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Abstract

We study the shape of coverage functions resulting from the sequencing of random genome
fragments, and show that they can be described by Galton-Watson trees. This extends standard
analyses of shotgun sequencing that focus on coverage statistics at individual sites, and provides
a null model for detecting deviations from random coverage in high-throughput sequence census
based experiments such as ChIP-Seq.

1 Introduction

The classic “Lander-Waterman model” [1] provides provides statistical estimates for the read cov-
erage in a whole genome shotgun (WGS) sequencing experiment via the Poisson approximation to
the Binomial distribution. Although originally intended for estimating the extent of coverage when
mapping by fingerprinting random clones, the Lander-Waterman model has served as an essential
tool for estimating sequencing requirements for modern WGS experiments [2]. Although it makes
a number of simplifying assumptions (e.g. fixed fragment length and uniform fragment selection )
that are violated in actual experiments, extensions and generalizations [3, 4] have continued to be
developed and applied in a variety of settings.

The advent of “high-throughput sequencing”, which refers to massively parallel sequencing
technologies has greatly increased the scope and applicability of sequencing experiments. With the
increasing scope of experiments, new statistical questions about coverage statistics have emerged.
In particular, in the context of sequence census methods, it has become important to understand
the shape of coverage functions, rather than just coverage statistics at individual sites.

Sequence census methods [5] are experiments designed to assess the content of a mixture of
molecules via the creation of DNA fragments whose abundances can be used to infer those of the
original molecules. The DNA fragments are identified by sequencing, and the desired abundances
inferred by solution of an inverse problem. An example of a sequence census method is ChIP-Seq.
In this experiment, the goal is to determine the locations in the genome where a specific protein
binds. An antibody to the protein is used to “pull down” fragments of DNA that are bound via
a process called chromatin immunoprecipitation (abbreviated by ChIP). These fragments form the
“mixture of molecules” and after purifying the DNA, the fragments are determined by sequencing.
The resulting sequences are compared to the genome, leading to a coverage function that records,
at each site, the number of sequenced fragments that contained it. As with many sequence census
methods, “noise” in the experiment leads to random sequenced fragments that may not correspond
to bound DNA, and therefore it is necessary to identify regions of the coverage function that deviate
from what is expected according to a suitable null model.
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The purpose of this paper is not to develop methods for the analysis of ChIP-Seq (or any other
sequence census method), but rather to present a null model for the shape of a coverage function
that is of general utility. That is, we propose a definition for the shape of a fragment coverage
function, and describe a random instance assuming that fragments are selected at random from a
genome, with lengths of fragments given by a known distribution. The distinction between our work
and previous statistical studies of sequencing experiments, is that we go beyond the description of
coverage at a single location, to a description of the change in coverage along a genome.

2 The shape of a fragment coverage function

We begin by explaining what we mean by a coverage function. Given a genome modeled as a string
of fixed length N , a coverage function is a function f : {1, . . . , N} −→ Z≥0. The interpretation
of this function, is that f(i) is the number of sequenced fragments obtained from a sequencing
experiment that cover position i in the genome. It is important to note that N is typically large;
for example, the human genome consists of approximately 2.8 billion bases. Because N is very
large, we replace the finite set {1, . . . , N} with R, and re-define a coverage function to be a function
f : R −→ Z≥0. This helps to simplify our analysis.

We next introduce an object that describes a sequence coverage function’s shape. Our approach
is motivated by recent applications of topology including persistent homology [6, 7] and the use of
critical points in shape analysis [8, 9, 10]. For a given coverage function f : R −→ Z≥0, we will define
a rooted tree, which is a particular type of directed graph with all the directed edges pointing away
from the root. This tree Tf is based on the upper-excursion sets of f : Uh := {(x, f(x))|f(x) ≥ h},
h ∈ Z≥0 and keeps track of how the sets Uh evolve as h decreases. Long paths in Tf represent
features of the coverage function that persist through many values of h.

Specifically, for each h ∈ Z≥0, let Ch denote the set of connected components of the upper-
excursion set Uh. We define the rooted tree Tf = (V,E) as follows

• Vertices in V correspond to the connected components in the collection {Ch}h∈Z≥0

• (i, j) ∈ E provided their corresponding connected components ci ∈ Chi
and cj ∈ Chj

with
hi < hj satisfy hi = hj − 1 and cj ⊂ ci.

Note that the root of Tf corresponds to the single connected component in C0. The tree Tf is very
similar to a contour tree [8, §4.1], which is built using level sets of a function, and a join tree [11].
Indeed, suppose we ignore every vertex that is adjacent to only one vertex with greater height.
Then, the remaining vertices of Tf correspond to (equivalence classes of) local extrema of f . Each
local maximum of f yields the birth of a new connected component as we sweep down through
h ∈ Z≥0 while a local minimum of f merges connected components. Since we do not require f
to have distinct critical values (as is frequently assumed), the vertices in Tf can have arbitrary
degrees, as is depicted in Figure 1C.

In the sequel, we will use the following equivalent characterization that can be found in [12,
§2.3]. Given a coverage function f : R −→ Z≥0 with f(a) = f(b) = 0 and f(x) > 0 for x ∈ (a, b), we
form an integer-valued sequence x0, . . . , x2n that records the changes in height of f on the interval
[a, b]. The sequence x0, . . . , x2n consists of the y values that f travels through from x0 := f(a) = 0
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to x2n := f(b) = 0 and satisfies

x0 = x2n = 0,

xi > 0 for 0 < i < 2n,

|xi − xi−1| = 1 for 1 ≤ i ≤ 2n.

Such a sequence is called a lattice path excursion away from 0. Next, we define an equivalence
relation on the set {0, 1, . . . , 2n} by setting

i ≡ j ⇐⇒ xi = xj = min
i≤k≤j

xk.

The equivalence classes under this relation are in 1 : 1 correspondence with the connected compo-
nents in the upper-excursion sets of f |[a,b]. One equivalence class is {0, 2n}, and if {i1, . . . , ip} is
an equivalence class with 0 < i1 < i2 < . . . < ip then xi1−1 = xi1 − 1, whereas xiq−1 = xiq + 1 for
2 ≤ q ≤ p. Conversely, any index i with xi−1 = xi − 1 is the minimal element of an equivalence
class. We use the minimal element of each equivalence class as its representative. Thus, we can
view the vertices of Tf |[a,b]

as the set {0} ∪ {i|xi−1 = xi − 1}. Two indices i1 < i2 are adjacent in
Tf |[a,b]

provided xi2 = xi1 +1 and xk ≥ xi1 for i1 ≤ k ≤ i2. Figure 1 gives an example of a coverage
function together with its lattice path excursion (0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 2, 3, 2, 1, 0) and rooted
tree. The minimal elements of each equivalence class in Figure 1B are depicted with red squares.

3 Planar Poisson processes from sequencing experiments

In order to model random coverage along the genome, we use a Poisson process to give random
starting locations to the fragments. Specifically, suppose that we have a stationary Poisson point
process on R with intensity ρ. At each point of the Poisson point process we lay down an interval
that has that point as its left end-point. The lengths of the successive intervals are independent
and identically distributed with common distribution µ. We will use the notation X for a coverage
function built from this process and Xt for the height at a point t.

Let t1, t2, · · · be the left-end points and l1, l2, · · · be the corresponding lengths of intervals. The
interval given by (ti, li) will cover a nucleotide t0 provided ti ≤ t0 and ti + li ≥ t0. We can view this
pictorially by plotting points {(tj , lj)} in the plane. Then Xt0—the number of intervals covering
t0—is the number of points in the triangular region of Figure 2.

We now recall the definition of a two-dimensional Poisson process and refer the reader to [13,
§6.13] or [14, §2.4] for the details. Suppose Γ is a locally finite measure on the Borel σ-algebra
B(R2). A random countable subset Π of R2 is called a non-homogeneous Poisson process with
mean measure Γ if, for all Borel subsets A, the random variables N(A) := #(A ∩Π) satisfy:

1. N(A) has the Poisson distribution with parameter Γ(A), and

2. If A1, · · · , Ak are disjoint Borel subsets of R2, then N(A1), · · · , N(Ak) are independent ran-
dom variables.

The following theorem is a consequence of [15, Proposition 12.3].

Theorem 3.0.1. The collection {(ti, li)} of points obtained as described above is a non-homogeneous
Poisson process with mean measure ρ m⊗ µ. Here m is Lebesgue measure on R.

3



We compute the expected value E[Xt] = ρ m⊗ µ(wedge) :

ρ m⊗ µ(wedge) = ρ

∫ t

−∞

∫ ∞

t−u
µ(dv)du

= ρ

∫ t

−∞
µ((t− u,∞))du

= ρ

∫ ∞

0
µ((s,∞))ds.

3.1 Fragment lengths have the exponential distribution

We treat the simplest case first, namely the case where the distribution µ of fragment lengths is
exponential with rate λ. Then, we have µ((s,∞)) = P{l > s} = e−λs, and

E(Xt) = ρ

∫ ∞

0
e−λsds =

ρ

λ
.

Claim 1. The process X is a stationary, time-homogeneous Markov process.

Proof. It is clear that X is stationary because of the manner in which it is constructed from a Poisson
process on R2 that has a distribution which is invariant under translations in the t direction; that
is, the random set {(ti, li)} has the same distribution as {(ti + t, li)} for any fixed t ∈ R. Since µ is
exponential, it is memoryless, meaning for any interval length l with an exponential distribution

P{l > a + b|l > a} = P{l > b}.

This means that probability that an interval covers t2 knowing that it covers t1 is the same as the
probability that an interval starting at t1 covers t2. Thus, the probability that Xt2 = k given Xt

for t ≤ t1 only depends on the value of Xt1 . Indeed, in terms of time, P{Xt2 = k|Xt1 = k′} depends
only on t2 − t1.

More specifically, X is a birth-and-death process with birth rate β(k) = ρ in all states k and
death rate δ(k) = kλ in state k ≥ 1. Note that as the exponential distribution is the only
distribution with the memoryless property, we lose the Markov property when µ is not exponential.

To build the tree of §2, we are interested in the jumps of the coverage function f(t) = Xt. We
hence consider the jump chain of X— a discrete-time Markov chain with transition matrix

P (i, j) =


1, if i = 0 and j = 1,

ρ
ρ+iλ , if i ≥ 1 and j = i + 1,

iλ
ρ+iλ , if i ≥ 1 and j = i− 1,

0, otherwise.

Suppose now we have a lattice path excursion starting at 0. Given a vertex v of the associated tree
at height k, we are interested in the number of offspring (at height k + 1) of this vertex. Suppose
i0 is the minimal equivalence class representative for vertex v, and suppose [i0] = {i0, i1, · · · , in}
with i0 < i1 < · · · < in. Then, we have xir = k for 0 ≤ r ≤ n, xir+1 = k + 1 for 0 ≤ r ≤ n − 1,
xin+1 = k − 1, and xt > k for i0 < t < in with t 6= some ir. From the Markov property, for

4



0 ≤ j ≤ n, P{xij+1 = k + 1|xij = k} = ρ
ρ+λk and P{xij+1 = k − 1|xij = k} = λk

ρ+λk . The resulting
tree is a Galton-Watson tree with generation-dependent offspring distributions (see [16, 17, 18, 19]
for more on Galton-Watson trees). Indeed, we have

P{a vertex at height k has n offspring} =
(

ρ

ρ + λk

)n λk

ρ + λk
,

which is the probability of n failures before the first success in a sequence of independent Bernoulli
trials where the probability of success equals λk

ρ+λk .

3.2 Fragment lengths have a general distribution

Suppose that we have a general distribution µ for the fragment lengths. We observe X at some fixed
“time” – which might as well be 0 because of stationarity, and ask for the conditional probability
given X0 that the next jump of X will be upwards. We know from the above that if µ is exponential
with rate λ, then conditional on X0 = k this is ρ/(ρ + kλ).

Let T denote the time until the next segment comes along. This random variable has an
exponential distribution with rate ρ and is independent of X0 [14, §2.1]. If we condition on X0 = k,
the two-dimensional Poisson point process must have k points in the region

A := {(t, l) : −∞ < t ≤ 0, −t < l < ∞},

shown in Figure 3.
Conditionally, these k points in A have the same distribution as k points chosen at random in

A according to the probability measure

ρ m⊗ µ(B)
ρ m⊗ µ(A)

for B ⊂ A

However, in order that the next jump after 0 is upwards, the two-dimensional Poisson point process
must have no points in the orange region from Figure 3:

{(t, l) : −∞ < t ≤ 0, −t < l < T − t},

as these segments end before time T . This leaves the k points lying in the blue region

BT := {(t, l) : −∞ < t ≤ 0, T − t ≤ l < ∞},

which occurs with probability
(

ρ
R∞

T µ((u,∞)) du

ρ
R∞
0 µ((u,∞)) du

)k
. Thus, conditional on X0 = k, the probability

that the next jump will be upwards is∫ ∞

0

(∫∞
t µ((u,∞)) du∫∞
0 µ((u,∞)) du

)k

ρe−ρt dt.

Write p(k) for this quantity. A reasonable approximation to the jump skeleton Z of X is to take it
be a discrete-time Markov chain on the nonnegative integers with transition probabilities

P (i, j) =


1, if i = 0 and j = 1,

p(i), if i ≥ 1 and j = i + 1,

1− p(i), if i ≥ 1 and j = i− 1,

0, otherwise.
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The resulting tree is then a Galton-Watson tree with generation dependent offspring distributions,
where

P{a vertex at height k has n offspring} = p(k)n(1− p(k)).

Example 3.2.1. Suppose µ is the point mass at L (that is, all segment lengths are L). Then

µ((u,∞)) =

{
1, u < L

0, u ≥ L
,

and ∫ ∞

t
µ((u,∞))du =

{∫ L
t du = L− t, t < L

0, t ≥ L.

This gives

p(k) =
∫ L

0

(L− t)k

Lk
ρe−ρtdt

=
∫ 1

0
wkρe−ρ(L−Lw)Ldw

= θe−θ

∫ 1

0
wkeθwdw for k ≥ 1,

where θ := ρL = E[X0]. We integrate by parts and find that p(k) = θe−θq(k) where

q(k) =
wkeθw

θ

∣∣∣∣w=1

w=0

− k

θ

∫ 1

0
wk−1eθwdw

=
eθ

θ
− k

θ
q(k − 1) for k ≥ 2,

which yields the recursion

p(k) = 1− k

θ
p(k − 1), k ≥ 2, with p(1) = 1− 1

θ
+

e−θ

θ
.

Solving explicitly, we obtain

p(k) = k!

 k∑
j=0

(−1)k−j

j!θk−j
+

(−1)k−1e−θ

θk

 for k ≥ 1.

4 Discussion

Our observation that randomly sequenced fragments from a genome form a planar Poisson process
in (position, length) coorindates has implications beyond the coverage function analysis performed
in this paper. For example we have found that the visualization of sequencing data in this novel
form is useful for quickly identifying instances of sequencing bias by eye, as it is easy to “see”
deviations from the Poisson process. An example is shown in Figure 4 where fragments from an
Illumina sequencing experiment are compared with an idealized simulation (where the fragments
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are placed uniformly at random). Specifically, paired-end reads from an RNA-Seq experiment
conducted on a GAII sequencer were mapped back to the genome and fragments inferred from the
read end locations. Bias in the sequencing is immediately visible, likely due to non-uniform PCR
amplification [20] and other effects. We hope that others will find this approach to visualizing
fragment data of use.

The “shape” we have proposed for coverage functions was motivated by persistence ideas from
topological data analysis (TDA). In the context of TDA, our setting is very simple (1-dimensional),
however unlike what is typically done in TDA, we have provided a detailed probabilistic analysis
that can be used to construct a null hypothesis for coverage-based test statistics. For example, we
envision computing test statistics [21] based on the trees constructed from coverage functions and
comparing those to the statistics expected from the Galton-Watson trees. It should be interesting
to perform similar analyses with high-dimensional generalizations for which we believe many of our
ideas can be translated. There are also biological applications, for example in the analysis of pooled
experiments where fragments may be sequenced from different genomes simultaneously.

Indeed, we believe that the study of sequence coverage functions that we have initiated may
be of use in the analysis of many sequence census methods. The number of proposed protocols
has exploded in the past two years, as a result of dramatic drops in the price of sequencing. For
example, in January 2010, the company Illumina announced a new sequencer, the HiSeq 2000,
that they claim “changes the trajectory of sequencing” and can be used to sequence 25Gb per
day. Although technologies such as the HiSeq 2000 were motivated by human genome sequencing
a surprising development has been the fact that the majority of sequencing is in fact being used
for sequence census experiments [5]. The vast amounts of sequence being produced in the context
of complex sequencing protocols, means that a detailed probabilistic understanding of random
sequencing is likely to become increasingly important in the coming years.
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Figures

Figure 1

A coverage function (A) with its lattice path excursion (B) and rooted tree (C).

Figure 2

A two dimensional view of a sequencing experiment.

Figure 3

A wedge from the planar Poisson process.

Figure 4

(A) Fragments from a sequencing experiment shown in the (t, l) plane. (B) The spatial Poisson
process resulting from fragments with the same length distribution as (A) but with position sampled
uniformly at random.
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