 1, to a pure signal matrix, with a possibly
slightly different kernel, to have a theoretical understanding of the properties of the technique.

For instance, if ∀i, Ri = 1, if the assumptions underlying the first-order results of Koltchinskii and
Giné (2000) are satisfied for M̃ , the (first-order) spectral properties of M are the same as those of M̃ ,
and hence of the corresponding operator in L2(dP ).

2.3.2 On the Gaussian kernel

Our analysis reveals a very interesting feature of the Gaussian kernel, i.e the case where M(i, j) =
exp(−s‖Xi − Xj‖2

2)/n, for some s > 0: when Theorem 2.1 or Corollary 2.3 (i.e Theorem 2.2 with
∀i, Ri = 1) apply, the eigenspaces corresponding to separated eigenvalues of the signal+noise kernel
matrix converge to those of the pure signal matrix.

This is simply due to the fact that in that setting, if S is the matrix such that

S(i, j) = exp(−2νs)
1

n
exp(−s‖Yi − Yj‖2

2) ,

a rescaled version of the “pure signal” matrix M with (i, j)-th entry 1
n exp(−s‖Yi − Yj‖2

2), we have

|||S − M̃ |||2 → 0 .

This latter statement is a simple consequence of the fact that S − M̃ is a diagonal matrix with entries
(exp(−2νs) − 1)/n on the diagonal, and therefore its operator norm goes to 0. On the other hand, S
clearly has the same eigenvectors as the pure signal matrix M. Hence, because the eigenspaces of M̃
are consistent for the eigenspaces of S corresponding to separated eigenvalues, they are also consistent
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for those of M. (We note that our results are actually stronger and allow us to deal with a collection
of matrices with varying s and not a single s, as we just discussed. This is because we can deal with
approximations over a collection of functions in all our theorems.)

Because of the practical importance of eigenspaces in techniques such as Kernel PCA, these remarks
can be seen as giving a theoretical justification for the use of the Gaussian kernel over other kernels in
the situations where we think we might be in an information + noise setting, and the noise is spherical.

On the other hand, S underestimates the large eigenvalues of M because S = exp(−2νs)M, and
obviously exp(−2νs) < 1. Using Weyl’s inequality (see Bhatia (1997)), we have, if we denote by λi(M)
is the i-th eigenvalue of the symmetric matrix M ,

∀i , 1 ≤ i ≤ n ,
∣∣∣λi(M̃) − λi(S)

∣∣∣ ≤ |||M̃ − S|||2 .

Since the right hand-side goes to 0 asymptotically, the eigenvalues of M (the “pure signal” matrix) that

stay asymptotically bounded away from 0 are underestimated by the corresponding eigenvalues of M̃ .
When the noise is elliptical, i.e Ri’s are not all equal to 1, the “new” matrix S we have to deal with

has entries

S(i, j) = exp(−sR2
i ) exp(−sR2

j )
1

n
exp(−s‖Yi − Yj‖2

2) ,

so it can be written in matrix form
S = DMD ,

where D is a diagonal matrix with D(i, i) = exp(−sR2
i ). By the same arguments as above, |||S−M̃ |||2 →

0 in probability, but now S does not have the same eigenvectors as the pure signal matrix M. So in this
elliptical setting if we were to do kernel analysis on M , we would not be recovering the eigenspaces of
the pure signal matrix M.

2.3.3 Variants of kernel matrices: Laplacian matrices and the issue of centering

In various parts of statistics and machine learning, it has been argued that Laplacian matrices should
be used instead of kernel matrices. See for instance the very interesting Belkin and Niyogi (2008), where
various spectral properties of Laplacian matrices have been studied, under a “pure” signal assumption in
our terminology. For instance, it is assumed that the data is sampled from a fixed-dimensional manifold.
In light of the theoretical and practical success of these methods, it is natural to ask what happens in
the information+noise case.

There are several definitions of Laplacian matrices. A popular one (see e.g the work of Belkin and
Niyogi, among other publications Belkin and Niyogi (2008)), is derived from kernel matrices: given M
a kernel matrix, the Laplacian matrix is defined as

L(i, j) =

{
−M(i, j) if i 6= j∑

i6=j M(i, j) otherwise

When our Theorems 2.2 or 2.4 apply, we have seen that, for relevant classes of functions F ,
supf∈F n maxi6=j |Mf(i, j) − M̃f(i, j)| → 0 in probability.

Let us now focus on the case of a single function f . If we call L̃ the Laplacian matrix corresponding
to M̃ , we have

n max
i6=j

|L(i, j) − L̃(i, j)| → 0 in probability

max
i

|L(i, i) − L̃(i, i)| → 0 in probability .

We conclude that |||L− L̃|||2 → 0 in probability; we can therefore deduce that the spectral properties

of the Laplacian matrix L from those of L̃, which, when ∀i, Ri = 1, is a “pure signal” matrix, where we
have slightly adjusted the kernel. Here again, the Gaussian kernel plays a special role, since when we
use a Gaussian kernel, L̃ is a scaled version of the Laplacian matrix computed from the signal part of
the data.

Finally, other versions of the Laplacian are also used in practice. In particular, a “normalized”

version is sometimes advocated, and computed as NL = D
−1/2
L LD

−1/2
L , if D is the diagonal of the

matrix L defined above. We have just seen that |||DL − DL̃|||2 → 0 in probability and |||L − L̃|||2 → 0
in probability. Therefore, if the entries of DL̃ are bounded away from 0 with probability going to 1, we

conclude that |||D−1

L̃
|||2 stays bounded with high-probability and

|||NL − NL̃|||2 → 0 in probability.
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So once again, understanding the spectral properties of NL essentially boils down to understanding those
of NL̃, which is, in the spherical setting where ∀i, Ri = 1, a “pure signal” matrix. In the case of the
Gaussian kernel, NL̃ is equal to the normalized Laplacian matrix computed from the “pure signal” data
{Yi}n

i=1.

The question of centering In practice, it is often the case that one works with centered versions
of kernel matrices: either the row sums, the column sums or both are made to be equal zero. These
centering operations amount to multiplying (respectively on the right, left or both) our original kernel
matrix by the matrix H = Idn − 11′/n, where 1 is the n-dimensional vector whose entries are all equal

to 1. This matrix has operator norm 1, so when M̃ is such that |||M − M̃ |||2 → 0, the same is true

for HaMHb and HaM̃Hb, where a and b are either 0 or 1. This shows that our approximations are
therefore also informative when working with centered kernel matrices.

3 Conclusions

Our results aim to bridge the gap in the existing literature between the study of kernel random
matrices in the presence of pure low-dimensional signal data (see e.g Koltchinskii and Giné (2000)) and
the case of truly high-dimensional data (see El Karoui (2007)). Our study of information+noise kernel
random matrices shows that, to first order, kernel random matrices are somewhat “spectrally robust”
to the corruption of signal by additive high-dimensional and spherical noise (whose norm is controlled).
In particular, they tend to behave much more like a kernel matrix computed from a low-dimensional
signal than one computed from high-dimensional data.

Some noteworthy results include the fact that dot-product kernel random matrices are, under rea-
sonable assumptions on the kernel and the “signal distribution” spectrally robust for both eigenvalues
and eigenvectors. The Gaussian kernel also yields spectrally robust matrices at the level of eigenvectors,
when the noise is spherical. However, it will underestimate separated eigenvalues of the Gaussian kernel
matrix corresponding to the signal part of the data.

On the other hand, Euclidian distance kernel random matrices are not, in general, robust to the
presence of additive noise. As our results show, under reasonably minimal assumptions on both the
noise, the kernel and the signal distribution, a Euclidian distance kernel random matrix computed
from additively corrupted data behaves like another Euclidian kernel matrix computed from another
kernel: in the case of spherical noise, it is a shifted version of f , the shift being twice the norm of the
noise. For spherical noise, this is bound to create (except for the Gaussian kernel) potentially serious
inconsistencies in both estimators of eigenvalues and eigenvectors, because the eigenproperties of the
kernel matrix corresponding to the function fν(·) = f(· + 2ν) are in general different from that of the
kernel matrix corresponding to the function f . The same remarks also apply to the case of elliptical
noise, where the change of kernel is not deterministic and even more complicated to describe.

Our study also highlights the importance of the implicit geometric assumptions that are made about
the noise. In particular, the results are qualitatively different if the noise is spherical (e.g multivariate
Gaussian) or elliptical (e.g multivariate t). Interpretation is more complicated in the elliptical case and
a number of nice properties (e.g robustness or consistency) which hold for spherical noise do not hold
for elliptical noise.

Our results can therefore be seen as highlighting (from a theoretical point of view) the strength and
limitations of techniques which rely on kernel random matrices as a primary element in a data analysis.
We hope they shed light on an interesting issue and will help refine our understanding of the behavior
of kernel techniques and related methodologies for high-dimensional input data.
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Koltchinskii, V. and Giné, E. (2000). Random matrix approximation of spectra of integral operators.
Bernoulli 6, 113–167.

Ledoux, M. (2001). The concentration of measure phenomenon, volume 89 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI.
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